Advertisement

Solutions of the Hodgkin-Huxley equations modified for potassium accumulation in a periaxonal space

  • William J. AdelmanJr.
  • Richard Fitzhugh
Part of the Faseb Monographs book series (FASEBM, volume 5)

Abstract

Hodgkin and Huxley equations were modified to include the properties of an external diffusion barrier separated from the axolemma by a thin periaxonal space in which potassium ions accumulate as a function of membrane activity. Further modifications in the equations took into account new values for K and new functions for α n, β n, α h, and β h derived from voltage clamp experiments on Loligo pealei giant axons. Equations were solved on a PDP-11 computer using the Gear predictor-corrector numerical method. In comparison with the original Hodgkin and Huxley equations, the modified equations for membrane potentials gave: 1) more accurate representations of the falling and undershoot phases of the membrane action potential, 2) more accurate representation of thresholds and latencies, 3) increases in the periaxonal space potassium ion concentration, Ks, of about 1 mM/impulse, 4) proper predictions of the time course and magnitude of either undershoot decline or periaxonal potassium ion accumulation during trains of membrane action potentials elicited by repetitive short duration stimuli, and 5) a somewhat more accurate representation of adaptation (finite train and nonrepetitive responses) during long duration constant current stimulation.—Adelman, W. J., Jr., and R. FitzHugh. Solutions of the Hodgkin-Huxley equations modified for potassium accumulation in a periaxonal space. Federation Proc. 34: 1322–1329, 1975.

Keywords

Membrane Action Giant Axon Repetitive Firing Voltage Clamp Experiment Squid Giant Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adelman, W. J., Jr., and Y. Palti. J. Gen. Physiol. 53: 685, 1969.CrossRefGoogle Scholar
  2. 2.
    Adelman, W. J., Jr., Y. Palti and J. P. SenftJ. Mené. Biol. 13: 387, 1973.CrossRefGoogle Scholar
  3. 3.
    Agin, D.Nature 201: 625, 1964.ADSCrossRefGoogle Scholar
  4. 4.
    Cole, K. S., H. A. Antosiewicz and P. Rabinowitz. J. Soc. Ind. Appl. Math. 3: 153, 1955.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Fitzhugh, R.J.Gen. Physiol. 43: 867, 1960.CrossRefGoogle Scholar
  6. 6.
    Fitzhugh, R. In: Biological Engineering, edited by H. P. Schwan. New York: McGraw-Hill, 1969, Chapt. 1.Google Scholar
  7. 7.
    Fitzhugh, R.Biophys. J. 1: 445, 1961.ADSCrossRefGoogle Scholar
  8. 8.
    Fitzhugh, R., and H. A. Antosiewicz. J. Soc. Ind. Appl. Math. 7: 447, 1959.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Frankenhaeuser, B., and A. L. Hodgkin. J. Physiol., London 131: 341, 1956.Google Scholar
  10. 10.
    Gear, C. W.Commun. Assoc. Comput. Mach. 14: 185, 1971.MathSciNetGoogle Scholar
  11. 11.
    Gear, C. W.Numerical Initial Value Problems in Ordinary Differential Equations. Englewood Cliffs, N.J.: Prentice-Hall, 1971.MATHGoogle Scholar
  12. 12.
    Guttman, R., and R. Barnhill. J. Gen. Physiol. 55: 104, 1970.CrossRefGoogle Scholar
  13. 13.
    Hagiwara, S. and Y. Oomura. Japan. J. Physiol. 8: 234, 1958.CrossRefGoogle Scholar
  14. 14.
    Hodgkin, A. L., and A. F. Huxley. J. Physiol. London 117: 500, 1952.Google Scholar
  15. 15.
    Stein, R. B.Proc. Roy. Soc. London Ser. B 167: 64, 1967.ADSCrossRefGoogle Scholar

Copyright information

© Federation of American Societies 1975

Authors and Affiliations

  • William J. AdelmanJr.
    • 1
  • Richard Fitzhugh
    • 1
  1. 1.Laboratory of Biophysics, National Institute of Neurological Diseases and StrokeNational Institutes of HealthBethesdaUSA

Personalised recommendations