Bioenergetic functions of sleep and activity rhythms and their possible relevance to aging

  • Ralph J. Berger
Part of the Faseb Monographs book series (FASEBM, volume 3)


The hypothesis is proposed that sleep constitutes a period of dormancy in which energy is conserved to partially offset the increased energy demands of homeothermy. Phylogenetic data indicate that the complete physiological and behavioral manifestations of sleep are unique to homeotherms; furthermore “ontogeny recapitulates phylogeny” in the parallel development of slow wave sleep and thermoregulation as exemplified in the opossum. Thus, sleep constitutes a state of reduced metabolism that may represent a variation on the theme of dormancy, functionally lying on a continuum of energy conservation processes, ranging from inactivity and estivation to torpor and hibernation. The high amounts of sleep in infancy may involve conservation of energy and its consequent availability for growth. Decreased amounts of stage 4 and total sleep with aging in humans may represent reduced energy demands reflected by parallel declines in basal metabolic rate and physical activity. Disruptions of circadian rhythms of sleep and wakefulness in humans produce impairments in mood and performance independent of total amounts of sleep obtained, and reduce the amplitude of physiological rhythms. It is suggested that aging processes might also be affected by such disruptions in activity rhythms. Berger, R. J. Bioenergetic functions of sleep and activity rhythms and their possible relevance to aging. Federation Proc. 34: 97–102, 1975.


Slow Wave Sleep Deprivation Activity Rhythm Paradoxical Sleep Slow Wave Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



