Advertisement

Current theories of biological aging

  • Leonard Hayflick
Part of the Faseb Monographs book series (FASEBM, volume 3)

Abstract

Several lines of evidence have led to the notion that biological aging occurs as a result of changes in information-containing molecules either at the genetic or epigenetic level. The error theory, the redundant message theory, the codon restriction theory, and the transcriptional event theory represent the major current conceptualizations of biological aging as held by most gerontologists. The finding that cultured normal human and animal cells undergo a finite number of population doublings in vitro has provided new insights into age changes at the cellular level. The number of mitotic events that cultured normal animal cells can undergo appears to be inversely related to the age of the donor. A direct proportionality exists, however, between the mean maximum life-span of a species and the number of population doublings that their cultured embryonic cells will undergo. The several biochemical decrements known to occur prior to the cessation of mitotic activity in vitro are thought to herald those manifestations of senescence seen in the whole animal. Yet to be explained is how those cell classes such as the germ plasm and continuously propagable cancer cells escape from the inevitability of biological aging.—Hayflick, L. Current theories of biological aging. Federation Proc. 34: 9–13, 1975.

Keywords

Biological Aging Current Theory Population Doubling Error Theory Germ Plasm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, P. In: Perspectives in Experimental Gerontology, edited by N. W. Shock. Springfield, III.: Thomas, 1966.Google Scholar
  2. 2.
    Britten, R. J., and D. E. Kohne. Carnegie Inst. Washington, Yearbook 66:. 73, 1968.Google Scholar
  3. 3.
    Britten, R. J., and D. E. Kohne. Science 161: 529, 1968.PubMedCrossRefGoogle Scholar
  4. 4.
    Britten, R. J., and D. E. Kohne. In: Handbook of Molecular Cytology,edited by A. Lima-de-Faria. Amsterdam: North-Holland, 1969, p. 21 and 38.Google Scholar
  5. 5.
    Burnet, M. J. Brit. Med. J. 1965: 337.Google Scholar
  6. 6.
    Clark, A. M. Advan. Gerontol. Res. 1: 207, 1964.Google Scholar
  7. 7.
    Comfort, A. Gerontologia 14: 224, 1968.CrossRefGoogle Scholar
  8. 8.
    Cristofalo, V. J. In: Advances in Gerontological Research 3, edited by B. L. Strehler. New York: Academic, 1972.Google Scholar
  9. 9.
    Cristofalo, V. J., B. V. Howard and D. Kritchevsky. In: Organic, Biological and Medicinal Chemistry 2, edited by V. Gallo and L. Santomarra. Amsterdam: North-Holland, 1970.Google Scholar
  10. 10.
    Cudkowicz, G., A. C. Upton, G. M. Shearer and W. L. Hughes. Nature 201: 165, 1964.PubMedCrossRefGoogle Scholar
  11. 11.
    Curtis, H. J. Science 141: 688, 1963.Google Scholar
  12. 12.
    Curtis, H. J. Federation Proc. 23: 662, 1964.Google Scholar
  13. 13.
    Curtis, H. J. In: Perspectives in Experimental Gerontology, edited by N. W. Shock. Springfield, III.: Thomas, 1966.Google Scholar
  14. 14.
    Daniel, C. W., K. B. De Ome, J. T. Young, P. B. Blair and L. J. Faulkin, JR. Proc. Natl. Acad. Sci. U.S. 61: 53, 1968.CrossRefGoogle Scholar
  15. 15.
    Ford, C. E., H. S. Micklem and S. M. Gray. Brit. J. Radiol. 32: 280, 1959.Google Scholar
  16. 16.
