Advertisement

Abstract

The three-dimensional conformation of an enzyme has an important effect on its catalytic action. Consequently, when immobilizing an enzyme, it is necessary to use such methods and chemicals that the functional tertiary structure will not be affected. Physical entrapment of an enzyme in a gel lattice is an immobilization method in which no modification of the amino acid residues is needed, and which offers the advantage of reaction conditions usually so mild that few significant changes in the enzyme structure occur. A great advantage lies in the fact that the presence of protective and stabilizing agents does not affect the yield of the entrapped material. The method has a broad applicability to most enzymes, purified as well as crude extracts, to whole cells (e.g., microorganisms) and even to culture broths containing the desired enzyme.

Keywords

Acrylic Acid Immobilize Enzyme Glucose Oxidase Acrylic Monomer Acrylic Copolymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauman, E. K., Goodson, L. H., Guilbault, G. G., and Kramer, D. N., 1965, Preparation of immobilized cholinesterase for use in analytical chemistry, Anal. Chem. 37:1378.CrossRefGoogle Scholar
  2. Beck, S. R., and Rase, H. F., 1973, Encapsulated enzyme: a glucoamylase copolymer system, Ind. Eng. Chem. Prod. Res. Develop. 12:260.CrossRefGoogle Scholar
  3. Bernfeld, P., and Wan, J., 1963, Antigens and enzymes made insoluble by entrapping them into lattice of synthetic polymers, Science 142:678.CrossRefGoogle Scholar
  4. Bernfeld, P., Bieber, R. E., and MacDonnell, P. C., 1968, Water-insoluble enzymes: arrangement of aldolase within an insoluble carrier, Arch. Biochem. Biophys. 127:779.CrossRefGoogle Scholar
  5. Bernfeld, P., Bieber, R. E., and Watson, D. M., 1969, Kinetics of water-insoluble phosphoglycerate mutase, Biochim. Biophys. Acta 191:570.Google Scholar
  6. Broun, G., Thomas, D., Gellf, G., Domurado, D., Berjonneau, A. M., and Guillon, C. 1973, New methods for binding enzyme molecules into a water-insoluble matrix: properties after insolubilization, Biotechnol. Bioeng. 15:359.CrossRefGoogle Scholar
  7. Brown, H. D., Patel, A. B., and Chattopadhyay, S. K., 1968a, Enzyme entrapment within hydrophobic and hydrophilic matrices, J. Biomed. Mater. Res. 2:231.CrossRefGoogle Scholar
  8. Brown, H. D., Patel, A. B., and Chattopadhyay, S. K., 1968b, Lattice entrapment of glycolytic enzymes, J. Chromatog. 35:103.CrossRefGoogle Scholar
  9. Cavins, J. F., and Friedman, M., 1968, Specific modification of protein sulfhydryl groups with a,ß-unsaturated compounds, J. Biol. Chem. 243:3357.Google Scholar
  10. Chibata, I., Tosa, T., and Sato, T., 1974, Immobilized aspartase-containing microbial cells: preparation and enzymatic properties, Apps. Microbiol. 27:878.Google Scholar
  11. Constantinides, A., Vieth, W. R., and Fernandes, P. M., 1973, Characterization of glucose oxidase immobilized on collagen, Mol. Cell. Biochem. 1:127.CrossRefGoogle Scholar
  12. Dahlqvist, A., Mattiasson, B., and Mosbach, K., 1973, Hydrolysis of ß-galactosidases using polymerentrapped lactase: a study towards producing lactose-free milk, Biotechnol. Bioeng. 15:395.CrossRefGoogle Scholar
  13. Degani, Y., and Miron, 1970, Immobilization of cholinesterase in cross-linked polyacrylamide, Biochim. Biophys. Acta 212:362.Google Scholar
  14. Dickey, F. H., 1955, Specific adsorption, J. Phys. Chem. 59:695.CrossRefGoogle Scholar
