Advertisement

Immobilized Enzymes for Therapeutic Applications and for Large-Scale Production of Biologically Active Compounds

  • Ichiro Chibata
  • Tetsuya Tosa
  • Takao Mori

Abstract

Recently, the enzyme industry has been developing rapidly, through advances in the biochemistry, bioorganic chemistry, and techniques of enzyme production by microorganisms. Many kinds of enzymes have been widely used in the fields of medical, food, and synthetic chemical industries. However, these enzymes have been conventionally used in soluble form, which has some disadvantages. Immobilization of enzymes has been suggested as a potential method of solving these problems. In this chapter, studies on enzyme therapy using immobilized enzymes and the large-scale production of biologically active compounds are presented.

Keywords

Immobilize Enzyme Immobilize Cell Fumaric Acid Urocanic Acid Penicillin Amidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, J. P., Davidson, L., Hartman, A. C., and Kitto, G. B., 1972, Insolubilization of L-asparaginase by covalent attachment to nylon tubing, Biochem. Biophys. Res. Commun. 47: 66.CrossRefGoogle Scholar
  2. Aien, R., Porath, J., and Ernback, S., 1967, Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides, Nature 214:1302.CrossRefGoogle Scholar
  3. Boguslaski, R. C., and Janik, A. M., 1971, A kinetic study of microencapsulated bovine carbonic anhydrase, Biochem. Biophys. Acta 250:266.Google Scholar
  4. Chang, T. M. S., 197la, The in vivo effects of semipermeable microcapsules containing L-asparaginase on 6C3HED lymphosarcoma, Nature 229:117.CrossRefGoogle Scholar
  5. Chang, T. M. S., 1971b, Stabilization of enzymes by microencapsulation with a concentrated protein solution or by microencapsulation followed by cross-linking with glutaraldehyde, Biochem. Biophys. Res. Commun. 44:1531.CrossRefGoogle Scholar
  6. Chang, T. M. S., Macintosh, F. C., and Mason, S. G., 1966, Semipermeable aqueous microcapsules: I. Preparation and properties, Can. J. Physiol. Pharmocol. 44:115.CrossRefGoogle Scholar
  7. Chibata, I., Tosa, T., Sato, T., Mori, T., and Matuo, Y., 1972, Preparation and industrial application of immobilized aminoacylases, in: Proceedings of IV International Fermentation Symposium: Fermentation Technology Today, p. 383, Society of Fermentation Technologe, Osaka.Google Scholar
  8. Chibata, I. Tosa, T., Sato, T., Mori, T., and Yamamoto, K., 1973a, Continuous enzyme reactions by immobilized microbial cells, in: Enzyme Engineering, Vol. 2 (E. K. Pye and L. B. Wingard, Jr., eds.), p. 303, Plenum Press, New York.Google Scholar
  9. Chibata, I., Tosa, T., and Matuo, Y., 1973b, Immobilization of coenzyme A and its application, in: Enzyme Engineering, Vol. 2 (E. K. Pye and L. B. Wingard, Jr., eds.), p. 229, Plenum Press, New York.Google Scholar
  10. Chibata, I., Tosa, T., and Sato, T., 1974, Immobilized aspartase-containing microbial cells: preparation and enzymatic properties, App. Microbiol. 27:878.Google Scholar
  11. Chibata, I., Tosa, T., and Yamamoto, K., 1975, Industrial production of L-malic acid by immobilized microbial cells, in: Proceedings of 1975 Enzyme Engineering Conference at Portland,Plenum Press, New York.Google Scholar
  12. Chong, E. D. S, and Chang, T. M. S., 1974, In vivo effects of intraperitoneally injected L-asparaginase solution and L-asparaginase immobilized within semipermeable nylon microcapsules with emphasis on blood L-asparaginase, body L-asparaginase, and plasma L-asparagine levels, Enzyme 18:218.Google Scholar
  13. Cooney, D. A., Capizzi, R. L., and Handschumacher, R. E., 1970, Evaluation of L-asparagine metabolism in animals and man, Cancer Res. 30:929.Google Scholar
  14. Cooney, D. A., Weetall, H. H., and Long, E., 1975, Biochemical and pharmacologic properties of Lasparaginase bonded to dacron vascular prosthesis, Biochem. Pharmacol. 24:503.Google Scholar
  15. Gregoriadis, G., Leathwood, P. D., and Ryman, B. E., 1971, Enzyme entrapment in liposomes, Federation Eur. Biochem. Soc. Letters 14:95.CrossRefGoogle Scholar
  16. Horvath, C., Sardi, A., and Woods, A. J., 1973, L-Asparaginase tubes: kinetic behavior and application in physiological studies, J. Appi. Physiol. 34:181.Google Scholar
  17. Inada, Y., Hirose, S., Okada, M., and Mihama, H., 1975, Immobilized L-asparaginase embedded in fibrin polymer, Enzyme 20:188.Google Scholar
  18. Matuo, Y., Tosa, T., and Chibata I., 1974, Purification of coenzyme A by affinity chromatography, Biochem. Biophys. Acta 338:520.CrossRefGoogle Scholar
