Membrane particles and transmission at the triad

  • Clara Franzini-Armstrong
Part of the Faseb Monographs book series (FASEBM, volume 5)


The structure of the membranes limiting the sarcoplasmic reticulum (SR) and transverse (T) tubules in frog and fish muscle fibers has been studied by freeze fracture. Emphasis is placed on the structure of the membranes at the triad, where thin sections have previously shown that rows of regularly disposed “feet” join SR and T tubules. Examination of the number and arrangement of particles and pits on the exposed fracture faces allows the following conclusions. 1) The SR membrane is continuous and identical in appearance along the whole sarcomere. Thus the SR is a single uninterrupted compartment and it is likely that the major function of the reticulum, calcium accumulation, is performed by the membrane limiting the lateral sacs of the triad, as well as the longitudinal tubules. 2) At the level of the junction with the T tubule, the SR presents a strikingly different number, size and arrangement of particles and pits. This distinct portion of the SR membrane extends farther than the area covered by the junctional “feet” and no correlation can be found between the disposition of particles within the membrane and that of the feet on the membrane surface. 3) The T system membrane presents few prominent particles on its junctional face, but these are far less numerous than the feet. 4) Thus, no visible preformed channels exist between SR and T system lumina and it is suggested that direct electrical coupling between the two membranes during excitation is unlikely.—Franzini-Armstrong, C. Membrane particles and transmission at the triad. Federation Proc. 34: 1382–1389, 1975.


Sarcoplasmic Reticulum Junctional Region Federation Proc Tubule Membrane Freeze Fracture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Sarcoplasmic reticulum