  15. Duijn, P., Pascoe, E., and van der Ploeg, M., 1967, Theoretical and experimental aspects of enzyme determination in a cytochemical model system of polyacrylamide films containing alkaline phos® phatase, J. Histochem. Cytochem. 15:631.CrossRefGoogle Scholar
  16. Fawcett, J. S., and Morris, C. J. O. R., 1966, Molecular-sieve chromatography of proteins on granulated polyacrylamide gels, Separ. Sci. 1:9.CrossRefGoogle Scholar
  17. Franks, N. E., 1971, Catabolism of L-arginine by entrapped Streptococcus faecalis ATCC 8043, Biochim. Biophys. Acta 252:246.CrossRefGoogle Scholar
  18. Gestrelius, S., Mattiasson, B., and Mosbach, K., 1973, On the regulation of the activity of immobilized enzyme: microenvironmental effects of enzyme-generated pH-changes, Eur. J. Biochem. 36:89.CrossRefGoogle Scholar
  19. Guilbault, G. G., 1971, Enzyme electrode probes, Pure Apps. Chem. 25:727.CrossRefGoogle Scholar
  20. Guilbault, G. G., and Das, J., 1970, Immobilization of cholinesterase and urease, Anal. Biochem. 33:341.CrossRefGoogle Scholar
  21. Harrison, R. A. P., 1974, The detection of hexokinase, glucosephosphate isomerase and phosphoglucomutase activities in polyacrylamide gels after electrophoresis: a novel method using immobilized glucose-6-phosphate dehydrogenase, Anal. Biochem. 61:500.CrossRefGoogle Scholar
  22. Hicks, G. P., and Updike, S. J., 1966, The preparation and characterization of lyophilized polyacrylamide enzyme gels for chemical analysis, Anal. Chem. 38:726.CrossRefGoogle Scholar
  23. Hinberg, I., and O’Driscoll, K. F., 1975, Preparation and kinetic properties of gel entrapped urate oxidase, Biotechnol. Bioeng. 17:1435.CrossRefGoogle Scholar
  24. Hinberg, I., Kapoulas, A., Korus, R., and O’Driscoll, K. F., 1974a, Gel entrapment of enzymes: kinetic studies of immobilized glucose oxidase, Biotechnol. Bioeng. 16:159.CrossRefGoogle Scholar
  25. Hinberg, I., Korus, R., and O’Driscoll, K. F., 1974b, Gel entrapped enzymes: kinetic studies of immobilized β-galactosidase, Biotechnol. Bioeng. 16:943.CrossRefGoogle Scholar
  26. Hjertén, S., 1962, “Molecular sieve” chromatography on polyacrylamide gels, prepared according to a simplified method, Arch. Biochem. Biophys. Suppl. 1:147.Google Scholar
  27. Horvath, C., 1974, Pellicular immobilized enzymes, Biochim. Biophys. Acta 358:164.Google Scholar
  28. Inada, Y., Hirose, S., Okada, M., and Mihama, H., 1975, Immobilized L-asparaginase EC 3.5.1.1 embedded in fibrin polymer, Enzyme 20:188.Google Scholar
  29. Jaworek, D., 1974, New immobilization techniques and supports, in: Enzyme Engineering (E. K. Pye, and L. B. Wingard, Jr., eds.), Vol. 2, pp. 105–113. Plenum Press, New York.Google Scholar
  30. Johansson, A.-C., and Mosbach, K., 1974a, Acrylic copolymers as matrices for the immobilization of enzymes: I. Covalent binding or entrapping of various enzymes to bead-formed acrylic copolymers, Biochim. Biophys. Acta 370:339.Google Scholar
  31. Johansson, A.-C., and Mosbach, K., 1974b, Acrylic copolymers as matrices for the immobilization of enzymes: II. The effect of a hydrophobic microenvironment on enzyme reactions studied with alcohol dehydrogenase immobilized to different acrylic coploymers, Biochim. Biophys. Acta 370:348.Google Scholar
  32. Johnson, P., and Whateley, T. L., 1971, On the use of polymerizing silica gel systems for the immobilization of trypsin, J. Colloid Interface Sci. 37:557.CrossRefGoogle Scholar
