Changes in monoamine oxidase and monoamines with human development and aging

  • D. S. Robinson
Part of the Faseb Monographs book series (FASEBM, volume 3)


A series of studies of monoamines and their metabolism in a variety of human tissues indicate that there are aging effects that may alter neurotransmitter substances. Monoamine oxidase (MAO) activity has a significant positive correlation with age in plasma and blood platelets of normal subjects and patients suffering from depressive disorders. Monoamine oxidase and age correlate positively in hindbrain and in eight separate areas of human brains from patients who died from a variety of causes. Hindbrain norepinephrine concentration progressively decreases with advancing age (r = −0.44, P < 0.01) while no changes were noted for serotonin (5-HT) and 5-hydroxy.indoleacetic acid (5-HIAA). Hindbrain norepinephrine concentration has a significant negative correlation with MAO (r = −0.41, P < 0.025) and hindbrain 5-HIAA has a significant positive correlation with MAO (r = +0.66, P = <0.05). These studies suggest that aging processes may significantly affect monoamine mechanisms and be a predisposing factor to the development of clinical diseases in man such as depression, parkinsonism and other disorders of central nervous system homeostasis.—Rorinson, D. S. Changes in monoamine oxidase and monoamines with human development and aging. Federation Proc. 34: 103–107, 1975.


