Encapsulation of Enzymes, Cell Contents, Cells, Vaccines, Antigens, Antiserum, Cofactors, Hormones, and Proteins

  • T. M. S. Chang


Unlike the other three major methods of enzyme immobilization, which emphasize the “microenvironment,” encapsulation of enzymes emphasizes the “intracellular environment” of enzymes and proteins (Figure 1). Here, the enzyme solution or suspension is encapsulated or enveloped within a membrane system in such a way that the membrane creates an intracellular environment for the enzymes, preventing them from leaking out or coming into direct contact with the external environment. Large molecules such as proteins and cells cannot cross the membrane to interact with the enclosed enzymes. Substrates that are permeable can equilibrate rapidly across the membrane to be acted on by the enzymes inside, and the product can diffuse out. Unlike the case of gel entrapment, which involves the entrapping of individual molecules of enzymes in polymer lattices, in encapsulation, any concentration, any volume, and any amount of enzymes can be enclosed within membrane envelopes of different configurations. This principle of allowing any type or concentration of enzymes, cells, or cell extracts to be encapsulated within membrane envelopes allows for an extremely large variation in the membrane composition, configuration, and content. This chapter is a brief review of the general principles and methods of preparation for encapsulation of enzymes and proteins, with emphasis on artificial cells. Only a brief review is made of other forms of encapsulation since they will be dealt with in detail in later chapters.