  33. Karube, I., and Suzuki, S., 1972, Electrochemical preparation of urease—collagen membrane, Biochem. Biophys. Res. Commun. 47:51.CrossRefGoogle Scholar
  34. Kawashima, K., and Umeda, K., 1974, Immobilization of enzymes by radiopolymerization of acrylamide, Biotechnol. Bioeng. 16:609.CrossRefGoogle Scholar
  35. Koch-Schmidt, A.-C., 1976, Thesis. University of Lund. Reprocentralen. Koch-Schmidt and Mosbach, to be published.Google Scholar
  36. Korus, R. A., and O’Driscoll, K. F., 1974, The effects of intraparticle diffusion on the kinetics of gel entrapped enzymes, Can. J. Chem. Eng. 52:775.CrossRefGoogle Scholar
  37. Korus, R. A., and O’Driscoll, K. F., 1975, The influence of diffusion of the apparent rate of denaturation of gel entrapped enzymes, Biotechnol. Bioeng. 17:441.CrossRefGoogle Scholar
  38. Köstner, A., 1974, Apparatus for Production of Spherical Microbeads. USSR Pat. 458323 (C1.B Olj 2/ 06), 15.07.1974, Appl. 26.03.1973; from Otkytiya,Izobret., Prom. Obraztsy, Tovarnye Znaki 4 7 (1975).Google Scholar
  39. Köstner, A., and Mandel, M., 1977, A method for continuous production of polyacrylamide-entrapped enzyme beads, in: Methods in Enzymology (K. Mosbach, ed.), Vol. 44, Academic Press, Inc., New York, in press.Google Scholar
  40. Köstner, A., Kivisilla, K., Mandel, M., and Sümer, E., 1973, Method for Production of Matrix Bound Enzyme, USSR. Pat. 414301 (C1.C. 12d 13/10), 29.05.1973, Appl. 30.10.1971; from Otkrytiya, Izobret.,Prom. Obraztsy, Tovarnye Znaki 5 92 (1974).Google Scholar
  41. Maeda, H., Suzuki, H., and Yamauchi, A., 1973, Preparation of immobilized enzymes by electron-beam irradiation, Biotechnol. Bioeng. 15:827.CrossRefGoogle Scholar
  42. Maeda, H., Suzuki, H., Yamauchi, A., and Sakimae, A., 1975, Preparation of immobilized enzymes from acrylic monomers under y-ray irradiation, Biotechnol. Bioeng. 17:119.CrossRefGoogle Scholar
  43. Montalvo, J., Jr., and Guilbault, G. G., 1969, Sensitized cation selective electrode, Anal. Chem. 41:1897.CrossRefGoogle Scholar
  44. Mori, T., Sato, T., Tetsuva, T., and Chibata, I., 1972, Studies on immobilized enzymes: X. Preparation and properties of aminoacylase entrapped into acrylamide gel-lattice, Enzymologia 43:213Google Scholar
  45. Mosbach, K., 1970, Matrix-bound enzymes: I. The use of different acrylic copolymers as matrices, Acta Chem. Scand. 24:2082.Google Scholar
  46. Mosbach, K., and Larsson, P.-O., 1970, Preparation and application of polymer-entrapped enzymes and microorganisms in microbial transformation processes with special reference to steroid 11-ß-hydroxylation and 0’-2-dehydrogenation, Biotechnol. Bioeng. 12:19.CrossRefGoogle Scholar
  47. Mosbach, K., and Mattiasson, B., 1970, Matrix-bound enzymes: II. Studies on a matrix-bound two-enzyme system, Acta Chem. Scarul. 24:2093.CrossRefGoogle Scholar
  48. Mosbach, K., and Mosbach, R., 1966, Entrapment of enzymes and microorganisms in synthetic cross-linked polymers and their application in column techniques, Acta Chem. Scand. 20:2807.CrossRefGoogle Scholar
  49. Nadler, H. I.., and Updike, S. J., 1974, Gel entrapment of enzymes, Enzyme 18:150.Google Scholar
  50. Nilsson, H., Mosbach, K., and Mosbach, R., 1972, The use of bead polymerization of acrylic monomers for immobilization of enzymes, Biochim. Biophys. Acta 268:253.Google Scholar
