Possible Roles of Enzymes in Development of a Fuel Cell Power Source for the Cardiac Pacemaker

  • Sidney K. WolfsonJr.
  • Lemuel B. WingardJr.
  • Chung C. Liu
  • Shang J. Yao


Many types of “permanent” pacemaker devices and techniques have evolved since successful clinical application was first reported (Senning, 1959; Chardack et al.,1960; Zoll et al.,1961). These efforts have had an enormous impact upon the treatment of cardiac arrhythmias; however, they also have brought a host of new problems for the management of patients receiving pacers (Grendahl et al.,1969; Goldstein et al., 1970; Barold, 1973). Among the problems is that of providing a suitable power source for long-term trouble-free pacemaker function. This chapter will be devoted largely to discussion of one type of device potentially capable of solving this problem, namely, the biofuel or, more specifically, bioautofuel cell. Particular emphasis will be given to the role that enzyme catalysts might play. The term “bioautofuel cell” refers to a biofuel cell which can be implanted in the host and which then relies on the host for the delivery of fuel and the removal of wastes. Such an implantable fuel cell may incorporate enzymes to catalyze one or more of the reactions or to produce the fuel. A general introduction to cardiac pacing and a brief description of alternate power sources is included to place the enzyme-containing systems in perspective.


Fuel Cell Hyaluronic Acid Glucose Oxidase Cardiac Pacemaker Artificial Heart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, B. K., Wolfson, S. K., Jr., Yao, S. J., and Liu, C. C., 1974a, Hyaluronidase-membrane for an implantable fuel cell, Amer. Soc. Artificial Internal Organs, Abstr. 3: 2.Google Scholar
  2. Ahn, B. K., Wolfson, S. K., Jr., Yao, S. J., and Liu, C. C., 1974b, A sepharose membrane bound hyaluronidase to process extracellular fluid for the implantable bioautofuel cell, Proc. 27th Ann. Conf. Eng. Med. Biol., Philadelphia, p. 200.Google Scholar
  3. Ahn, B. K., Wolfson, S. K., Jr., Yao, S. J., Liu, C. C., Todd, R. C., and Weiner, S. B., 1976, Hyaluronidase-bound membrane as a biomaterial for implantable fuel cells, J. Biomed. Mater. Res. 10: 283.CrossRefGoogle Scholar
  4. Appleby, A.J., Ng, D. Y. C., Wolfson, S. K., Jr., and Weinstein, H., 1969, An implantable biological fuel cell with an air-breathing cathode, Proc. 4th Intersoc. Energy Conversion Eng. Conf., Washington, D.C., pp. 22–26.Google Scholar
  5. Austin, L. G., 1967, Fuel Cells: A Review of Government-Sponsored Research 1950–1964, National Aeronautics and Space Administration Rept SP-120, Government Printing Office, Washington, D.C.Google Scholar
  6. Barold, S. S., 1973, Modern concepts of cardiac pacing, Heart & Lung 2: 238–252.Google Scholar
  7. Batzold, J. S., and Beltzer, M., 1969, Feasibility studies—biological fuel cell, Proc. Artificial Heart Program Conf., Washington, D.C.; pp. 817–824.Google Scholar
  8. Bentley, R., 1963, Glucose oxidase, in: The Enzymes (P. D. Boyer, H. Lardy, K. Myrback, eds.), 2nd ed., Vol. 7, pp. 567–586, Academic Press, Inc., New York.Google Scholar
  9. Bessman, S. P., and Schultz, R. D., 1973, Prototype glucose oxygen sensor for the artificial pancreas, Trans. Amer. Soc. Artificial Internal Organs 19: 361.CrossRefGoogle Scholar
  10. Bocciarelli, C. V., 1969, On the design of catalysts for biological fuel cells, Proc. Artificial Heart Program Conf, Washington, D.C., pp. 861–868.Google Scholar
  11. Bright, H. J., and Gibson, Q. H., 1967, The oxidation of 1-deuterated glucose by glucose oxidase, J. Biol. Chem. 242: 994.Google Scholar
  12. Brimacombe, J. S., 1964, Hyaluronic acid, in: Mucopolysaccharides, pp. 43–63, American Elsevier Publishing Co., Inc., New York.Google Scholar
  13. Cenek, M., 1969, Biochemical Fuel Cells, U.S. Air Force Rept. AD694072 (translated from Chem. Listy 62: 927–974, 1968 ).Google Scholar
  14. Chardack, W. M., Gage, A. A., and Greatbatch, W., 1960, A transistorized, self-contained, implantable pacemaker for the long-term correction of complete heart block, Surgery 48: 643.Google Scholar
  15. Clark, L. C., Jr., 1972, A family of polarographic enzyme electrodes and the measurement of alcohol, in: Enzyme Engineering (L. B. Wingard, Jr., ed.), pp. 377–394, John Wiley & Sons, Inc., New York.Google Scholar
  16. Del Duca, M. G., 1963, Direct and indirect bioelectrochemical energy conversion system, in: Develop. Ind. Microbial., pp. 81–91, Plenum Press, New York.Google Scholar
  17. Dohan, L. A., Yao, S. J., and Wolfson, S. K., Jr., 1971, An enzymatic converter for the implanted fuel cell, Trans. Amer. Soc. Artificial Internal Organs 17: 411–414.Google Scholar
  18. Drake, R. F., 1968, Implantable Fuel Cell for an Artificial Heart, U.S. Government Publication PB177695 (February).Google Scholar
  19. Drake, R. F., 1969, Implantable fuel cell for an artificial heart, Proc. Artificial Heart Program Conf., Washington, D.C., pp. 869–880.Google Scholar
  20. Drake, R. F., Kusserow, B. K., Messinger, S., and Matsuda, S., 1970, A tissue implantable fuel cell power supply, Trans. Amer. Soc. Artificial Internal Organs 16: 199–205.Google Scholar
  21. Eisenberg, L., Mauro, A., and Glenn, W. W. L., 1961, Transistorized pacemaker for remote stimulation of the heart by radio-frequency transmission, IREE Trans. Bio-Med. Electron. 8: 253.CrossRefGoogle Scholar
  22. Fishman, J. H., and Henry, J. F., 1969, Oxygen reduction on gold-palladium alloys in neutral media, Proc. Artificial Heart Program Conf, Washington, D.C., pp. 825–838.Google Scholar
  23. Fontaine, G., Kevorkian, M., and Welti, J., 1968, Thresholds for electrical stimulation, Ann. Cardiol. Angiol. 17: 251.Google Scholar
  24. Foord, A. G., Youngberg, G. E., and Wetmore, V., 1929, The chemistry and cytology of serous fluids, J. Lab. Clin. Med. 14: 417–428.Google Scholar
  25. Giner, J., and Malachesky, P., 1969, Anodic oxidation of glucose, Proc. Artificial Heart Program Conf. Washington, D.C., pp. 839–848.Google Scholar
  26. Glenn, W. W. L., Mauro, A., Longo, E., Lavietes, P. H., and MacKay, F. J., 1959, Remote stimulation of the heart by radiofrequency transmission, New Engl. J. Med. 261: 948.CrossRefGoogle Scholar
  27. Glenn, W. W. L., Furman, S., Gordon, A. J., Escher, D. J. W., and van Heeckeren, D. W., 1966, Radiofrequency-controlled catheter pacemaker, New Engl. J. Med. 275: 137–140.CrossRefGoogle Scholar
  28. Goldstein, S., Moss, A. J., Rivers, R. J., Jr., and Weiner, R. S., 1970, Transthoracic and transvenous pacemakers: A comparative clinical experience with 131 implantable units, Brit. Heart J. 32: 3545.CrossRefGoogle Scholar
  29. Grendahl, H., Sivertssen, E., Bay, G., and Bergan, F., 1969, Permanent cardiac pacing, Acta Med. Scand. 185: 139–143.CrossRefGoogle Scholar