Monoamine Oxidase Blood Platelet Amine Oxidase Monoamine Oxidase Activity Monoamine Metabolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anton, A. H., and D. F. Sayre. A study of the factors affecting the aluminum oxide-trihydroxyindole procedure for the analysis of catecholamines. J. Pharmacol. Exptl. Therap. 138: 360, 1962.Google Scholar
  2. 2.
    Axelrod, J. Metabolism of epinephrine and other sympathomimetic amines. Physiol. Rev. 39: 751, 1959.PubMedGoogle Scholar
  3. 3.
    Bennett, D. S., and N. J. Giarman. Schedule of appearance of 5-hydroxytryptamine (serotonin) and associated enzymes in the developing rat brain. J. Neurochem. 12: 911, 1965.PubMedCrossRefGoogle Scholar
  4. 4.
    Bjorksten, J. Enzymes and cellular metabolism. In: Enzymes and Mental Health, edited by G. J. Martin and B. Fisch. Philadelphia: Lippincott, 1966.Google Scholar
  5. 5.
    Bogdanski, D. F., A. Pletscher, B. B. Brodie and S. Udenfriend. Identification and assay of serotonin in brain. J. Pharmacol. Exptl. Therap. 117: 82, 1956.Google Scholar
  6. 6.
    Bowers, M. B., and F. A. Gerbode. Relationship of monoamine metabolites in human cerebrospinal fluid to age. Nature 219: 1256, 1968.PubMedCrossRefGoogle Scholar
  7. 7.
    Brain, W. R., and J. N. Walton. Brain’s Diseases of the Nervous System. London: Oxford Univ. Press, 1969, p. 522–534.Google Scholar
  8. 8.
    Brodie, B. B., D. F. Bogdanski and L. Bonomi. In: Comparative Neurochemistry, edited by D. Richter. Oxford: Pergamon, 1964, p. 367.Google Scholar
  9. 9.
    Collins, G. G. S., M. Sandler, E. D. Williams and M. B. H. Youdim. Multiple forms of human brain mitochondrial monoamine oxidase. Nature 225: 817, 1970.PubMedCrossRefGoogle Scholar
  10. 10.
    Cotzias, C. G., M. H. van Woert and L. M. Schiffer. Aromatic amino acids and the modification of parkinsonism. New Engl. J. Med. 276: 374, 1967.PubMedCrossRefGoogle Scholar
  11. 11.
    Davis, J. M. Theories of biological etiology of affective disorders. Intern. Rev. Neurobiol. 12: 145, 1970.CrossRefGoogle Scholar
  12. 12.
    De Champlain, J., L. R. Krakoff and J. Axelrod. Increased monoamine oxidase activity during the development of cardiac hypertrophy in the rat. Circ. Res. 23: 361, 1968.CrossRefGoogle Scholar
  13. 13.
    Ford, D. H. Neurobiological Aspects of Maturation and Aging. In: Prog. Brain Res. Vol. 40: 1973.Google Scholar
  14. 14.
    Fuxe, K. Evidence for the existence of monoamine neurons in the central nervous system. Acta Physiol. Scand. 64: suppl. 37, 247, 1965.Google Scholar
  15. 15.
    Gey, K. F., W. P. Burkard and A. Pletscher. Variation of the norepinephrine metabolism of the rat heart with age. Gerontologia11: 1, 1965.PubMedCrossRefGoogle Scholar
  16. 16.
    Gilmore, N. J., D. S. Robinson, A. Nies, D. Sylwester and C. L. Ravaris. Blood monoamine oxidase levels in pregnancy and during the menstrual cycle. J. Psychosomatic Res. 15: 215, 1971.CrossRefGoogle Scholar
  17. 17.
    Goldstein, M., R. Epstein and L, S. Freedman. Dopamine-B-hydroxylase as an index of sympathetic activity. Presented at the 12th annual meeting of the Am. Col. Neuropsychopharmacol., Palm Springs, Cal., Dec. 7, 1973.Google Scholar
  18. 18.
    Gottfries, C. G., I. Gottfries, B. Johannson, R. Olsson, T. Persson, B. E. Roos and R. Sjostram. Acid monoamine metabolites in human cerebrospinal fluid and their relations to age and sex. Neuropharmacology 10: 655, 1971.CrossRefGoogle Scholar
  19. 19.
    Horita, A. The influence of age on the recovery of cardiac monoamine oxidase after irreversible inhibition. Biochem. Pharmacol.17: 2091, 1968.PubMedCrossRefGoogle Scholar
  20. 20.
    Ho-Van-Hap, A., L. M. Barbineau and L. Berlinguet. Hormonal action on monoamine oxidase activity in rats. Can. J. Biochem. 45: 355, 1967.PubMedCrossRefGoogle Scholar
  21. 21.
    Karki, N., R. Knutman and B. B. Brodie. Storage, synthesis, and metabolism of monoamines in the developing brain. J. Neurochem. 9: 53, 1962.PubMedCrossRefGoogle Scholar
  22. 22.
    Klaiber, E. L., Y. Kobayashi, D. M. Broverman and F. Hall. Plasma monoamine oxidase activity in regularly menstruating women and in amenorrheic women receiving cyclic treatment with estrogens and a progestin. J. Clin. Endocrinol. 33: 630, 1971.CrossRefGoogle Scholar
  23. 23.
    Kuzuya, H., and T. Nagatsu. Fla-vins and monoamine oxidase activity in the brain, liver and kidney of the developing rat. J. Neurochem. 16: 123, 1969.PubMedCrossRefGoogle Scholar
  24. 24.
    Nachmias, J. T. Amine oxidase and 5hydroxytryptamine in developing rat brain. J. Neurochem. 6: 99, 1960.PubMedCrossRefGoogle Scholar
  25. 25.
    Nies, A., D. S. Robinson, J. M. Davis and C. L. Ravaris. Changes in monoamine oxidase with aging. In: Psycho-pharmacology and Aging, edited by C. Eisdorfer and W. E. Fann. New York: Plenum, 1974, p. 41.Google Scholar
  26. 26.
    Nilsson, S. E., N. Tryding and G. Tufvesson. Serum monoamine oxidase (MAO) in diabetes mellitus and some other internal diseases. Acta Med. Scand. 184: 105, 1968.PubMedCrossRefGoogle Scholar
  27. 27.
    Prange, A. J., J. E. White, M. A. Lipton and A. M. Kinkead. Influence of age on monoamine oxidase and catechol-O-methyltransferase in rat tissues. Life Sci. 6: 581, 1967.PubMedCrossRefGoogle Scholar
  28. 28.
    Rawnsley, K. Epidemiology of affective disorders. In: Recent Development in Affective Disorders. British Journal of Psychiatry Special Publication No. 2, 1968, p. 227.Google Scholar
  29. 29.
    Robinson, D. S., J. M. Davis, A. Nies, et al. Relation of sex and aging to monoamine oxidase activity of human brain, plasma and platelets. Arch. Gen. Psychiat. 24: 536, 1971.PubMedCrossRefGoogle Scholar
  30. 30.
    Robinson, D. S., J. M. Davis, A Nies, et al. Ageing, monoamines, and monoamine-oxidase levels. Lancet 1: 290, 1972.PubMedCrossRefGoogle Scholar
  31. 31.
    Robinson, D. S., W. Lovenberg, H. Keiser and A. Sjoerdsma. Effects of drugs on human blood platelet and plasma amine oxidase activity in vitro and in vivo. Biochem. Pharmacol.17: 109, 1968.PubMedCrossRefGoogle Scholar
  32. 32.
    Samorajski, T., and C. Rolsten. Age and regional differences in the chemical composition of brains of mice, monkeys and humans. In: Neurobiological Aspects of Maturing and Aging, edited by D. H. Ford. New York: American Elsevier, 1973.Google Scholar
  33. 33.
    Schildkraut, J. J., and S. S. Kety. Biogenic amines and emotion. Science 156: 21, 1967.PubMedCrossRefGoogle Scholar
  34. 34.
    Silverman, C. The Epidemiology of Depression. Baltimore: Johns Hopkins Press, 1968.Google Scholar
  35. 35.
    Timiras, P. S., D. B. Hudson and S. Oklund. Changes in central nervous system free amino acids with development and aging. In: Neurobiological Aspects of Maturing and Aging, edited by D. H. Ford. New York: American Elsevier, 1973.Google Scholar
  36. 36.
    Udenfriend, S., H. Weissbach and B. B. Brodie. Assay of serotonin and related metabolites, enzymes and drugs. In: Methods of Biochemical Analysis, edited by D. Glick. New York: Wiley-Interscience, 1958.Google Scholar
  37. 37.
    Vernadakis, A. Comparative studies of neurotransmitter substances in the maturing and aging central nervous system of the chicken. In: Neurobiological Aspects of Maturing and Aging, edited by D. H. Ford. New York: American Elsevier, 1973.Google Scholar
  38. 38.
    Vernadakis, A. Changes in nucleic acid content and butyrylcholinesterase activity in CNS structures during the life-span of the chicken. J. Gerontol. 28: 281, 1973.PubMedGoogle Scholar
  39. 39.
    Youdin, M. B. H. Multiple forms of mitochondrial monoamine oxidase. Brit. Med. Bull. 29: 120, 1973.Google Scholar
  40. 40.
    Zorzoli, A. Enzymes and cellular metabolism. In: Men, Molecules and Aging. edited by S. Bakerman. Springfield, Ill.: Thomas, 1967.Google Scholar

Copyright information

© Federation of American Societies 1975

Authors and Affiliations

  • D. S. Robinson
    • 1
  1. 1.Clinical Pharmacology Unit Departments of Pharmacology and MedicineUniversity of Vermont College of MedicineBurlingtonUSA

Personalised recommendations