Liposomes as Carriers of Enzymes and Proteins in Medicine

  • Gregory Gregoriadis

Abstract

Successful application of proteins in therapy can be hampered by a multitude of difficulties. For instance, use, in the treatment of inherited metabolic disorders, of enzymes that are foreign to the body can promote immune reactions and occasionally fatal serum sickness. Such enzymes might even fail to penetrate, and act in, target areas either because of premature inactivation or because of target inaccessibility. Glucohydrolases, which are potentially useful in the treatment of most lysosomal storage diseases can, en route to their destination, act on their substrates located on cell surfaces or blood glycoproteins and thus upset normal metabolism (Gregoriadis et al., 1974a). Treatment of some forms of human leukemia with asparaginase can be jeopardized by allergic and other toxic reactions (Capizzi et al., 1970), and similar complications arise with the use of uricase in the treatment of gout. Indeed, it is perhaps correct to assume that most of these problems originate from our inability to direct therapeutic agents specifically to diseased areas. It follows that any approach enabling enzymes to reach their target selectively and in a controlled fashion would contribute to a safe and effective enzyme therapy.

Keywords

Cholesterol Leukemia Bacillus Fructose Macromolecule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, C. S. S. J., 1974, Purification and properties of a phagocytosis promoting factor from serum, thesis, University of Illinois.Google Scholar
  2. Allison, A. C., and Gregoriadis, G., 1974, Liposomes as immunological adjuvants, Nature 252: 252.CrossRefGoogle Scholar
  3. Allison, A. C., and Gregoriadis, G., 1976, Liposomes as immunological adjuvants, in: Recent Results in Cancer Research ( G. Mathe and M. Sinnel, eds.), Springer-Verlag, Heidelberg.Google Scholar
  4. Almeida, J. D., Brand, C. M., Edwards, D. C., and Heath, T. D., 1975, Formation of virosomes from influenza subunits and liposomes, Lancet 2: 899.CrossRefGoogle Scholar
  5. Bangham, A. D., Hill, M. W., and Miller, N. G. A., 1974, Preparation and use of liposomes as models of biological membranes, in: Methods in Membrane Biology ( E. D. Korn, ed.), pp. 1–68, Plenum Press, New York.Google Scholar
  6. Batzri, S., and Korn, E. D., 1975, Interaction of phospholipid vesicles with cells, J. Gell Biol. 66:621. Black, C. D. V., and Gregoriadis, G., 1976, Interaction of liposomes with blood plasma proteins, Biochem. Soc. Trans. 4: 253.Google Scholar
  7. Brady, R. O., Kanfer, J. N., and Shapiro, D., 1965, The metabolism of glucocerebrosides; I. Purification and properties of a glucocerebroside-clearing enzyme from spleen tissue, J. Biol. Chem. 240: 39.Google Scholar
  8. Braidman, I., and Gregoriadis, G., 1976, Preparation of glucocerebroside:/3-glucosidase for entrap-ment in liposomes and treatment of patients with adult Gaucher’s disease, Biochem. Soc. Trans. 4: 259.Google Scholar
  9. Broome, J. D., 1968, Studies on the mechanism of tumour inhibition by L-asparaginase, J. Exptl. Med. 127: 1055.CrossRefGoogle Scholar
  10. Bruni, A., Leon, A., Toffano, G., and Boarato, E., 1976, Pharmacological effects of phosphatidvl serine liposomes, Nature 260: 331.CrossRefGoogle Scholar
  11. Capizzi, R. L., Bercino, J. R., and Handschumacher, R. E., 1970, L-Asparaginase, Ann. Rev. Med. 21: 433.CrossRefGoogle Scholar
  12. Colley, C. M., and Ryman, B. E., 1974, A model for a lysosomal storage disease and a possible method of therapy, Biochem. Soc. Trans. 2: 871.Google Scholar
  13. Dapergolas, G., and Gregoriadis, G., 1976. Hypoglycaemic effect of liposome-entrapped insulin administered intragastrically into rats, Lancet 2: 824.CrossRefGoogle Scholar
  14. Dapergolas, G., Neerunjun, E. D., and Gregoriadis, G., 1976, Penetration of target areas in the rat by liposome-associated bleomycin, glucose oxidase and insulin, FEBS letters 63: 235.CrossRefGoogle Scholar
  15. de Barsy, T., Devos, P., and Van Hoof, F., 1975, The cellular distribution of liposomes in the liver of newborn rats, Biochem. Soc. Trans. 3: 159.Google Scholar
  16. de Duve, L., de Barsy, T., Fouie, B., i,vucc, A., T si cr°, P., ^a.Tav I-I,,,,f F 1 Q74 T.vsnsomotrouic agents, Biochem. Pharmacol. 23: 2495.Google Scholar
  17. Dunnick, J. K., McDougall, I. R., Aragon, S., Goris, M. L., and Kriss, J. P., 1975, Vesicle interactionsGoogle Scholar
  18. with polyamino acids and antibody: in vitro and in vivo studies, J. Nucl. Med. 16:483.Google Scholar
  19. Eytan, G., Matheson, M. J., and Racker, E., 1975, Incorporation of biologically active proteins into liposomes, FEBS Letters 57: 121.CrossRefGoogle Scholar
  20. Fishman, Y., and Citri, N., 1975, L-Asparaginase entrapped in liposomes: preparation and properties, FEBS Lett. 60: 17.CrossRefGoogle Scholar
  21. Freer, J. H., Arbuthnott, J. P., and Bernheimer, A. W., 1968, Interaction of staphylococcal a-toxin with artificial and natural membranes, J. Bacterial. 95:1153.Google Scholar
  22. Grant, C. W. M., and McConnell, H. M., 1973, Fusion of phospholipid vesicles with viable Acholeplasma laidlawii, Proc. Natl. Acad. Sci. U.S. 70: 1238.CrossRefGoogle Scholar
  23. Gregoriadis, G., 1973a, Drug entrapment in liposomes, FEBS Letters 36: 292.CrossRefGoogle Scholar
  24. Gregoriadis, G., 1973b, Molecular trojan horses, New Scientist 60: 890.Google Scholar
  25. Gregoriadis, G., 1974, Structural requirements for the specific uptake of macromolecules and liposomes by target tissues, in: Enzyme Replacement Therapy of Lysosomal Storage Diseases (J. M. Tager, G. J. M. Hooghwinkel, and W. Th. Daems, eds.), pp. 131–148, North-Holland Publishing Co., AmsterdamGoogle Scholar
  26. Gregoriadis, G., 1975, Catabolism of glycoproteins, in: Lysosomes in Biology and Pathology U. T. Dingle and R. T. Dean, eds.), pp. 265–294, North-Holland Publishing Co., Amsterdam.Google Scholar
  27. Gregoriadis, G., 1976a, The carrier potential of liposomes in biology and medicine. New Engl. J. Med. 295: 704, 765.CrossRefGoogle Scholar
  28. Gregoriadis, G., 1976b, Enzyme entrapment in liposomes, in: Methods in Enzymology ( K. Mosbach, ed.), Academic Press, Inc., New York.Google Scholar
  29. Gregoriadis, G., and Allison, A. C., 1974, Entrapment of proteins in liposomes prevents allergic reactions in pre-immunised mice, FEBS Letters 45: 71.CrossRefGoogle Scholar
  30. Gregoriadis, G., and Buckland, R. A., 1973, Enzyme-containing liposomes alleviate a model for storage disease, Nature 244: 170.CrossRefGoogle Scholar
  31. Gregoriadis, G., and Neerunjun, E. D., 1974, Control of the rate of hepatic uptake and catabolism of liposome-entrapped proteins injected into rats: possible therapeutic applications, Eur. J. Biochem. 47: 179.CrossRefGoogle Scholar
  32. Gregoriadis, G., and Neerunjun, E. D., 1975, Homing of liposomes to target cells, Biochem. Biophys. Res. Commun. 65: 537.CrossRefGoogle Scholar
  33. Gregoriadis, G., and Ryman, B. E., 1972a, Fate of protein-containing liposomes injected into rats: an approach to the treatment of storage diseases, Eur. J. Biochem. 24: 485.CrossRefGoogle Scholar
  34. Gregoriadis, G., and Ryman, B. E., 1972b, Lysosomal localization of ß-fructofuranosidase-containing liposomes injected into rats: some implications in the treatment of genetic disorders, Biochem. J. 129: 123.Google Scholar
  35. Gregoriadis, G., Leathwood, P. D., and Ryman, B. E., 1971, Enzyme entrapment in liposomes, FEBS Letters 14: 95.CrossRefGoogle Scholar
  36. Gregoriadis, G., Putman, D., Louis, L., and Neerunjun, D., 1974a, Comparative fate and effect of non-entrapped and liposome-entrapped neuraminidase injected into rats, Biochem. J. 140: 323.Google Scholar
  37. Gregoriadis, G., Swain, C. P., Wills, E. J., and Tavill, A. S., 19746, Drug-carrier potential of liposomes in cancer chemotherapy, Lancet 1:1313.Google Scholar
  38. Gregoriadis, G., Dapergolas, G., and Neerunjun, E. D., 1976, Penetration of target areas in the rat by liposome-associated agents administered parenterally and intrtgastrically, Biochem. Soc. Tarns. 4: 256.Google Scholar
  39. Huang, L., and Pagano, R. E., 1975, Interaction of phospholipid vesicles with cultured mammalian cells: I. Characteristics of uptake, J. Cell Biol. 67: 38.CrossRefGoogle Scholar
  40. Jonah, M. M., Cerny, E. A., and Rahman, Y. E., 1975, Tissue distribution of EDTA encapsulated within liposomes of varying surface properties, Biochim. Biophys. Acta 401: 336.CrossRefGoogle Scholar
  41. Juliano, R. L., and Stamp, D., 1975, The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs, Biochem. Biophys. Res. Commun. 63: 651.CrossRefGoogle Scholar
  42. Inbar, M., and Shinitzky, M., 1974, Increase of cholesterol level in the surface membrane of lymphoma cells and its inhibitory effect on ascites tumour development, Proc. Natl. Acad. Sci. U.S. 71:2128.Google Scholar
  43. Kawada, J., Kuwae, T., and Kurata, M., 1974, Interaction between thyroglobulin liposome and thyroidal lysosome, Life Sci. 13: 613.CrossRefGoogle Scholar
  44. Kimelberg, H. K., Mayhew, E., and Papahadjopoulos, D., 1975, Distribution of liposome-entrapped cations in tumor-bearing mice, Life Sci. 17: 715.CrossRefGoogle Scholar
  45. Leon, A., and Toffano, G., 1976, Function and Metabolism of Phospholipids in Central Nervous System (G. Porcellati, ed.), Plenum Press, New York.Google Scholar
  46. Magee, W. E., and Miller, O. V., 1972, Liposomes containing antiviral antibody can protect cells from virus infection, Nature 235: 339.CrossRefGoogle Scholar
  47. Magee, W. E., Goff, C. W. Schoknecht, J., Smith, M. D., and Cherian, K., 1974, The interaction of cationic liposomes containing entrapped horseradish peroxidase with cells in culture, J. Cell Biol. 63: 492.Google Scholar
  48. Mantovani, P., Pepeu, G., and Amaducci, L., 1976, Function and Metabolism of Phospholipids in Central Nervous System (G. Porcellati, ed.), Plenum Press, New York.Google Scholar
  49. Neerunjun, E. D., and Gregoriadis, G., 1976, Tumour regression with liposome-entrapped asparagi-nase: some immunological advantages, Bwchem. Soc. Traits. 4: 133.Google Scholar
  50. Pagano, R. E., and Huang, L., 1974, Interaction of phospholipid vesicles with cultured mammalian cells, Nature 252: 166.CrossRefGoogle Scholar
  51. Pagano, R. E., and Huang, L., 1975, Interaction of phospholipid vesicles with cultured mammalian cells: II. Studies of mechanism, J. Cell Biol. 67: 49.CrossRefGoogle Scholar
  52. Papahadjopoulos, D., and Miller, N., 1967, Phospholipid model membranes: I. Structural characteristics of hydrated liquid crystals, Biochim. Biophys. Acta 135: 624.CrossRefGoogle Scholar
  53. Papahadjopoulos, D., Poste, G., and Mayhew, E., 1974a, Cellular uptake of cyclic AMP captured within phospholipid vesicles and effect on cell growth behaviour, Biochim. Biophys. Acta 363: 404.CrossRefGoogle Scholar
  54. Papahadjopoulos, D., Mayhew, E., Poste, G., 1974b, Incorporation of lipid vesicles by mammalian cells provides a potential method for modifying cell behaviour, Nature 252: 163.CrossRefGoogle Scholar
  55. Patel, H. M., and Ryman, B. E., 1974, a-Mannosidase in zinc-deficient rats: possibility of liposomal therapy in mannosidosis, Biochem. Soc. Trans. 2: 1014.Google Scholar
  56. Patel, H. M., and Ryman, B. E., 1976, Oral administration of insulin by encapsulation within liposomes, FEBS Letters 62: 60.CrossRefGoogle Scholar
  57. Rogers, J. C., and Kornfeld, S., 1971, Hepatic uptake of proteins coupled to fetuin glycopeptide, Biochem. Biophys. Res. Commun. 45:622.Google Scholar
  58. Scherphof, G. L., Roerdink, F. H., and Zborowski, J., 1975, The use of liposomes to facilitate uptake of external substances by living cells: possible therapeutic applications, Histochem. J. 7: 508.Google Scholar
  59. Segal, A. W., Wills, E. J., Richmond, J. E., Slavin, G., Black, C. D. V., and Gregoriadis, G., 1974, Morphological observations on the cellular and subcellular destination of intravenously administered liposomes, Br. J. Exptl. Pathol. 55: 320.Google Scholar
  60. Segal, A. W. Gregoriadis, G., and Black, C. D. V., 1975, Liposomes as vehicles for the local release of drugs, Clin. Sci. Mol. Med. 49: 99.Google Scholar
  61. Sessa, G., and Weissmann, G., 1970, Incorporation of lysozyme into liposomes, J. Biol. Chem. 245: 3295.Google Scholar
  62. Surolia, A., Bachhawat, B. K., and Podder, S. K., 1975, Interaction between lactin from Ricinus communs and liposomes containing gangliosides, Nature 257: 802.CrossRefGoogle Scholar
  63. Weissmann, G., Brand, A., and Franklin, E. C., 1974, Interaction of immunoglobulins with liposomes, J. Clin. Invest. 53: 536.CrossRefGoogle Scholar
  64. Weissmann, G., Bloomgarden, D., Kaplan, R., Cohen, C., Hoffstein, S., Collins, T., Gotlieb, A., andGoogle Scholar
  65. Nagle, D., 1975, A general method for the introduction of enzymes, by means of immunoglobu- lin-coated liposomes into lysosomes of deficient cells, Proc. Natl. Acad. Sci. U.S. 72: 88.CrossRefGoogle Scholar
  66. Wisse, E., 1970, An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids, J. Ultrastruct. Res. 31:125.Google Scholar
  67. Wisse, E., and Gregoriadis, G., 1975, The uptake of liposomes by the rat liver RES., J. Reticuloendothelial Soc. 18: 10a.Google Scholar
  68. Wisse, E., Gregoriadis, G., and Daems, W. T., 1976, The uptake of liposomes by the rat liver, in: Proceedings of the 7th International Congress of the Reticuloendothelial Society ( M. R. Escobar, and S. Friedman, eds.), Plenum Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Gregory Gregoriadis
    • 1
  1. 1.Division of Clinical InvestigationClinical Research CentreHarrowEngland

Personalised recommendations