T tubule

transverse tubule


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armstrong, C. M., F. M. Bezanilla and P. Horowicz. Biochim. Biophys. Acta 267: 605, 1972.CrossRefGoogle Scholar
  2. 2.
    Bezanilla, F. M., and P. Horowicz. Federation Proc. 33: 1259, 1974.Google Scholar
  3. 3.
    Bianchi, C. P., and T. C. Bolton. J. Pharmacol Exptl. Ther. 157: 388, 1967.Google Scholar
  4. 4.
    Birks, R. I. In: Muscle, edited by W. H. Paul, E. E. Daniel, C. M. Kayand G. Manckton. New York: McMillan (Pergamon), 1964, p. 199–216.Google Scholar
  5. 5.
    Birks, R. I., and D. F. Davey. J. Physiol. London 202: 171, 1969.Google Scholar
  6. 6.
    Costantin, L. L.Federation Proc. 34: 1390, 1975.Google Scholar
  7. 7.
    Costantin, L. L., and R. J. Podolsky. J. Gen. Physiol. 50: 1101, 1967.CrossRefGoogle Scholar
  8. 8.
    Deamer, D. W., and R. J. Baskin. J. Cell Biol. 42: 296, 1969.CrossRefGoogle Scholar
  9. 9.
    Deamer, D. W., R. Leonard, A. Tar-Dieu and D. Branton. Biochim. Biophys. Acta 219: 47, 1970.CrossRefGoogle Scholar
  10. 10.
    Dulhunty, A., and C. Franzini-Arm-Strong. Federation Proc. 33: 401, 1974.Google Scholar
  11. 11.
    Dupont, Y., S. C. Harrison and W. Hasselbach. Nature 244: 555, 1973.ADSCrossRefGoogle Scholar
  12. 12.
    Ebashi, S., and M. Endo. Progr. Biophys. Mol. Biol. 18: 123, 1968.CrossRefGoogle Scholar
  13. 13.
    Ezerman, E. B., and H. Ishikawa. J. Cell Biol. 35: 405, 1967.CrossRefGoogle Scholar
  14. 14.
    Endo, J., M. Tanaka and Y. Ogawa. Nature 228: 34, 1970.ADSCrossRefGoogle Scholar
  15. 15.
    Ford, L. E., and R. J. Podolsky. Science 167: 58, 1970.ADSCrossRefGoogle Scholar
  16. 16.
    Franzini-Armstrong, C.Federation Proc. 23: 887, 1964.Google Scholar
  17. 17.
    Franzini-Armstrong, C.J. Cell Biol. 47: 488, 1970.CrossRefGoogle Scholar
  18. 18.
    Franzini-Armstrong, C.J. Cell Biol. 49: 196, 1971.CrossRefGoogle Scholar
  19. 19.
    Franzini-Armstrong, C.Tissue Cell 4: 469, 1972.CrossRefGoogle Scholar
  20. 20.
    Franzini-Armstrong, C.J. Cell Biol. 56: 120, 1973.CrossRefGoogle Scholar
  21. 21.
    Franzini-Armstrong, C.J. CellBiol. 61:; 501, 1974.CrossRefGoogle Scholar
  22. 22.
    Fuchs, F.Ann. Rev. Physiol. 36: 461, 1974.CrossRefGoogle Scholar
  23. 23.
    Jewett, P. H., J. R. Sommer and E. A. Johnson. J. Cell Biol. 49: 50, 1971.CrossRefGoogle Scholar
  24. 24.
    Kelly, D. E.J. Ultrastruc. Res. 29: 37, 1969.CrossRefGoogle Scholar
  25. 25.
    Kelly, D. E., and J. A. Cahill. J. Cell Biol. 43 (2): 66 A, 1969.Google Scholar
  26. 26.
    Landis, D., M. Henkart and T. S. Reese. J. Cell Biol. 59 (2, Pt. 2), 184 a, 1974.Google Scholar
  27. 27.
    Liu, S. C., and C. R. Worthington. Biophys. Soc. Ann. Meet. Abstr. 13: 91 a, 1973.Google Scholar
  28. 28.
    McLennan, D. H., P. I. Seeman, G. H. Iles and G. G. Yip. J. Biol. Chem. 246: 2702, 1971.Google Scholar
  29. 29.
    Markham, R., J. H. Hitchborn, G. J. Hells and S. S. Frey. Virology 22: 342, 1964.CrossRefGoogle Scholar
  30. 30.
    Nakajima, Y., and M. Endo. Nature 246: 216, 1973.Google Scholar
  31. 31.
    Peachey, L. D.J. Cell Biol. 25: 209, 1965.CrossRefGoogle Scholar
  32. 32.
    Peracchia, C.J. Cell Biol. 57: 66, 1973.CrossRefGoogle Scholar
  33. 33.
    Pinto da Silva, P., and D. Branton. J. Cell Biol. 45: 598, 1970.CrossRefGoogle Scholar
  34. 34.
    Rayns, D. G.Phil. Trans. Roy. Soc. London, Ser. B Biol. Sci. 261: 139, 1971.ADSCrossRefGoogle Scholar
  35. 35.
    Rayns, D. G., F. O. Simpson and W. S. BertaudJ. Cell Sci. 3: 475, 1968.Google Scholar
  36. 36.
    Revel, J. P.J. Cell Biol. 12: 571, 1962.CrossRefGoogle Scholar
  37. 37.
    Sandow, A.Ann. Rev. Physiol. 32: 87, 1970.CrossRefGoogle Scholar
  38. 38.
    Sandow, A., M. K. D. Pagola and E. C. Sphicos. Federation Proc. 33: 1259, 1974.Google Scholar
  39. 39.
    Schiaffino, S., and A. Magreth. J. Cell Biol. 41: 855, 1969.CrossRefGoogle Scholar
  40. 40.
    Schneider, M. F., and W. K. Chandler. Nature 242: 244, 1973.ADSCrossRefGoogle Scholar
  41. 41.
    Sherman, R. G., and A. R. Luff. Am. J. Zool. 49: 1549, 1971.Google Scholar
  42. 42.
    Smith, D. S., and H. C. Aldrich. Tissue Cell 3: 261, 1971.CrossRefGoogle Scholar
  43. 43.
    Sommer, J. R., R. L. Steere, E. A. Johnson and P. H. Jewett. In: Hibernation and Hypothermia, Perspectives and Challenges, edited by F. F. South, J. P. Harmon, J. R. Willis, E. T. Pengelley and N. R. Alport. New York: American Elsevier, 1972, p. 291–355.Google Scholar
  44. 44.
    Stefani, E., and D. J. Chiarandini. Arch. Ges. Physiol. 343: 143, 1973.CrossRefGoogle Scholar
  45. 45.
    Stewart, P. S., and D. H. McLennan. J. Biol. Chem. 249: 985, 1974.Google Scholar
  46. 46.
    Taylor, S. R., R. Rüdel and J. R. Blinks. Federation Proc. 34: 1379, 1975.Google Scholar
  47. 47.
    Tillack, R. W., and V. T. Marchesi. J. Cell Biol. 45: 649, 1970.CrossRefGoogle Scholar
  48. 48.
    Weber, A., and J. M. Murray. Physiol. Rev. 53: 612, 1973.Google Scholar
  49. 49.
    Winegrad, S.J. Gen. Physiol. 55: 77, 1970.CrossRefGoogle Scholar
  50. 50.
    Zebe, E., and W. Rathmayer. Z. Zellforsch. Mikrosk. Anat. 92: 377, 1970.CrossRefGoogle Scholar

Copyright information

© Federation of American Societies 1975

Authors and Affiliations

  • Clara Franzini-Armstrong
    • 1
  1. 1.Department of Physiology, School of Medicine and DentistryUniversity of RochesterRochesterUSA

Personalised recommendations