Advertisement

An essential ionized acid group in sodium channels

  • Bertil Hille
Part of the Faseb Monographs book series (FASEBM, volume 5)

Abstract

Several recent experiments demonstrate the presence of an essential negatively charged acid group within sodium channels. Sodium permeability titrates away at low pH as if controlled by an acid with a voltage-dependent apparent pK a in the range between 5 and 6. The alkali ion permeability sequence of the channel is best explained by interactions between the cations and a strong negative charge in the channel. Block of sodium currents by a variety of metal and organic cations again points to a cation-coordinating site in the channel. The “blocking cations” and protons also oppose the binding of tetrodotoxin and saxitoxin. The negative charge in the channel seems to be essential in selecting appropriate cations and in lowering their activation energy for permeation. The same charge seems to form part of the toxin receptor. At present this charged group is the only chemical group known to be associated with sodium channels.—Hille, B. An essential ionized acid group in sodium channels. Federation Proc. 34: 1318–1321, 1975.

Keywords

Sodium Channel Voltage Clamp Selectivity Filter Barrier Model Sodium Permeability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bezanilla, F., and C. M. Armstrong. J. Gen. Physiol. 60: 588, 1972.CrossRefGoogle Scholar
  2. 2.
    Camougis, G., B. H. Takman and J. R. P. Tasse. Science 156: 1625, 1967.ADSCrossRefGoogle Scholar
  3. 3.
    Campbell, D. T. Ionic selectivity of the sodium channel of frog muscle. (Ph.D. Thesis) Seattle: Univ. of Washington, 1974.Google Scholar
  4. 4.
    Chandler, W. K., and H. Meves. J. Physiol., London 180: 788, 1965.Google Scholar
  5. 5.
    Colquhoun, D., R. Henderson and J. M. Ritchie. J. Physiol., London 227: 95, 1972.Google Scholar
  6. 6.
    Drouin, H., and R.The. Arch. Ges. Physiol. 313: 80, 1969.CrossRefGoogle Scholar
  7. 7.
    Eisenman, G.Biophys. J. 2: 259, 1962.ADSCrossRefGoogle Scholar
  8. 8.
    Eyring, H., R. Lumry and J. W. Wood-Bury. Record Chem. Progr. 10: 100, 1949.Google Scholar
  9. 9.
    Frankenhaeuser, B., and A. L. Hodgkin. J. Physiol., London 137: 218, 1957.Google Scholar
  10. 10.
    Frankenhaeuser, B., and L. E. Moore. J. Physiol., London 169: 438, 1963.Google Scholar
  11. 11.
    Henderson, R., J. M. Ritchie and G. Strichartz. J. Physiol., London 235: 783, 1973.Google Scholar
  12. 12.
    Henderson, R., J. M. Ritchie and G. Strichartz. Proc. Natl Acad. Sci. U.S. In press.Google Scholar
  13. 13.
    Henderson, R., and G. Strichartz. J. Physiol. London 238: 329, 1974.Google Scholar
  14. 14.
    Henderson, R., and J. H. Wang. Biochemistry 11: 4565, 1972.CrossRefGoogle Scholar
  15. 15.
    Hille, B.,J. Gen. Physiol. 51: 199, 1968.CrossRefGoogle Scholar
  16. 16.
    Helle, B.,J. Gen. Physiol. 51: 221, 1968.CrossRefGoogle Scholar
  17. 17.
    Hille, B.Progr. Biophys. Mol. Biol. 21:1, 1970.CrossRefGoogle Scholar
  18. 18.
    Hille, B.,J. Gen. Physiol. 58: 599, 1971.CrossRefGoogle Scholar
  19. 19.
    Hille, B., J. Gen. Physiol. 59: 637, 1972.ADSCrossRefGoogle Scholar
  20. 20.
    Hille, B. Ionic selectivity of Na and K channels of nerve membranes. Chapt. 4 in: MembranesA Series of Advances, Volume 3, Dynamic Properties of Lipid Bilayers and Biological Membranes, edited by G. Eisenman. New York: Dekker, 1975.Google Scholar
  21. 21.
    Hodgkin, A. L., and A. F. Huxley. J. Physiol., London 116: 449, 1952.Google Scholar
  22. 22.
    Hodgkin, A. L., and A. F. Huxley. J. Physiol., London 117: 500, 1952.Google Scholar
  23. 23.
    Kao, C. Y., and A. Nishiyama. J. Physiol., London 180: 50, 1965.Google Scholar
  24. 24.
    Schauf, C. L.J. Physiol., London 235: 197, 1973.Google Scholar
  25. 25.
    Schwarz, J. R., W. Ulbricht and H.-H. Wagner. J. Physiol., London 233: 167, 1973.Google Scholar
  26. 26.
    Twitty, V. C.J. Exptl. Zool. 76: 67, 1937.CrossRefGoogle Scholar
  27. 27.
    Wagner, H.-H., and W. Ulbricht. Arch. Ges. Physiol. 339: R70, 1973.Google Scholar
  28. 28.
    Wagner, H.-H., and W. Ulbricht. Arch. Ges. Physiol. 347: R34, 1974.Google Scholar
  29. 29.
    Wong, J. L., R. Oesterlin and H. Rapoport. J. Am. Chem. Soc. 93: 7344, 1971.CrossRefGoogle Scholar
  30. 30.
    Woodhull, A. M.J. Gen. Physiol. 61: 687, 1973.CrossRefGoogle Scholar
  31. 31.
    Woodhull, A. M., and B. Hille. Biophys. Soc. Abstracts. 14th Annual Meeting, p. 111a, 1970.Google Scholar

Copyright information

© Federation of American Societies 1975

Authors and Affiliations

  • Bertil Hille
    • 1
  1. 1.Department of Physiology and Biophysics, School of MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations