Covalent Linkage: III. Immobilization of Enzymes by Intermolecular Cross-Linking

  • Oskar R. Zaborsky


A very versatile chemical method for immobilizing enzymes and other proteins is intermolecular cross-linking with multifunctional reagents. The method can produce enzyme conjugates of diverse physical character depending on the conditions employed. Thus, conjugates can be prepared that are water-soluble or water-insoluble; granular, gel-like, or filamentous in nature; or that are pure protein. It is reliable and inexpensive.


Native Enzyme Covalent Linkage Enzyme Conjugate Ethyl Chloroformate Bifunctional Reagent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Broun, G., Selegny, E., Avrameas, S., and Thomas, D., 1969, Enzymatically active membranes: some properties of cellophane membranes supporting cross-linked enzymes, Biochim. Biophys. Acta 185: 258.Google Scholar
  2. Broun, G., Selegny, E., Minh, C. T., and Thomas, D., 1970, Facilitated transport of CO2 across a membrane bearing carbonic anhydrase, FEBS Letters 7: 223.CrossRefGoogle Scholar
  3. Broun, G., Thomas, D., Gellf, G., Domurado, D., Berjonneau, A. M., and Guillon, C., 1973, New methods for binding enzyme molecules into a water-insoluble matrix: properties after insolubilization, Biotechnol. Bioeng. 15: 359.CrossRefGoogle Scholar
  4. Chang, T. M. S., 1971, Stabilization of enzymes by microencapsulation with a concentrated protein solution or by microencapsulation followed by cross-linking with glutaraldehyde, Biochem. Biophys. Res. Commun. 44: 1531.CrossRefGoogle Scholar
  5. Fasold, H., Klappenberger, J., Meyer, C., and Remold, H., 1971, Bifunctional reagents for the cross-linking of proteins, Angew. Chem. Int. Ed. Engl. 10: 795.CrossRefGoogle Scholar
  6. Ferrier, L. K., Richardson, T., and Olson, N. F., 1972, Crystalline catalase insolubilized with glutaraldehyde, Enzyynwlogia 42: 273.Google Scholar
  7. Glassmeyer, C. K., and Ogle, J. D., 1971, Properties of an insoluble form of trypsin, Biochemistry 10: 786.CrossRefGoogle Scholar
  8. Goldman, R., and Katchalski, E., 1971, Kinetic behavior of a two-enzyme membrane carrying out a consecutive set of reactions, J. Theoret. Biol. 32: 243.CrossRefGoogle Scholar
  9. Goldman, R., Kedem, O., Silman, I. H., Caplan, S. R., and Katchalski, E., 1968, Papain-collodion membranes: I. Preparation and properties, Biochemistry 7: 486.CrossRefGoogle Scholar
  10. Habeeb, A. F. S. A., 1967, Preparation of enzymically active, water-insoluble derivatives of trypsin, Arch. Biochem. Biophys. 119: 264.CrossRefGoogle Scholar
  11. Haynes, R., and Walsh, K. A., 1969, Enzyme envelopes on colloidal particles, Biochem. Biophys. Res. Commun. 36: 235.CrossRefGoogle Scholar
  12. Inman, J. K., and Dintzis, H. M., 1969, The derivatization of cross-linked polyacrylamide beads: controlled introduction of functional groups for the preparation of special-purpose, biochemical adsorbents, Biochemistry 8: 4074.CrossRefGoogle Scholar
  13. Jansen, E. F., and Olson, A. C., 1969, Properties and enzymatic activities of papain insolubilized with glutaraldehyde, Arch. Biochem Biophys. 129: 221.CrossRefGoogle Scholar
  14. Jansen, E. F., Tomimatsu, Y., and Olson, A. C., 1971, Cross-linking of a-chymotrypsin and other proteins by reaction with glutaraldehyde, Arch. Biochem. Biophys. 144: 394.CrossRefGoogle Scholar