  30. Guilbault, G. G., 1972, Analytical uses of immobilized enzymes, in Enzyme Engineering (L. B. Wingard, Jr., ed.), pp. 361–376, John Wiley & Sons, Inc., New York.Google Scholar
  31. Hixson, J. D., and Laurens, P., 1972, Design criteria and two-year clinical results of Pu-238 fueled demand pacemaker, Proc. 7th Intersoc. Energy Conversion Eng. Conf., Washington, D.C., pp. 765–770.Google Scholar
  32. Huffman, F. N., and Norman, J. C., 1974, Nuclear fueled cardiac pacemakers, Chest 65: 667–672.CrossRefGoogle Scholar
  33. Keilin, D., and Hartree, E. F., 1948, Properties of glucose oxidase (Notatin), Biochem. J. 42: 221.Google Scholar
  34. Konikoff, J. J., 1966, In-vivo experiments with bioelectric potentials, Aerospace Med. 37: 824–828.Google Scholar
  35. Lahoda, E. J., Liu, C. C., and Wingard, L. B., Jr., 1975, Electrochemical evaluation of glucose oxidase immobilized by different methods, Biotechnol. Bioeng. 17: 413.CrossRefGoogle Scholar
  36. Laurens, P., 1970, French nuclear-powered pacemaker program, Trans. Amer. Nucl. Soc. 13: 508.Google Scholar
  37. Lewin, G., Myers, G., Parsonnet, V., and Zucher, I. R., 1967, A non-polarizing electrode for physiological stimulation, Trans. Amer. Soc. Artificial Internal Organs 13: 345–349.Google Scholar
  38. Lewin, G., Myers, G. H., Parsonnet, V., and Raman, K. V., 1968, An improved piezoelectric biological power source for cardiac pacemakers, Trans. Amer. Soc. Artificial Internal Organs 14: 215–217.Google Scholar
  39. Lillehei, C. W., Gott, V. L., Hodges, P. C., Jr., Long, D. M., and Bakken, E. E., 1960, Transistor pacemaker for treatment of complete atrioventricular dissociation, J. Amer. Med. Assoc. 172: 2006–2010.CrossRefGoogle Scholar
  40. Linker, A., Meyer, K., and Weissman, B., 1955, Enzymatic formation of monosaccharides from hyaluronate, J. Biol. Chem. 213: 237.Google Scholar
  41. Lown, B., and Kosowsky, B. D., 1970, Artificial cardiac pacemakers, New Engl. J. Med. 283: 907–916.CrossRefGoogle Scholar
  42. Martinis, A. J., 1975, Initial U.S. experience with promethium-147 fueled cardiac pacemakers, in: Advances in Pacemaker Technology ( M. Schaldach and S. Furman, eds.), Springer-Verlag, Berlin.Google Scholar
  43. Massie, H. L., Racine, P. J., Pasker, R., Hahn, A. W., and Sun, H. H., 1968, Study of power generating implantable electrodes, Med. Biol. Eng. 6: 503–516.CrossRefGoogle Scholar
  44. Mitchell, W., Jr., 1963, Fuel Cell, Academic Press, Inc., New York.Google Scholar
  45. Morgan, W. Y. J., and Elson, L. A., 1934, A colorimetric method for the determination of Nacetylglucosamine and N-acetylchondrosamine, Biochem. J. 28: 988.Google Scholar
  46. Parsonnet, V., Zucker, I. R., Gilbert, G., Lewin, G., and Myers, G., 1969, Clinical use of a new transvenous electrode, Ann. N.Y. Acad. Sci. 167: 756.CrossRefGoogle Scholar
  47. Parsonnet, V., Myers, G. H., Gilbert, L., and Zucker, I. R., 1975, Clinical experience with the nuclear pacemaker, Surgery 78: 776–786.Google Scholar
  48. Pennington, S. N., Brown, H. D., Patel, A. B., and Chattopadhyay, S. K., 1968, Silastic entrapment of glucose oxidase-peroxidase and acetylcholine esterase, J. Biomed. Mater. Research 2: 443.CrossRefGoogle Scholar
  49. Porath, J., Axen, R., and Ernback, S., 1967, Chemical coupling of proteins to agarose, Nature 215: 1491–1492.CrossRefGoogle Scholar
  50. Preston, T., Judge, R., Lacchesi, B. and Bowers, D., 1966, Myocardial threshold in patients with artificial pacemakers, Amer. J. Cardiol. 18: 83.CrossRefGoogle Scholar
  51. Purdy, D. L., McGovern, G. J., and Smyth, N., 1975, A new radioisotope-powered cardiac pacer, J. Thoracic Cardiovascular Surg. 69: 82–91.Google Scholar
  52. Racine, P. J., and Massie, H., 1966, An experimental internally powered cardiac pacemaker, Med. Res. Eng. 5: 24–27.Google Scholar
  53. Rao, J. R., and Richter, G., 1974, Implantable bioelectrochemical power sources, Naturwissenschaften 61: 200.CrossRefGoogle Scholar
  54. Rasor, N. S., Spickler, J. W., and Clabaugh, T. L., 1972, Comparison of power sources for advanced pacemaker applications, Proc. 7th Intersoc. Energy Conversion Eng. Conf., Washington, D.C., pp. 757–760.Google Scholar
  55. Reynolds, L. W., 1963, Utilization of Bioelectric Potentials, Ames Research Center, NASA, Quarterly Report (September and November 1963 ).Google Scholar
  56. Reynolds, L. W., 1964, Utilization of Bioelectric Potentials, Ames Research Center, NASA, Quarterly Report (February 1964).Google Scholar
  57. Roy, O. Z., 1971, Biological energy sources: a review, Biomed. Eng. 6: 250–256.Google Scholar
  58. Roy, O. Z., and Wehnert, R. W., 1966, Keeping the heart alive with a biological battery, Electronics 105: 107.Google Scholar
  59. Schaldach, M., 1969, Bioelectric energy sources for cardiac pacing, Ann. N.Y. Acad. Sci. 167: 1016–1024.CrossRefGoogle Scholar
  60. Schaldach, M., 1970, Klinische Erfahrungen und experimentelle Ergelnisse über korpereigene electrochemical Energiequellen, Z. Exptl. Chirurgie 3: 200–216.Google Scholar
  61. Schultz, H. E., and Heremans, J. F., 1966, Molecular Biology and Human Proteins, Vol. I: Nature and Metabolism of Extracellular Protein, Sec. IV: Proteins of Extravascular Fluids, Chap. I, American Elsevier Publishing Co., Inc., New York.Google Scholar
  62. Senning, A., 1959, Discussion of Goot, B., Miller, F. A.: Prevention of posthypercapneic ventricular fibrillation in dogs, J. Thoracic Cardiovascular Surg. 38: 630–642.Google Scholar
  63. Strohl, C. L., Scott, R. D., Frezel, W. J. and Wolfson, S. K., Jr., 1966, Studies of bioelectric power sources for cardiac pacemakers, Trans. Amer. Soc. Artificial Internal Organs 12: 318–326.Google Scholar
  64. Takahashi, F., Aizawa, M., Mizuguchi, J., and Suzuki, S., 1970, Cell with NADP—NADPH Redox system, Kogyo Kagaku Zasshi 73: 908.CrossRefGoogle Scholar
  65. Tseung, A. C. C., King, W. J., and Wan, B. Y. C., 1971, An encapsulated, implantable metal–oxygen cell as a long-term power source for medical and biological applications, Med. Biol. Eng. 9: 175–184.CrossRefGoogle Scholar
  66. Tyers, G. F. O., Torman, H. A., Hughes, H. C., 1974, Comparatibe studies of “state of the art” and presently used clinical pacemaker electrodes, J. Thoracic Cardiovascular Surg. 67: 849–856.Google Scholar
  67. Varriale, P., and Naclerio, E. A., 1975, Sutureless electrode for permanent ventricular pacing—observations and results of a three year follow-up study, Circulation, Suppl. II, 52: 252.Google Scholar
  68. Wan, B. Y. C., and Tseung, A. C. C., 1974, Some studies related to electricity generation from biological fuel cells and galvanic cells, in vitro and in vivo, Med. Biol. Eng. 12: 14–28.CrossRefGoogle Scholar
  69. Wan, B. Y. C., Tseung, A. C. C., Kenny, J., and Wilds, A., 1972, The development and long-term implantation studies of an encapsulated, implantable aluminum/oxygen cell as an in vivo power source, Proc. 7th Intersoc. Energy Conversion Eng. Conf., San Diego, pp. 745–751.Google Scholar
  70. Weibel, M. K., Dritschilo, W., Bright, H. J., and Humphrey, A. E., 1973, Immobilized enzymes: a prototype apparatus for oxidase enzymes in chemical analysis utilizing covalently bound glucose oxidase, Anal. Biochem. 52: 402.CrossRefGoogle Scholar
  71. Weissmann, B., Meyer, K., Sampson, P., and Linker, A., 1954, Isolation of oligosaccharides enzymatically produced from hyaluronic acid,,. Biol. Chem. 208: 417.Google Scholar
  72. Weissmann, B., Hadjiioannou, S., and Tornheim, J., 1964, Oligosaccharase activity of ß-N-acetyl-Dglucosaminidase of beef liver, J. Biol Chem. 239: 59.Google Scholar
  73. West, R., and Clarke, D. H., 1938, The concentration of glucosamine in normal and pathological sera, J. Clin. Invest. 17: 173.CrossRefGoogle Scholar
  74. White, A., Handler, P., and Smith, E. L., 1959, Principles of Biochemistry, pp. 54–57, McGraw-Hill Book Company, New York.Google Scholar
  75. Widmann, W. D., Glenn, W. W. L., Eisenberg, L., and Mauro, A., 1964, Radiofrequency cardiac pacemaker, Ann. N.Y. Acad. Sci. 111: 992–1006.CrossRefGoogle Scholar
  76. Wingard, L. B., Jr., and Liu, C. C., 1969, Development of a glucose oxidase fuel cell, Proc. 8th Int. Conf. Med. Biol. Eng., Chicago, p. 26.Google Scholar
  77. Wingard, L. B., Jr., Liu, C. C., and Nagda, N. L., 1971, Electrochemical measurements with glucose oxidase immobilized in polyacrylamide gel: constant current voltametry, Biotechnol. Bioeng., 13: 629.CrossRefGoogle Scholar
  78. Wolfson, S. K., Jr., and Yao, S. J., 1972, Implantable fuel cells: effect of added endogenous dialyzable materials, Proc. 7th Intersoc. Energy Conversion Eng. Conf., San Diego, pp. 733–739.Google Scholar
  79. Wolfson, S. K., Jr., Gofberg, S. L., Prusiner, P., and Nanis, L., 1968, The bioautofuel cell: a device for pacemaker power from direct energy conversion consuming autogenous fuel, Trans. Amer. Soc. Artificial Internal Organs 14: 198–203.Google Scholar
  80. Wolfson, S. K., Jr., Yao, S. J., Geisel, A., and Cash, H. R., Jr., 1970, A single electrolyte fuel cell utilizing permselective membranes, Trans. Amer. Soc. Artificial Internal Organs 16: 193–198.Google Scholar
  81. Yahiro, A. T., Lee, S. M., and Kimble, D. O., 1964, Bioelectrochemistry: I. Enzyme utilizing bio-fuel cell studies, Biochim. Biophys. Acta 88: 375.Google Scholar
  82. Yao, S. J., Appleby, A. J., Geisel, A., Cash, H. R., Jr., Wolfson, S. K., Jr., 1969, Anodic oxidation of carbohydrates and their derivatives in neutral saline solution, Nature 224: 921–922.CrossRefGoogle Scholar
  83. Yao, S. J., Michuda, M., Markley, F., and Wolfson, S. K., Jr., 1972, A bioautofuel cell for pacemaker power, in: From Electrocatalysis to Fuel Cells ( G. Sandstede, ed.), pp. 291–299, University of Washington Press, Seattle, Washington.Google Scholar
  84. Zoll, P. M., Frank, H. A., Zarsky, L. R. N., Linenthal, A.J., and Belgard, A. H., 1961, Long-term electric stimulation of the heart for Stokes-Adams diseases, Ann. Surg. 154: 330.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Sidney K. WolfsonJr.
    • 1
  • Lemuel B. WingardJr.
    • 2
  • Chung C. Liu
    • 3
  • Shang J. Yao
    • 1
  1. 1.University of Pittsburgh School of MedicinePittsburghUSA
  2. 2.University of Pittsburgh Schools of Medicine and EngineeringPittsburghUSA
  3. 3.University of Pittsburgh School of EngineeringPittsburghUSA

Personalised recommendations