Motoneuron dendrites: role in synaptic integration

  • John N. Barrett
Part of the Faseb Monographs book series (FASEBM, volume 5)


Dendrites constitute over 80% of the receptive surface area in cat motoneurons. Calculations based on matched electrical and geometrical measurements in these neurons indicate that the specific resistance of dendritic membranes in resting motoneurons is at least 2,000 ohm-cm2. When the specific membrane resistance is this high, even the most distal dendritic synapses can contribute significantly to the depolarization of the soma, and hence influence the rate of action potential generation. However, dendritic membrane resistance depends strongly on the level of background synaptic activity. The conductance changes associated with excitatory synaptic activity on a dendrite can be great enough to reduce significantly both the excitatory synaptic driving potential and the effective membrane resistance on that dendrite, and thus greatly reduce the effectiveness of synapses on that dendrite. Inhibitory synaptic activity produces an even greater reduction in dendritic membrane resistance. Thus the relative effectiveness of dendritic synapses depends on the type, distribution, and intensity of background synaptic activity, as well as on dendritic geometry and resting membrane properties. —Barrett, J. N. Motoneuron dendrites: role in synaptic integration. Federation Proc. 34: 1398–1407, 1975.


Synaptic Activity Dendritic Tree Conductance Change Synaptic Event Distal Dendrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Araki, T., and C. A. Terzuolo. Membrane currents in spinal motoneurons associated with the action potential and synaptic activity. J. Neurophysiol. 25: 772, 1962.Google Scholar
  2. 2.
    Barrett, J. N. Determination of neuronal membrane properties using intracellular staining techniques. In: Intracellular Staining Techniques in Neurobiology, edited by S. B. Kater and C. Nicholson. Berlin: Springer-Verlag, 1973.Google Scholar
  3. 3.
    Barrett, J. N., and W. E. Crill. Specific membrane properties of cat motoneurones. J. Physiol. London 239: 301, 1974.Google Scholar
  4. 4.
    Barrett, J. N., and W. E. Crill. The influence of dendritic location and membrane properties on the effectiveness of synapses on cat motoneurones. J. Physiol London 239: 325, 1974.Google Scholar
  5. 5.
    Blankenshep, J. E. Action of tetrodotoxin on spinal motoneurons of the cat. J. Neurophysiol. 31: 186, 1968.Google Scholar
  6. 6.
    Blankenship, J. E., and M. Kuno. Analysis of spontaneous subthreshold activity in spinal motoneurons of the cat. J. Neurophysiol 31: 195, 1968.Google Scholar
  7. 7.
    Burke, R. E., and G. ten Bruggencate. Electrotonic characteristics of alpha motoneurones of varying size. J. Physiol London 212: 1, 1971.Google Scholar
  8. 8.
    Cole, K. S.Membranes, Ions and Impulses. Berkeley: Univ. of California Press, 1968.Google Scholar
  9. 9.
    Conradi, S. On motoneuron synaptology in adult cats. Acta Physiol Scand. Suppl. 332, 1969.Google Scholar
  10. 10.
    Coombs, J. S., J. C. Eccles and P. Fatt. The electrical properties of the motoneurone membrane. J. Physiol London 130: 291, 1955.Google Scholar
  11. 11.
    Del Castillo, J., and B. Katz. The membrane change produced by the neuromuscular transmitter. J. Physiol London 125: 546, 1954.Google Scholar
  12. 12.
    Diamond, J. The activation and distribution of GABA and L-glutamate receptors on goldfish Mauthner neurones: An analysis of dendritic remote inhibition. J. Physiol London 194: 669, 1968.Google Scholar
  13. 13.
    Eccles, J. C.The Physiology of Synapses. Berlin: Springer-Verlag, 1964.CrossRefGoogle Scholar
  14. 14.
    Gage, P. W., and R. N. McBurney. Miniature end-plate currents and potentials generated by quanta of acetylcholine in glycerol-treated toad sartorius fibres. J. Physiol London 226: 79, 1972.Google Scholar
  15. 15.
    Gorman, A. L. F., and M. Mirolli. The geometrical factors determining the electrotonic properties of a molluscan neurone. J. Physiol London 227: 35, 1972.Google Scholar
  16. 16.
    Granit, R.Mechanisms regulating the discharge of motoneurons. Springfield, Ill.: Thomas, 1972.Google Scholar
  17. 17.
    Granit, R., D. Kernell and Y. Lamarre. Algebraical summation in synaptic activation of motoneurones firing within the ‘primary range’ to injected currents. J. Physiol London 187: 379, 1966.Google Scholar
  18. 18.
    Hodgkin, A. L., and W. A. H. Rushton. The electrical constants of a crustacean nerve fibre. Proc. Royal Soc. London Ser. B 133: 444, 1946.ADSCrossRefGoogle Scholar
  19. 19.
    Hubbard, J. I. Mechanism of transmitter release. Progr. Biophys. Mol Biol 21: 33, 1970.CrossRefGoogle Scholar
  20. 20.
