Growth and death of diploid and transformed human fibroblasts

  • Robin Holliday
Part of the Faseb Monographs book series (FASEBM, volume 3)


Three possible explanations are presented for the differences in growth potential between human diploid fibroblasts of finite life-span and permanent transformed lines: 1) Only diploid cells have a molecular clock mechanism which counts cell divisions prior to senescence. Two hypothetical examples of such mechanisms are described; however, the available evidence argues against a clock mechanism for aging in fibroblasts. 2) Cells become committed with a given probability to a slow buildup in protein errors, which leads after many divisions to a lethal error catastrophe. It can be shown that speeding up the rate at which the error catastrophe develops, as may occur in transformed cells, can convert a population of finite life-span to one with infinite growth. 3) The growth rate of diploid cells may not depend on the limiting concentration of any one protein. If so, cells with a low level of errors will not have a reduced generation time, and there will be no selection against them. On the other hand the uncontrolled growth of transformed cells may be reduced in rate by the presence of faulty proteins, so that there is continuous selection for those with the fewest errors. Finally, the analogous problem of the mortality of somatic cells and the immortality of the germ line is also briefly discussed.HOLLIDAY, R. Growth and death of diploid and transformed human fibroblasts. Federation Proc. 34: 51–55, 1975.


Human Fibroblast Germ Line Diploid Cell Error Theory Cellular Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cristofalo, V. J., and B. B. Scarf. Exptl. Cell Res. 76: 419, 1973.PubMedCrossRefGoogle Scholar
  2. 2.
    Glucksman, A. Biol. Rev. Cambridge Phil. Soc. 26: 59, 1951.CrossRefGoogle Scholar
  3. 3.
    Hayflick, L. Exptl. Cell Res. 37: 614, 1965.PubMedCrossRefGoogle Scholar
  4. 4.
    Hayflick, L., and P. S. Moorhead. Exptl. Cell Res. 25: 585, 1961.PubMedCrossRefGoogle Scholar
  5. 5.
    Holland, S. S., D. Kohne and M. V. Doyle. Nature 245: 318, 1973.CrossRefGoogle Scholar
  6. 5a.
    Holliday, R., and J. E. Pugh. Science In press.Google Scholar
  7. 6.
    Holliday, R., and G. M. Tarrant. Nature 238: 26, 1972.PubMedCrossRefGoogle Scholar
  8. 7.
    Lewis, C. M., and G. M. Tarrant. Nature 239: 316, 1972.PubMedCrossRefGoogle Scholar
  9. 8.
    Loftfield, R. B. Biochem. J. 89: 82, 1963.PubMedGoogle Scholar
  10. 9.
    Loftfield, R. B., and D. Vanderjagt. Biochem. J. 128: 1353, 1972.PubMedGoogle Scholar
  11. 10.
    Mandel, H. G. Progr. Mol. Subcellular Biol. 1: 82, 1969.CrossRefGoogle Scholar
  12. 11.
    Marcou, D. Ann. Sci. Nat. Botan. Biol. Vegetale 12: 653, 1961.Google Scholar
  13. 12.
    Medvedev, Zh. A. Exptl. Gerontol.1: 227, 1972.CrossRefGoogle Scholar
  14. 13.
    Olovnikov, A. M. Dokl. Akad. Nauk USSR 201: 1796, 1971.Google Scholar
  15. 14.
    Orgel, L. E. Proc. Natl. Acad. Sci. U.S. 49: 517, 1963.CrossRefGoogle Scholar
  16. 15.
    Orgel, L. E. Proc. Natl. Acad. Sci. U.S. 67: 1476, 1970.CrossRefGoogle Scholar
  17. 16.
    Orgel, L. E. Nature 243: 441, 1973.PubMedCrossRefGoogle Scholar
  18. 17.
    Ponten, J. In: Symposium on Molecular and Cellular Mechanisms of Aging, Paris: Inst. Natl. Sante Recherche Med. 27: 53, 1973.Google Scholar
  19. 18.
    Rabinovitz, Z., And L. Sachs. Intern. J. Cancer 6: 388, 1970.CrossRefGoogle Scholar
  20. 19.
    Saunders, J. W. Science 154: 604, 1966.PubMedCrossRefGoogle Scholar
  21. 20.
    Scarano, E. In: Advances in Cytopharmacology, edited by F. Clementi and B. Ceccarelli. New York: Raven, 1971, p. 1.Google Scholar
  22. 21.
    Siegel, R. W. Symp. Soc. Exptl. Biol. 21: 127, 1967.Google Scholar
  23. 22.
    Smith, J. R., and L. Hayflick. J. Cell Biol. 62: 48, 1974.PubMedCrossRefGoogle Scholar
  24. 23.
    Smith, J. R., and I. Rubinstein. J. Gen. Microbiol. 76: 283, 1973.CrossRefGoogle Scholar
  25. 24.
    Thompson, K. V. A., and R. Holliday. Exptl. Cell Res. 80: 354, 1973.PubMedCrossRefGoogle Scholar
  26. 25.
    Watson, J. D. Nature New Biol. 239: 197, 1972.PubMedCrossRefGoogle Scholar
  27. 26.
    Westermark, B. Acta Univ. Upsal. 164: 1973.Google Scholar

Copyright information

© Federation of American Societies 1975

Authors and Affiliations

  • Robin Holliday
    • 1
  1. 1.Division of GeneticsNational Institute for Medical ResearchMill Hill, LondonEngland

Personalised recommendations