Polylactic Acid Liquid Membrane Cellulose Nitrate Artificial Cell Hemoglobin Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apple, M., 1971, Hemodialysis against enzymes as a method of “gene replacement” in cases of inherited metabolic diseases, Proc. West. Pharmarol. Soc. 14: 125.Google Scholar
  2. Boguslaski, R. C., and Janik, A. M., 1971, A kinetic study of microencapsulated bovine carbonic anhydrase, Biochim. Biophys. Acta 250: 266.Google Scholar
  3. Broun, G., Thomas, D., Gellf, G., Domurado, D., Berjonnearu, A. M., and Gillon, T., 1973, New method for binding emzyme molecules into a water insoluble matrix—properties after insolubilization, Biotechnol. Bioeng. 15: 359.CrossRefGoogle Scholar
  4. Campbell, J., and Chang, T. M. S., 1975, Enzymatic recycling of coenzymes by a multi-enzyme system immobilized within semipermeable collodion microcapsules, Biochim. Biophys. Acta 397: 101.Google Scholar
  5. Campbell, J., and Chang, T. M. S., 1976, The recycling of NAD+ (free and immobilized) within semipermeable aqueous microcapsules containing a multi-enzyme system, Biochem. Biophys. Res. Commun. 69: 562.CrossRefGoogle Scholar
  6. Chambers, R. P., Ford, J. R., Allender, J. H., Baricos, W. H., and Cohen, W., 1974, Continuous processing with cofactors requiring enzymes, coenzyme retention, and regeneration in: Enzyme Engineering (E. K. Pye and L. B. Wingard, Jr., eds.), p. 195, Plenum Press, New York.Google Scholar
  7. Chang. T. M. S., 1957, Hemoglogin corpuscles, report of research project for B. Sc. Honours, McGill University.Google Scholar
  8. Chang, T. M. S., 1964, Semipermeable microcapsules, Science 146: 524.CrossRefGoogle Scholar
  9. Chang, T. M. S., 1965, Semipermeable aqueous microcapsules, Ph.D. thesis, McGill University.Google Scholar
  10. Chang, T. M. S., 1966, Semipermeable aqueous microcapsules (“artificial cells”): with emphasis on experiments in an extracorporeal shunt system, Trans. Amer. Soc. ArtifecialInternal Organs 12: 13.Google Scholar
  11. Chang, T. M. S., 1969a, Clinical potential of enzyme technology, Science Tools 16: 33.Google Scholar
  12. Chang, T. M. S., 1969b, Lipid-coated spherical ultrathin membranes of polymer or cross-linked protein as possible cell membrane models, Federation Proc. 28: 461.Google Scholar
  13. Chang, T. M. S., 1971, Stabilization of enzymes by microencapsulation with a concentrated protein solution or by microencapsulation followed by cross-linking with glutaraldehyde, Biochem. Biophys. Res. Commun. 44: 1531.CrossRefGoogle Scholar
  14. Chang, T. M. S., 1972a, Artificial Cells, Charles C. Thomas, Publisher, Springfield, Ill.Google Scholar
  15. Chang, T. M. S., 1972b, A new approach to separation using semipermeable microcapsules (artificial cells): combined dialysis, catalysis, and absorption, in: “Recent Development in Separation Science,” Vol. I ( N. N. Li, ed.), p. 203, CRC Press, Cleveland, Ohio.Google Scholar
  16. Chang, T. M. S., 1973, L-asparaginase immobilized within semipermeable microcapsules: in-vitro and in-vivo stability, Enzyme 14: 95.Google Scholar
  17. Chang, T. M. S., 1974, A comparison of semipermeable microcapsules and standard dialysers for use in separation, Separ. Purif Methods 3: 245.CrossRefGoogle Scholar
  18. Chang, T. M. S., 1976, Biodegradable semipermeable microcapsules containing enzymes, hormones, vaccines and biologicals, J. Bioengineering,(in press).Google Scholar
  19. Chang, T. M. S., and Poznansky, M. J., 1968, Semipermeable aqueous microcapsules (artificial cells): V. Permeability characteristics, J. Biomed. Mater. Res. 2: 187.CrossRefGoogle Scholar
  20. Chang, T. M. S., MacIntosh, F. C., and Mason, S. G., 1963, Semipermeable aqueous microcapsules, Proc. Can. Federation Biol. Soc. 6: 16.Google Scholar
  21. Chang, T. M. S., MacIntosh, F. C., and Mason, S. G., 1966, Semipermeable aqueous microcapsules: I. Preparation and properties, Can. J. Physiol. Pharmacol. 44: 115.CrossRefGoogle Scholar
  22. Chang, T. M. S., Johnson, L. J., and Ransome, O., 1967, Semipermeable aqueous microcapsules: IV. Nonthrombogenic microcapsules with heparin-complexed membranes, Can. J. Physiol. Pharmacol. 45: 705.CrossRefGoogle Scholar
  23. Choi, P. S. K., and Fan, L. T., 1973, Transient behaviour of encapsulated enzyme reactor systems, J. Apps. Chem. Biotechnol. 23: 531.CrossRefGoogle Scholar
  24. Dinelli, D., 1972, Fibre-entrapped enzymes, Process Biochem. 7: 9.Google Scholar
  25. Gardner, D. L., Falb, R. D., Kim, B. C., and Emmerling, D. C., 1971, Possible uremic detoxification via oral-ingested microcapsules, Trans. Amer. Soc. Artificial Internal Organs 17: 239.Google Scholar
  26. Gregoriadis, G., Leathwood, P. D., and Ryman, B. E., 1971, Enzyme-entrapment in liposomes, FEBS Letters 14: 95.CrossRefGoogle Scholar
  27. Ihler, G. M., Glew, R. H., and Schnure, F. W., 1973, Enzyme loading of erythrocytes, Proc. Natl. Acad. Sci. U.S. 70: 2663.CrossRefGoogle Scholar
  28. Kitajima, M., and Kondo, A., 1971, Fermentation without multiplication of cells using microcapsules that contain zymase complex and muscle enzyme extract, Bull. Chem. Soc. Japan 44: 3201.CrossRefGoogle Scholar
  29. Kitajima, M., Miyano, S., and Kondo, A., 1969, Studies on enzyme-containing microcapsules, J. Chem. Soc. Japan 72: 493.Google Scholar
  30. Marconi, W., Guilinelli, S., and Morisi, F., 1974, Fiber-entrapped enzymes, in: Insolubilized Enzymes ( M. Salmona, C. Saronio, and S. Garattini, eds.), p. 51, Raven Press, New York.Google Scholar
  31. May, S. W., and Landgraff, L. M., 1975, Cofactor recycling in liquid-membrane-enzyme systems, Biochem. Biophys. Res. Commun. 68: 786.CrossRefGoogle Scholar
  32. May, S. W., and Li, N. N., 1972, The immobilization of urease using liquid—surfactant membranes, Biochem. Biophys. Res. Commun. 47: 1179.CrossRefGoogle Scholar
  33. Mogensen, A. O., and Vieth, W. R., 1973, Mass transfer and biochemical reaction with semipermeable microcapsules, Biotechnol. Bioeng. 15: 467.CrossRefGoogle Scholar
  34. Mori, T., Tosa, T., and Chibata, I., 1973, Enzymatic properties of microcapsules containing asparagi-nase, Biochim. Biophys. Acta 321: 653.Google Scholar
  35. Mosbach, K., and Mosbach, R., 1966, Entrapment of enzymes and micro-organisms in synthetic crosslinked polymers and their applications in volumn techniques, Acta Chem. Scan. 20: 2807.CrossRefGoogle Scholar
  36. Mueller, P., and Rudin, D. O., 1968, Resting and action potentials in experimental lipid membranes, J. Theoret. Biol. 18: 222.CrossRefGoogle Scholar
  37. Ostergaard, J. C. W., and Martiny, S. C., 1973, Immobilization of /3-galactosidase through encapsulation in water insoluble microcapsules, Biotchnol. Bioeng. 15: 561.CrossRefGoogle Scholar
  38. Rogers, S., 1968, Dialysis against enzymes, Nature 220: 1321.CrossRefGoogle Scholar
  39. Rony, P. K., 1971, Multiphase catalysts: II. Hollow fibre catalysts, Biotechnol. Bioeng. 13: 431.CrossRefGoogle Scholar
  40. Rosenthal, A. M., and Chang, T. M. S., 1971, The effect of ialinomycin on the movement of rubidium across lipid coated semipermeable microcapsules, Proc. Can. Federation Biol. Soc. 14: 44.Google Scholar
  41. Sessa, G., and Weissman, G., 1970, Incorporation of lysozyme into liposomes, J. Biol. Chem. 245: 3295.Google Scholar
  42. Shiba, M., Tomioka, S., Koishi, M., and Kondo, T., 1970, Studies on microcapsules: V. Preparation of polyamide microcapsules containing aqueous protein solution, Chem. Pharm. Bull. (Tokyo) 18: 803.CrossRefGoogle Scholar
  43. Sparks, R. E., Salemme, R. M., Meier, P. M., Litt, M. H., and Lindan, O., 1969, Removal of waste metabolites in uremia by microencapsulated reactants, Trans. Amer. Soc. Artificial Internal Organs 15: 353.Google Scholar
  44. Sundaram, P. V., 1973, The kinetic properties of microencapsulated urease, Biochim. Biophys. Acta 321: 319.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • T. M. S. Chang
    • 1
  1. 1.Departments of Physiology and MedicineMcGill UniversityMontrealCanada

Personalised recommendations