  51. Nilsson, H., Akerlund, A.-C., and Mosbach, K., 1973, Determination of glucose, urea and penicillin using enzyme-pH-electrodes, Biochim. Biophys. Acta 320:529.CrossRefGoogle Scholar
  52. O’Driscoll, K. F., Izu, M., and Korns, R., 1972, Gel-entrapment of enzymes, Biotechnol. Bioeng. 14:847.CrossRefGoogle Scholar
  53. O’Driscoll, K. F., 1977, “techniques of enzyme entrapment in gels, in: Methods in Enzymology (Mosbach, K., ed.), Academic Press, Inc., New York, Vol. 44, in press.Google Scholar
  54. Ohno, Y., and Stahmann, M. A., 1971, Polyacrylamide derivatives of amino acid acylase and trypsin, Macromolecules 4:350.CrossRefGoogle Scholar
  55. Paus, P. N., 1971, Solubilization of polyacrylamide gels for liquid scintillation counting, Anal. Biochem. 42:372.CrossRefGoogle Scholar
  56. Pennington, S. N., Brown, H. D., Patel, A. B., and Knowles, C. O., 1968a, Properties of matrix supported acetylcholinesterase, Biochim. Biophys. Acta 167:479.Google Scholar
  57. Pennington, S. N., Brown, H. D., Patel, A. B., and Chattopadhyay, S. K., 1968b, Silastic entrapment of glucose oxidase-peroxidase and acetylcholin esterase, J. Biomed. Mater. Res. 2:443.CrossRefGoogle Scholar
  58. Richards, E. G., and Temple, C. J., 1971, Some properties of polyacrylamide gels, Nature Phys. Sci. 230:92.Google Scholar
  59. Spackman, D. H., Stein, W. H., and Moore, S., 1958, Automatic recording apparatus for use in the chromatography of amino acids, Anal. Chem. 30:1190.CrossRefGoogle Scholar
  60. Srere, I. A., Mattiasson, B., and Mosbach, K., 1973, An immobilized three-enzyme system: a model for microenvironmental compartmentation in mitochondria, Proc. Natl. Acad. Sci. U.S. 70:2534.CrossRefGoogle Scholar
  61. Suzuki, S., Sonobe, N., Karube, I., and Aizawa, M., 1974, Electrochemical preparation of uricase-collagen membrane, Chem. Letters 1:9.CrossRefGoogle Scholar
  62. Turkovh, J., Hulxílkovh, O., Kfivükovâ, M., and Coupek, J., 1973, Affinity chromatography on hydroxyalkyl methacrylate gels: I. Preparation of immobilized chymotrypsin and its use in the isolation of proteolytic inhibitors, Biochim. Biophys. Acta 322:1.Google Scholar
  63. Updike, S. J., and Hicks, G. P., 1967a, The enzyme electrode, Nature 214:986.CrossRefGoogle Scholar
  64. Updike, S. J., and Hicks, G. P., 1967b, Reagentless substrate analysis with immobilized enzymes, Science 158:270.CrossRefGoogle Scholar
  65. Vesta, B., and Usdin, V., 1963, Melpar Inc., Falls Church, Va., Final Report, Contract DA 18–108–405CML–828, Section 3.3.4, p. 3.102 (Okt 1963).Google Scholar
  66. Wang, S. S., and Vieth, W. R., 1973, Collagen-enzyme complex membranes and their performance in biocatalytic modules, Biotechnol. Bioeng. 15:93.CrossRefGoogle Scholar
  67. Wieland, T., Determann, H., and Bünnig, K., 1966, Über unlösliche, in polyacrylamidegel fixierte enzyme, Z. Naturforsch. 21:1003.Google Scholar
  68. Wold, F., 1973, Chemical modification of enzymes, in: Enzyme Therapy in Genetic Diseases, Birth Defects (Original Article Series, Vol. 9), (R. J. Desnick, R. W. Bernlohr, and W. Krivit, eds.) p. 46, The Williams & Wilkins Company, Baltimore.Google Scholar
  69. Young, R. W., and Fulhorst, H. W., 1965, Recovery of S35 radioactivity from protein-bearing polyacrylamide gel, Anal. Biochem. 11:389.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Ann-Christin Koch-Schmidt
    • 1
  1. 1.Biochemistry IIUniversity of LundLundSweden

Personalised recommendations