  19. Mori, T., Sato, T., Matuo, Y., Tosa, T., and Chibata, I., 1972a, Preparation and characteristics of microcapsules containing asparaginase, Biotech. Bioeng. 14:663.CrossRefGoogle Scholar
  20. Mori, T., Sato, T., Tosa, T., and Chibata, I., 1972b, Studies on immobilized enzymes: X. Preparation and properties of aminoacylase entrapped into acrylamide gel-lattice, Enzymologia 43:213.Google Scholar
  21. Mori, T., Tosa, T., and Chibata, I., 1973, Enzymatic properties of microcapsules containing asparaginase, Biochem Biophys. Acta 321:653.Google Scholar
  22. Mori, T., Tosa, T., and Chibata, I., 1974, Preparation and properties of asparaginase entrapped in the lattice of polyacrylamide gel, Cancer Res. 34:3066.Google Scholar
  23. Mori, T., Sano, R., Iwasawa, Y., Tosa, T., and Chibata, I., 1976, Preparation, characteristics, and application of asparaginase tube, J. Solid-Phase Biochem. 1:15.Google Scholar
  24. Nadler, H. L., and Updike, S., 1974, Hetentrapment of enzmca, a farcr Pjcrec Pysti Enzyme 18:150.Google Scholar
  25. Sato, T., Mori, T., Tosa, T., and Chibata, I., 1971, Studies on immobilized enzymes: IX. Preparation and properties of aminoacylase covalently attached to halogenoacetylcellulose, Arch. Biochem. Biophys. 147:788.CrossRefGoogle Scholar
  26. Sato, T., Tosa, T., and Chibata, I., 1976, Continuous production of 6-aminopenicillanic acid from penicillin by immobilized microbial cells, Eur. J. Appt. Microbial. 2:153.CrossRefGoogle Scholar
  27. Tosa, T., Mori, T., Fuse, N., and Chibata, I., 1966a, Studies on continuous enzyme reactions: I. Screening of water-insoluble aminoacylase, Enzymologia 31:214.Google Scholar
  28. Tosa, T., Mori, T., Fuse, N., and Chibata, I., 1966b, Studies on continuous enzyme reactions: II. Preparation of DEAE-cellulose-aminoacylase column and continuous optical resolution of acetylDL-methionine, Enzymologia 31:225.Google Scholar
  29. Tosa, T., Mori, T., Fuse, N., and Chibata, I., 1967, Studies on continuous enzyme reactions: IV. Preparation of a DEAE-sephadex—aminoacylase column and continuous optical resolution of acyl-DL-amino acids, Biotech. Bioeng. 9:603.CrossRefGoogle Scholar
  30. Tosa, T., Mori, T., Fuse, N., and Chibata, I., 1969a, Studies on continuous enzyme reactions: V. Kinetics and industrial application of aminoacylase column for continuous optical resolution of acyl-DL-amino acids, Agr. Bio. Chem. (Tokyo) 33:1047.CrossRefGoogle Scholar
  31. Tosa, T., Mori, T., and Chibata, I., 1969b, Studies on continuous enzyme reactions: VI. Enzymatic properties of the DEAE-sephadex-aminoacylase complex, Agr. Bio. Chem. (Tokyo) 33;1053.CrossRefGoogle Scholar
  32. Tosa, T., Mori, T., and Chibata, I., 1971a, Studies on continuous enzyme reactions: VIII. Kinetics and pressure drop of aminoacylase column, J. Fermen. Technol. 49:522.Google Scholar
  33. Tosa, T., Sano, R., Yamamoto, K., Nakamura, M., Ando, K., and Chibata, I., 1971b, L-Asparaginase from Proteus vulgaris,Appt Microbial. 22:387.Google Scholar
  34. Tosa, T., Sano, R., Yamamoto, K., Nakamura, M., and Chibata, I., 1972, L-Asparaginase from Proteus vulgaris: Purification, crystallization, and enzymic properties, Biochemistry 11:217.CrossRefGoogle Scholar
  35. Tosa, T., Sato, T., Mori, T., Matuo, Y., and Chibata, I., 1973, Continuous production of L-aspartic acid by immobilized aspartase, Biotech. Bioeng. 15:69.CrossRefGoogle Scholar
  36. Tosa, T., Sato, T., Mori, T., and Chibata, I., 1974a, Basic studies for continuous production of Laspartic acid by immobilized Escherichia coli cells, Appl. Microbial. 27:886.Google Scholar
  37. Tosa, T., Sato, T., Sano, R., Yamamoto, K., Matuo, Y., and Chibata, I., 1974b, Characteristics and applications of N-(w-aminohexyl)-L-aspartic acid-sepharose as an affinity adsorbent, Biochem. Biophys. Acta 334:1.Google Scholar
  38. Weetall, H. H., 1970, Insolubilized L-asparaginase implant: a preliminary report, J. Biomed. Mater. Res. 4:597.CrossRefGoogle Scholar
  39. Yamamoto, K., Sato, T., Tosa, T., and Chibata, I., 1974a, Continuous production of L-citrulline by immobilized Pseudomonas putida cells, Biotech. Bioeng. 16:1589.CrossRefGoogle Scholar
  40. Yamamoto, K., Sato, T., Tosa, T., and Chibata, I., 1974b, Continuous production of urocanic acid by immobilized Achromohacter liquidum cells, Biotech. Bioeng. 16:1601.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Ichiro Chibata
    • 1
  • Tetsuya Tosa
    • 1
  • Takao Mori
    • 1
  1. 1.Research Laboratory of Applied BiochemistryTanabe Seiyaku Co. Ltd.OsakaJapan

Personalised recommendations