slow wave sleep


paradoxical sleep






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamson, K. Breathing, the thermal environment in young rabbits. J. Physiol., London 149: 144, 1959.Google Scholar
  2. 2.
    Agnew, H. W., Jr., W. B. Webb, R. L. Williams. Sleep patterns in late middle age males: An EEG study. Electroencephalog. Clin. Neurophysiol. 23: 168, 1967.CrossRefGoogle Scholar
  3. 3.
    Alexer, G. Temperature regulation in the new-born lamb. III. Effect of environmental temperature on metabolic rate, body temperature,, respiratory quotient. Australian J. Agr. Res. 12: 1152, 1961.Google Scholar
  4. 4.
    ersen, P., K. Johansen, J. Krog. Electroencephalogram during arousal from hibernation in the birchmouse. Am. J. Physiol. 199: 535, 1960.Google Scholar
  5. 5.
    Aschoff, J. Survival value of diurnal rhythms. Zool. Soc. Lond. Symp. 13: 79, 1964.Google Scholar
  6. 6.
    Baekel,, F.,, R. Lasky. Exercise, sleep patterns in college athletes. Percept. Motor Skills 23: 1203, 1966.Google Scholar
  7. 7.
    Berger, R. J. Oculomotor control: a possible function of REM sleep. Psychol. Rev. 76: 144, 1969.PubMedCrossRefGoogle Scholar
  8. 8.
    Brebbia, D. R.,, K. Z. Altshuler. Oxygen consumption rate, electroencephalographic stage of sleep. Science 150: 1621, 1965.PubMedCrossRefGoogle Scholar
  9. 9.
    Brody, E. B. Development of homeothermy in suckling rats. Am. J. Physiol. 139: 230, 1943.Google Scholar
  10. 10.
    Cade, C. J. Observations on torpidity in captive chipmunks of the genus Eutamias. Ecology 44: 255, 1963.CrossRefGoogle Scholar
  11. 11.
    Calder, W. C.,, J. Booser. Hypothermia of broad-tailed hummingbirds during incubation in nature with ecological correlations. Science 180: 751, 1973.PubMedCrossRefGoogle Scholar
  12. 12.
    Chatfield, P. O., C. P. Lyman, D. P. Purpura. The effects of temperature on the spontaneous, induced electrical activity in the cerebral cortex of the golden hamster. Electroencephalog. Clin. Neurophysiol. 3: 225, 1951.CrossRefGoogle Scholar
  13. 13.
    Corner, M. A., J. J. Peters, P. R. Vaneroeff. Electrical activity patterns in the cerebral hemisphere of the chick during maturation, correlated with behavior in a test situation. Brain Res. 2: 274, 1966.PubMedCrossRefGoogle Scholar
  14. 14.
    Corner, M. A., J. P. Schade, J. Sedlacek, R. Stoeckart, A. P. C. Bot. Developmental patterns in the central nervous system of birds. I. Electrical activity in the cerebral hemisphere, optic lobe,, cerebellum. Progr. Brain Res. 26: 145, 1967.CrossRefGoogle Scholar
  15. 15.
    Dawes, G. S., H. N. Jacobson, J. C. Mott, H. J. Shelley. Some observations on foetal, new-born rhesus monkeys., Physiol., London 152: 271, 1960.Google Scholar
  16. 16.
    Fazekas, J. F., F. A. D. Alex, er, H. F. Himwich. Tolerance of the newborn to anoxia. Am. J. Physiol. 134: 281, 1941.Google Scholar
  17. 17.
    Feinberg, 1.,, V. R. Carlson. Sleep variables as a function of age in man. Arch. Gen. Psychiat. 18: 239, 1968.CrossRefGoogle Scholar
  18. 18.
    Feinberg, I., R. L. Koresko, N. Heller. sleep patterns as a function of normal, pathological ageing in man. J. Psychiat. Res. 5: 107, 1967.PubMedCrossRefGoogle Scholar
  19. 19.
    Finkelstein, J. W., T. F.,ers, E. J. Sachar, H. P. Roffwarg, L. D. Hellman. Behavioral state, sleep stage, growth hormone levels in human infants. J. Clin. Endocrinol. Metab. 32: 368, 1971.Google Scholar
  20. 20.
    Fox, M. F. Integrative Development of Brain, Behavior in the Dog. Chicago: Univ. of Chicago Press, 1971.Google Scholar
  21. 21.
    Ginclinger, A.,, C. Kayser. Établissement de la thermorégulation chez les homéothermes au cours du development. Ann. Physiol. Physicochim. Biol. 5: 710, 1929.Google Scholar
  22. 22.
    Herman, H., M. Jouvet, M. Klein. Etude polygraphique du sommeil chez la tortue. Compt. Rend. Soc. Biol. 158: 2175, 1964.Google Scholar
  23. 23.
    Hobson, J. A. Electrographic correlates of behavior in the frog with special reference to sleep. Electroencephalog. Clin. Neurophysiol. 22: 113, 1967.Google Scholar
  24. 24.
    Hobson, J. A. Sleep after exercise. Science 162: 1503, 1968.PubMedCrossRefGoogle Scholar
  25. 25.
    Hudson, J. W., , G. A. Bartholomew. Terrestrial animals in dry heat: estivators. In: H ,book of Physiology: Adaptation to the Environment, edited by D. B. Dill, E. F. Adolph , C. G. Wilber. Washington, D.C.: Am. Physiol. Soc., 1964, sect. 4, chapt. 34, p. 541550.Google Scholar
  26. 26.
    Jensen, C.,, H. E. Ederstrom. Development of temperature regulation in the dog. Am. J. Physiol. 183: 340, 1955.Google Scholar