  15. Jaworek, D., 1974, New immobilization techniques and supports, in: Enzyme Engineering, Vol. 2 (E. K. Pye and L. B. Wingard, Jr., eds.), pp. 105–114, Plenum Press, New York.Google Scholar
  16. Ogata, K., Ottesen, M., and Svendsen, I., 1968, Preparation of water-insoluble, enzymatically active derivatives of subtilisin type Nova by cross-linking with glutaraldehyde, Biochim. Biophys. Acta 159: 403.Google Scholar
  17. Ottesen, M., and Svensson, B., 1971, Modification of papain by treatment with glutaraldehyde under reducing and non-reducing conditions, Compt. Rend. Tray. Lab. Carlsberg 38: 171.Google Scholar
  18. Patel, R. P., and Price, S., 1967, Derivatives of proteins. I Polymerization of a-chymotrypsin by use of N-ethyl-5-phenylisoxazolium-3’-sulfonate, Biopolymers 5: 583.CrossRefGoogle Scholar
  19. Patramani, I., Katsiri, K., Pistevou, E., Kalogerakos, T., Pavlatos, M., and Evangelopoulos, A. E., 1969, Glutamic-aspartic transaminase-antitransaminase interaction: a method for antienzyme purification, Eur. J. Biochem. 11: 28.CrossRefGoogle Scholar
  20. Quiocho, F. A., and Richards, F. M., 1964, Intermolecular cross-linking of a protein in the crystalline state: carboxypeptidase A, Proc. Natl. Acad. Sci. U.S. 52: 833.CrossRefGoogle Scholar
  21. Rao, S. S., Patki, V. M., and Kulkarni, A. D., 1970, Preparation of active insoluble pepsin, Indian J. Biochem. 7: 210.Google Scholar
  22. Ruoho, A., Bartlett, P. A., Dutton, A., and Singer, S.J., 1975, A disulfide-bridge bifunctional imidoester as a reversible cross-linking reagent, Biochem. Biophys. Res. Commun. 63: 417.CrossRefGoogle Scholar
  23. Schejter, A., and Bar-Eli, A., 1970, Preparation and properties of cross-linked water-insoluble catalase, Arch. Biochem. Biophys. 136: 325.CrossRefGoogle Scholar
  24. Selegny, E., Broun, G., and Thomas, D., 1971, Enzymatically active model-membranes: experimental illustrations and calculations on the basis of diffusion reaction kinetics of their functioning, of regulatory effects, of facilitated, retarded and active transports, Physiol. Vegetale 9: 25.Google Scholar
  25. Silman, I. H., Albu-Weisenberg, M., and Katchalski, E., 1966, Some water-insoluble papain derivatives, Biopolymers 4: 441.CrossRefGoogle Scholar
  26. Tomimatsu, Y., Jansen, E. F., Gaffield, and Olson, A. C., 1971, Physical chemical observations on the achymotrypsin glutaraldehyde system during formation of an insoluble derivative, J. Colloid Interface Sci. 36: 51.Google Scholar
  27. Walsh, K. A., Houston, L. L., and Kenner, R. A., 1970, Chemical modification of bovine trypsinogen and trypsin, in: Structure—Function Relationships of Proteolytic Enzymes ( P. Desnuelle, H. Neurath, and M. Ottesen, eds.), pp. 56–69, Academic Press, Inc., New York.Google Scholar
  28. Wetz, K., Fasold, H., and Meyer, C., 1974, Synthesis of “long,” hydrophilic, protein cross-linking reagents, Anal. Biochem. 58: 347.CrossRefGoogle Scholar
  29. Wold, F., 1972, Bifunctional reagents, in: Methods in Enzymology, Vol. 25B ( C. H. W. Hirs and S. N. Timasheff, eds.), pp. 623–651, Academic Press, Inc., New York.Google Scholar
  30. Zaborsky, O. R., 1973, Immobilized Enzymes, CRC Press, Cleveland, Ohio.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Oskar R. Zaborsky
    • 1
  1. 1.National Science FoundationUSA

Personalised recommendations