    Hubbard, J. I., R. Llinás and D. M. J. Quastel. Electrophysiological Analysis of Synaptic Transmission. Baltimore: Williams & Wilkins, 1969.Google Scholar
  21. 21.
    Iansek, R., and S. J. Redman. The amplitude, time course and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites. J. Physiol London 234: 665, 1973.Google Scholar
  22. 22.
    Jack, J. J. B., S. Miller, G. Porter and S. J. Redman. The time course of minimal excitatory post-synaptic potentials evoked in spinal motoneurones by Group la afferent fibres. J. Physiol. London 215: 353, 1971.Google Scholar
  23. 23.
    Jack, J. J. B., and S. J. Redman. An electrical description of the motoneurone, and its application to the analysis of synaptic potentials. J. Physiol London 215: 321, 1971.Google Scholar
  24. 24.
    Katz, B.The Release of Neural Transmitter Substances. Liverpool: Liverpool Univ. Press, 1969.Google Scholar
  25. 25.
    Katz, B., and R. Miledi. A study of spontaneous miniature potentials in spinal motoneurones. J. Physiol. London 168: 389, 1963.Google Scholar
  26. 26.
    Kernell, D. High-frequency repetitive firing of cat lumbosacral motoneurons stimulated by long-lasting injected currents. Acta Physiol Scand. 65: 74, 1965.CrossRefGoogle Scholar
  27. 27.
    Kernell, D. The limits of firing frequency in cat lumbosacral motoneurons possessing different time courses of afterhyperpolarization. Acta Physiol. Scand. 65: 87, 1965.CrossRefGoogle Scholar
  28. 28.
    Kernell, D. Input resistance, electrical excitability, and size of ventral horn cells in cat spinal cord. Science 152: 1637, 1966.ADSCrossRefGoogle Scholar
  29. 29.
    Krnjević, K. Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 54: 418, 1974.Google Scholar
  30. 30.
    Kuno, M. Quantal components of excitatory synaptic potentials in spinal motoneurones. J. Physiol. London 175: 81, 1964.Google Scholar
  31. 31.
    Kuno, M. Quantum aspects of central and ganglionic synaptic transmission in vertebrates. Physiol. Rev. 51: 647, 1971.Google Scholar
  32. 32.
    Kuno, M., and J. T. Miyahara. Non-linear summation of unit synaptic potentials in spinal motoneurones of the cat. J. Physiol. London 201: 465, 1969.Google Scholar
  33. 33.
    Kuno, M., and J. T. Miyahara. Analysis of synaptic efficacy in spinal motoneurones from ‘quantum’ aspects. J. Physiol. London 201: 479, 1969.Google Scholar
  34. 34.
    Kuno, M., and J. N. Weakly. Quantal components of the inhibitory synaptic potential in spinal motoneurones of the cat. J. Physiol. London 224: 287, 1972.Google Scholar
  35. 35.
    Llinas, R., and R. Baker. A chloride-dependent inhibitory postsynaptic potential in cat trochlear motoneurons. J. Neurophysiol. 35: 484, 1972.Google Scholar
  36. 36.
    Llinas, R., R. Baker and W. Precht. Blockage of inhibition by ammonium acetate action on chloride pump in cat trochlear motoneurons. J. Neurophysiol. 37: 522, 1974.Google Scholar
  37. 37.
    Lux, H. D., C. Loracher and E. Neher. The action of ammonium on postsynaptic inhibition of cat spinal motoneurons. Exptl. Brain Res. 11: 431, 1970.CrossRefGoogle Scholar
  38. 38.
    Lux, H. D., P. Schubert and G. W. Kreutzberg. Direct matching of morphological and electrophysiological data in cat spinal motoneurons. In: Excitatory Synaptic Mechanisms. Proc. of the Fifth International Meeting of Neurobiologists, edited by P. Anderson and J. K. S. Jansen. Oslo: Universitetsforlaget, 1970.Google Scholar
  39. 39.
    Magleby, K. L., and C. F. Stevens. A quantitative description of end-plate currents. J. Physiol. London 223: 173, 1972.Google Scholar
  40. 40.
    Peachey, L. D. Transverse tubules in excitation-contraction coupling. Federation Proc. 24: 1124, 1965.Google Scholar
  41. 41.
    Rall, W. Branching dendritic trees and motoneuron membrane resistivity. Exptl. Neurol. 1: 491, 1959.CrossRefGoogle Scholar
  42. 42.
    Rall, W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J. Neurophysiol. 30: 1138, 1967.Google Scholar
  43. 43.
    Rall, W.. Time constants and electrotonic length of membrane cylinders and neurons. Biophys. J. 9: 1483, 1969.ADSCrossRefGoogle Scholar
  44. 44.
    Rall, W., and J. Rinzel. Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys. J. 13: 648, 1973.ADSCrossRefGoogle Scholar
  45. 45.
    Rinzel, J. Voltage transients in neuronal dendritic trees. Federation Proc. 34: 1350, 1975.Google Scholar
  46. 46.
    Weakly, J. N. Effect of barbiturates on ‘quantal’ synaptic transmission in spinal motoneurones. J. Physiol. London 204: 63, 1969.Google Scholar

Copyright information

© Federation of American Societies 1975

Authors and Affiliations

  • John N. Barrett
    • 1
    • 2
  1. 1.Division of Neurobiology, Department of Physiology and BiophysicsUniversity of IowaOakdaleUSA
  2. 2.Department of Physiology and BiophysicsUniversity of MiamiMiamiUSA

Personalised recommendations