  27. 27.
    Johnson, L. C. Physiological, psychological changes following total sleep deprivation. In: Sleep: Physiology, Pathology, edited by A. Kales. Philadelphia: Lippincott, 1969, p. 206.Google Scholar
  28. 28.
    Jouvet-Mounier, D. Ontogenese des états de vigilance chez quelques mammifères. ( Thèse de Médecine.) Lyon: Beaux-Arts. 1968.Google Scholar
  29. 29.
    Jouvet-Mounier, D., L. Astic, D. Lacote. Ontogenesis of the states of sleep in rat, cat,, guinea pig during the first postnatal month. D.velop. Psychobiol. 2: 216, 1970.CrossRefGoogle Scholar
  30. 30.
    Kahn, E.,, C. Fisher. The sleep characteristics of the normal aged male. J. Nervous Mental Disease 148: 477, 1969.CrossRefGoogle Scholar
  31. 31.
    Kales, A., T. Wilson, J. D. Kales, A. Jacobson, M. J. Paulson, E. Kollar, R. D. Walter. Measurements of all-night sleep in normal elderly persons: effects of aging. J. Am. Geriat. Soc. 15: 405, 1967.PubMedGoogle Scholar
  32. 32.
    Karacan, I., A. L. Rosenbloom, J. H. Londono, P. J. Salis, J. I. Thornby, R. L. Williams. Sleep, the sleep-growth hormone (GH) response during acute fasting. Sleep Res. 2: 197, 1973.Google Scholar
  33. 33.
    Karacan, I., A. L. Rosenbloom, R. L. Williams, W. W. Finley, C. J. Hursch. Slow wave sleep deprivation in relation to plasma growth hormone concentration. Behay. Neuropsychiat. 2: 11, 1971.Google Scholar
  34. 34.
    Karmanova, I. G.,, E. V. Churnosov. E.ectrophysiological investigation of natural sleep, wakefulness of turtles, chickens. Zh. Evol. Biokhim. Fiziol 8: 59, 1972.Google Scholar
  35. 35.
    Klein, K. E., H. M. Wegmann, B. I. Hunt. Desynchronization of body temperature, performance circadian rhythm as a result of outgoing, homegoing transmeridian flights. Aerospace Med. 43: 119, 1972.PubMedGoogle Scholar
  36. 36.
    Kleitman, N. Sleep, Wakefulness. Chicago: Univ. of Chicago Press, 1963.Google Scholar
  37. 37.
    Kreider, M. B., E. R. Buskirk, D. E. Bass. Oxygen consumption, body temperatures during the night. J. Appl. Physiol. 12: 361, 1958.Google Scholar
  38. 38.
    Lewis, S. A., U. M. Macfadyen, I. Oswald. Starvation, human slow wave sleep. J. Appl. Physiol. 35: 391, 1973.PubMedGoogle Scholar
  39. 39.
    Lillywhite, H. B., P. Licht, P. Chelgren. The role of behavioral thermoregulation in the grown ener Bioenergetic Functions of Sleep, Activity Rhythms 201 getics of the toad, Bufo boreas. Ecology 54: 375, 1973.CrossRefGoogle Scholar
  40. 40.
    Lucas, E., M. B. Sterman, D. J. Mcginty. The salam,er EEG: A model of primitive sleep, wakefulness. Psychophysiology 6: 230, 1969.Google Scholar
  41. 41.
    Luce, G. G. Body time: Physiological rhythms, social stress. New York: Pantheon, 1971, p. 37.Google Scholar
  42. 42.
    Magnussen, G. Studies on the respiration during sleep. A contribution to the physiology of the sleep function. London: H. K. Lewis, 1944.Google Scholar
  43. 43.
    Matsumoto, J., T. Nihisxo, T. Suto, T. Sadahiro, M. Miyoshi. Influence of fatigue on sleep. Nature 218: 177, 1968.PubMedCrossRefGoogle Scholar
  44. 44.
    Meier, G. W.,, R. J. Berger. Development of sleep, wakefulness patterns in the infant rhesus monkey. Exptl. Neurol. 12: 257, 1965.Google Scholar
  45. 45.
    Nelson, R. A., M. W. Wahner, J. D. Jones, R. D. Ellefson, P. E. Zollman. Metabolism of bears before, during,, after winter sleep. Am. J. Physiol. 224: 491, 1973.Google Scholar
  46. 46.
    Oishi, H.,, S. Iwahara. A development study of brain waves, spontaneous motor activity in white rats. Japan. Psychol. Res. 13: 82, 1971.Google Scholar
  47. 47.
    Parker, D. C., J. F. Sassin, J. W. Mace, R. W. Gotlin, L. G. Rossman. Human growth hormone release during sleep: Electroencephalographic correlation. J. Clin. Endocrinol Metab. 29: 871, 1969.PubMedCrossRefGoogle Scholar
  48. 48.
    Pengelley, E. T.,, K. C. Fisher. Rhythmical arousal from hibernation in the golden-mantled ground squirrel Citellus lateralis tescorum. Can. J. Zool. 39: 105, 1961.Google Scholar
  49. 49.
    Pyrethon, J.,, D. Dusan-Pyrethon. Etude polygraphique du cycle veille-sommeil chez trois genres de reptiles. Compt. Rend. Soc. Biol. 162: 181, 1968.Google Scholar
  50. 50.
    Reynolds, H. C. Studies on reproduction in the opossum (Didelphis virginiana virginiana). Univ. Calif. Berkeley Publ. Zool. 52: 232, 1952.Google Scholar
  51. 51.
    Robin, E. D., R. D. Whaley, C. H. Crump, D. M. Travis. Alveolar gas tensions, pulmonary ventilation, blood pH during physiological sleep in normal subjects. J. Clin. Invest. 37: 981, 1958.PubMedCrossRefGoogle Scholar
  52. 52.
    Romanoff, A. L. Development of homeothermy in birds. Science 94: 218, 1941.PubMedCrossRefGoogle Scholar
  53. 53.
    Ruckebusch, Y. Development of sleep, wakefulness in the foetal lamb. Electroencephalog. Clin. Neurophysiol. 32: 119, 1972.CrossRefGoogle Scholar
  54. 54.
    Sassin, J. F., D. C. Parker, J. W. Mace, R. W. Gotlin, L. C. Johnson, L. G. Rossman. Human growth hormone release: relation to slow-wave sleep, sleep-waking cycles. Science 165: 513, 1969.PubMedCrossRefGoogle Scholar
  55. 55.
    Satinoff, E. Hibernation, the central nervous system. In: Progress in Physiological Psychology, edited by E. Stellar, J. M. Sprague. New York: Sprague. 1970, vol. 3, p. 201.Google Scholar
  56. 56.
    Shaywitz, B. A., J. Finkelstein, L. Hellman, E. D. Weitzman. Growth hormone in newborn infants during sleep-wake periods. Pediatrics 48: 103, 1971.PubMedGoogle Scholar
  57. 57.
    Shimizu, A.,, H. E. Himwich. The ontogeny of sleep in kittens, young rabbits. Electroencephalog. Clin. Neurophysiol. 24: 307, 1968.CrossRefGoogle Scholar
  58. 58.
    South, F. E., J. E. Breazile, H. D. Dellmann, A. D. Epperly. Sleep, hibernation, hypothermia in the yellow-bellied marmot (M. flaviventris). In: Depressed Metabolism, edited by X. J. Mosacchia, J. F. Saunders. New York: American Elsevier, 1969, p 277.Google Scholar
  59. 59.
    Susic, V. Electrographic, behavioral correlations of the rest-activity cycle in the sea turtle, Caretta caretta L. (Chelonia). J. Exptl. Marine Biol. Ecol. 10: 81, 1972.CrossRefGoogle Scholar
  60. 60.
    Takahashi, Y., D. M. Kipnis, W. H. Daughaday. Growth hormone secretion during sleep. J. Clin. Invest. 47: 2079, 1968.PubMedCrossRefGoogle Scholar
  61. 61.
    Taub, J. M.,, R. J. Berger. Extended sleep, performance: The Rip Van Winkle effect. P.ychonomic Sci. 18: 82, 1969.Google Scholar
  62. 62.
    Taub, J. M.,, R. J. Berger. Performance, mood following variations in the length, timing of sleep. P. ychophysiology 10: 559, 1973.Google Scholar
  63. 63.
    Taub, J. M.,, R. J. Berger. Behavioral effects of extended sleep, sleep deprivation,, shifted sleep in habitual long sleepers. Sleep Res. 2: 192, 1973.Google Scholar
  64. 64.
    Taub, J. M., G. G. Globus, E. Phoebus, R. Drury. Extended sleep, performance. Nature 233: 142, 1971.PubMedCrossRefGoogle Scholar
  65. 65.
    Tauber, E. S., H. P. Roffwarg, E. D. Weitzman. E.e movements, electroencephalogram activity during sleep in diurnal lizards. Nature 212: 1612, 1966.Google Scholar
  66. 66.
    Tauber, E. S., J. Rodas-Ramirez, R. Hernez-Peon. Electrophysiological, behavioral correlates of wakefulness, sleep in the lizard, Ctenosaura pedinata. Electroencephalog. Clin. Neurophysiol. 24: 424, 1968.CrossRefGoogle Scholar
  67. 67.
    Taylor, P. M. Oxygen consumption in new-born rats. J. Physiol., London 154: 153, 1960.Google Scholar
  68. 68.
    Tuge, H., Y. Kanayama, C. H. Yueh. Comparative studies on the development of EEG. Japan. J. Physiol. 10: 211, 1960.Google Scholar
  69. 69.
    Twente, J. W.,, J. A. Twente. Regulation of hibernating periods by temperature. Proc. Natl. Acad. Sci. U.S. 54: 1058, 1965.Google Scholar
  70. 70.
    Van Twyver, H. Polygraphic studies of the American alligator. Sleep Res. 2: 87, 1973.Google Scholar
  71. 71.
    Van Twyver, H.,, T. Allison. EEG study of the shrew (Blarina brevicauda): A preliminary report. Psychophysiology 6: 231, 1969.Google Scholar
  72. 72.
    Vasilescu, E. Sleep, wakefulness in the tortoise (Emys orbicularis). Rev. Roumaine Biol. Ser. Zool. 15: 177, 1970.Google Scholar
  73. 73.
    Vigneri, R.,, R. D’agata. Growth hormone release during the first year of life in relation to sleep-wake periods. J. Clin. Endocrinol. Metab. 33: 561, 1971.PubMedCrossRefGoogle Scholar
  74. 74.
    Walker, J. M.,, R. J. Berger. A polygraphic study of the tortoise (Testudo denticulata): Absence of electrophysiological signs of sleep. Brain Behay. Evol. 8: 453, 1973.Google Scholar
  75. 75.
    Wilkinson, R. T. Sleep deprivation: Performance tests for partial, selective sleep deprivation. Progr. Clin. Psychol. 8: 28, 1968.Google Scholar
  76. 76.
    Zepelin, H.,, A. Rechtschaffen. Relationships between mammalian sleep parameters, other constitutional variables. Sleep Res. 2: 89, 1973.Google Scholar

Copyright information

© Federation of American Societies 1975

Authors and Affiliations

  • Ralph J. Berger
    • 1
  1. 1.Thimann LaboratoriesUniversity of CaliforniaSanta CruzUSA

Personalised recommendations