Hayflick’s hypothesis: an approach to in vivo testing

  • U. Reincke
  • H. Burlington
  • E. P. Cronkite
  • J. Laissue
Part of the Faseb Monographs book series (FASEBM, volume 3)


The experimental evidence relating to the hypothesis of finite cellular life is reviewed. It is emphasized that even if somatic cell production were limited its total potential would have to be vast to provide for extensive cellular regeneration. The actual limit of reproductive cell life would therefore not likely be reached in a normal life-span. It is proposed to test the hypothesis by deliberate exhaustion of stem-cell reserve, and iron-55 cytocide is described as an experimental system that might be applicable.—Reincke, U., H. Burlington, E. P. Cronkite and J. Laissue. Hayflick’s hypothesis: an approach to in vivo testing. Federation Proc. 34: 71–75, 1975.


Albumin Leukemia Anemia Dition Auger 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Becker, A. H., E. A. Mcculloch, L. Siminovitch and J. E. Till. The effect of differing demands for blood cell production on DNA synthesis by hemopoietic colony-forming cells of mice. Blood 26: 296, 1965.PubMedGoogle Scholar
  2. 2.
    Boggs, D. R., J. C. Marsh, P. A. Chervenick, G. E. Cartwright and M. M. The effect of repetitive irradiation upon proliferative ability of colony-forming cells. J. Exptl. Med. 126: 871, 1967.CrossRefGoogle Scholar
  3. 3.
    Bruce, W. R., and E. A. Mcculloch. The effect of erythropoietic stimulation on the hemopoietic colony-forming cells of mice. Blood 23: 216, 1964.PubMedGoogle Scholar
  4. 4.
    Buetow, D. E. Cellular content and cellular proliferation changes in the tissues and organs of the aging mammal. In: Cellular and Molecular Renewal in the Mammalian Body, edited by Cameron, I. L. and J. D. Thrasher. New York: Academic, 1971, p. 87.Google Scholar
  5. 5.
    Chen, M. D. Age-related changes in hematopoietic stem cell populations of a long-lived hybrid mouse./ Cellular Physiol. 78: 225, 1971.CrossRefGoogle Scholar
  6. 6.
    Cudkowicz, G., A. C. Upton, L. H. Smith, D. G. Gosslee and W. L. Hughes. An approach to the characterization of stem cells in mouse bone marrow. Ann. N.Y. Acad. Sci. 114: 571, 1964.PubMedCrossRefGoogle Scholar
  7. 7.
    Danes, B. S. Progeria: a cell culture study on aging. J. Clin. Invest. 50: 2000, 1971.Google Scholar
  8. 8.
    Daniel, C. W., L. J. T. Young, D. Medina and K. B. Deome. The influence of mammogenic hormones on serially transplanted mouse mammary gland. Exptl. Gerontology 6: 95, 1971.CrossRefGoogle Scholar
  9. 9.
    Davis, M. L., A. C. Upton and L. C. Satterfield. Growth and senescence of the bone marrow stem cell pool in RFM/Un mice. Proc. Soc. Exptl. Biol. Med. 137: 1452, 1971.Google Scholar
  10. 10.
    Delmonte, L. Hemopoietin-initiated changes in differential retransplantability of mouse femoral marrow-derived colony-forming units (CFU). Proc. Soc. Expel. Biol. Med. 141: 227, 1972.Google Scholar
  11. 11.
    Donohue, D. M., B. W. Gabrio and C. A. Finch. Quantitative measurement of hematopoietic cells of the marrow. J. Clin. Invest. 37: 1564, 1958.PubMedCrossRefGoogle Scholar
  12. 11a.
    Harrison, D. E., Normal production of erythrocytes by mouse bone marrow continuous for 73 months. Proc. Natl. Acad. Sci. U.S. 70: 3184, 1973.CrossRefGoogle Scholar
  13. 12.
    Hayflick, L. The limited in vitro lifetime of human diploid cell strains, Exptl. Cell Res. 37: 614, 1965.PubMedCrossRefGoogle Scholar
  14. 13.
    Hayflick, L., and P. S. Moorhead. The serial cultivation of human diploid cell strains. Exptl. Cell Res. 25: 585, 1961.PubMedCrossRefGoogle Scholar
  15. 14.
    Holeckova, E., and V. J. Cristofalo (editors) Aging in Cell and Tissue Culture. New York: Plenum, 1970.Google Scholar
  16. 15.
    Hoshino, K. Indefinite in vivo life span of serially iso-grafted mouse mammary gland. Experientia 26: 1393, 1970.PubMedCrossRefGoogle Scholar
  17. 16.
    Kay, H. G. M. How many cell generations? Lancet 2: 418, 1965.PubMedCrossRefGoogle Scholar
  18. 17.
    Koukalova, B., and Z. Karpfel. Proliferative ability of X-irradiated bone marrow from donors of different ages. Folic Biol., Prague 12: 283, 1966.Google Scholar