    Gelfant, S., and J. Graham-Smith, JR. Science 178: 357, 1972.PubMedCrossRefGoogle Scholar
  17. 17.
    Goldberg, A. L. Proc. Natl. Acad. Sci. U.S. 69: 427, 1972.CrossRefGoogle Scholar
  18. 18.
    Goldstein, S. New Engl. J. Med. 285: 1120, 1971.PubMedCrossRefGoogle Scholar
  19. 19.
    Hayflick, L. Expti. Cell Res. 37: 614, 1965.CrossRefGoogle Scholar
  20. 20.
    Hayflick, L. Exptl. Gerontol. 5: 291, 1970.CrossRefGoogle Scholar
  21. 21.
    Hayflick, L. In: Aging and Development, Band 4, edited by H. Bredt and J. W. Rohen. Stuttgart: F. K. Schattauer Verlag, 1972.Google Scholar
  22. 22.
    Hayflick, L. Am. J. Med. Sci. 265: 433, 1973.CrossRefGoogle Scholar
  23. 23.
    Hayflick, L. Gerontologist 14: 37, 1974.PubMedCrossRefGoogle Scholar
  24. 24.
    Hayflick, L. In: Theoretical Aspects of Aging,edited by M. Rockstein. New York: Academic. In press.Google Scholar
  25. 25.
    Hayflick, L., and P. S. Moorhead. Exptl. Cell Res. 25: 585, 1961.PubMedCrossRefGoogle Scholar
  26. 26.
    Holeckova, E., and V. J. Cristofalo (editors). Aging in Cell and Tissue Culture. New York: Plenum, 1970.Google Scholar
  27. 27.
    Holliday, R., and G. M. Tarrant. Nature 238: 26, 1972.PubMedCrossRefGoogle Scholar
  28. 28.
    Houck, J. C., V. K. Sharma and L. Hayflick. Proc. Soc. Exptl. BioL Med. 137: 331, 1971.Google Scholar
  29. 29.
    Krohn, P. L. Proc. Roy. Soc. London, Ser. B 157: 128, 1962.CrossRefGoogle Scholar
  30. 30.
    Lewis, C. M., and R. Holliday. Nature 228: 877, 1970.PubMedCrossRefGoogle Scholar
  31. 31.
    Martin, G. M., C. A. Sprague And C. J. Epstein. Lab. Invest. 23: 86, 1970.PubMedGoogle Scholar
  32. 32.
    Medvedev, ZH. A. Usp. Sovrem. Biol. 51: 299, 1961.PubMedGoogle Scholar
  33. 33.
    Medvedev, ZH. A. Exptl. Gerontol. 7: 227, 1972.CrossRefGoogle Scholar
  34. 34.
    Orgel, L. E. Proc. Natl. Acad. Sci. U.S. 49: 517, 1963.CrossRefGoogle Scholar
  35. 35.
    Orgel, L. E. Nature 243: 441, 1973.PubMedCrossRefGoogle Scholar
  36. 36.
    Printz, D. B., and S. R. Gross. Genetics 55: 451, 1967.PubMedGoogle Scholar
  37. 37.
    Saunders, J. W. In: Topics in the Biology of Aging, edited by P. L. Krohn. New York: Interscience, 1966, p. 159.Google Scholar
  38. 38.
    Siminovitch, L, J. E. Till and E. A. Mcculloch. J. Cellular Comp. Physiol. 64: 23, 1964.CrossRefGoogle Scholar
  39. 39.
    Strehler, B. L. Quant. Rev. Biol. 34: 117, 1959.CrossRefGoogle Scholar
  40. 40.
    Strehler, B. L. Time, Cells and Aging. New York: Academic, 1962, p. 12.Google Scholar
  41. 41.
    Strehler, B. L. Proc. Intern. Congr. Gerontol. Vienna: Wein Medikalische Academic, 1966, p. 177.Google Scholar
  42. 42.
    Strehler, B., G. Hirsch, D. Gusseck, R. Johnson and M. Bick. J. Theoret. Biol. 33: 429, 1971.CrossRefGoogle Scholar
  43. 43.
    Szilard, L. Proc. Natl. Acad. Sci. U.S. 45: 30, 1959.CrossRefGoogle Scholar
  44. 44.
    Von Hahn, H. P. Exptl. Gerontol. 5: 323, 1970.CrossRefGoogle Scholar
  45. 45.
    Williams, G. C. Evolution 11: 398, 1957.CrossRefGoogle Scholar
  46. 46.
    Williamson, A. R., and B. A. Askonas. Nature 238: 337, 1972.PubMedCrossRefGoogle Scholar

Copyright information

© Federation of American Societies 1975

Authors and Affiliations

  • Leonard Hayflick
    • 1
  1. 1.Department of Medical MicrobiologyStanford University School of MedicineStanfordUSA

Personalised recommendations