  19. 18.
    Kretchmar, A. L., and W. R. Con-Over. A difference between spleen-derived and bone marrow-derived colony-forming units in ability to protect lethally irradiated mice. Blood 36: 772, 1970.PubMedGoogle Scholar
  20. 19.
    Krohn, P. L. Review lecture on senescence: II. Heterochronic transplantation in the study of ageing. Proc. Roy. Soc. London, Ser. B. 157: 128, 1963.CrossRefGoogle Scholar
  21. 20.
    Lajtha, L. G., R. Oliver and C. W. Gurney. Kinetic model of a bone marrow stem-cell population. Brit. J. Haematol. 8: 442, 1962.CrossRefGoogle Scholar
  22. 21.
    Lajtha, L. G., L. V. Pozzi, R. Schofield and M. Fox. Kinetic properties of haemopoietic stem cells. Cell Tissue Kinet. 2: 39, 1969.Google Scholar
  23. 21a.
    Leguilly, Y., M. Simon, P. Lenoir and M. Bourel. Long-term culture of human adult liver cells: morphological changes related to in-vitro senescence and effect of donor’s age on growth potential. Gerontologia 19: 303, 1973.CrossRefGoogle Scholar
  24. 22.
    Martin, G. M., C. A. Sprague and C. J. Epstein. Replicative life-span of cultivated human cells. Effect of donor’s age, tissue, and genotype. Lab. Invest. 23: 86, 1970.PubMedGoogle Scholar
  25. 23.
    Metcalf, D., and M. A. S. Moore. Haemopoietic Cells. Amsterdam: North-Holland, 1971.Google Scholar
  26. 24.
    Proukakis, C., J. E. Coggle and P. J. Lindop. Effect of age at exposure on the bone-marrow stem-cell population in relation to 30-day mortality in mice. In: Radiation Biology of the Fetal and Juvenile Mammal, edited by M. R. Sikov and D. O. Mahlum. U.S. Atomic Energy Commission Div. Tech. Inf. 1969, p. 603.Google Scholar
  27. 25.
    Schooley, J. C. and D. H. Y. Lin. Hematopoiesis and the colony-forming unit. In: Regulation of Erythropoiesis, edited by A. S. Gordon, M. Condorelli and C. Peschle. Milano: Il Ponte, 1972, p. 52. 32.Google Scholar
  28. 26.
    Siminovitch, L., J. E. Till and E. A. Mcculloch. Decline in colony-forming ability of marrow cells subjected to serial transplantation into irradiated mice. J. Cellular Comp. Physiol. 64: 23, 1964.CrossRefGoogle Scholar
  29. 26a.
    Smith, J. R. and L. Hayflick. Variation in the life-span of clones derived from human diploid cell strains. J. Cell Biol. 62: 48, 1974.PubMedCrossRefGoogle Scholar
  30. 27.
    Stohlman, F., Jr., S. Ebbe, B. Morse, D. Howard and J. Dono-Van. Regulation of erythropoiesis XX. Kinetics of red cell production. Ann. N.Y. Acad. Sci. 149: 156, 1968.PubMedCrossRefGoogle Scholar
  31. 28.
    Till, J. E., E. A. Mcculloch and L. Siminovitcx. A stochastic model of stem cell proliferation based on the growth of spleen colony-forming cells. Proc. Natl. Acad. Sci. U.S. 51: 29, 1964.CrossRefGoogle Scholar
  32. 29.
    Todaro, G. J., and H. Green, Serum albumin supplemented medium for long term cultivation of mammalian fibroblast strains. Proc. Soc. Exptl. Biol. Med. 116: 688, 1964.Google Scholar
  33. 30.
    Van Bekkum, D. W., and W. W. H. Weyzen. Serial transfer of isologous hematopoietic cells in irradiated hosts. Pathol. Biol. Semaine Hop. 9: 888, 1961.Google Scholar
  34. 31.
    Vogel, H., M. Niewisch and G. Matioli, The self renewal probability of hemopoietic stem cells. J. Cellular Physiol. 72: 221, 1968.CrossRefGoogle Scholar
  35. 32.
    Vos, O., and M. J. A. S. Dolmans. Self-renewal of colony forming units (CFU) in serial bone marrow transplantation experiments. Cell Tissue Kinet. 5: 371, 1972.PubMedGoogle Scholar
  36. 33.
    Worton, R. G., E. A. Mcculloch and J. E. Till. Physical separation of hemopoietic stem cells differing in their capacity for self-renewal. J. Exptl. Med. 130: 91, 1969.CrossRefGoogle Scholar

Copyright information

© Federation of American Societies 1975

Authors and Affiliations

  • U. Reincke
    • 1
    • 2
  • H. Burlington
    • 1
    • 2
  • E. P. Cronkite
    • 1
    • 2
  • J. Laissue
    • 1
    • 2
  1. 1.Medical Research CenterBrookhaven National LaboratoryUpton, Long IslandUSA
  2. 2.Mount Sinai School of MedicineCity University of New YorkNew YorkUSA

Personalised recommendations