Advertisement

Stabilized Urease Microencapsulated

  • David L. Gardner
  • Donald C. Emmerling

Abstract

The possibility of using enzymes for the treatment of enzyme-deficiency diseases or organ dysfunction has generated enthusiasm over the last 10 years. Part of this enthusiasm has stemmed from technological developments for enzyme stabilization to prolong enzyme activity and for microencapsulation processes to form a protective barrier around the soluble enzyme or stabilized enzyme adduct. The microencapsulated enzyme (adduct) product might then be placed in conjunction with the circulatory system (hemoperfusion), injected intramuscularly, subcutaneously, or intraperitoneally, or administered orally as an ingestible product to carry out its intended functions.

Keywords

Urea Solution Zirconium Phosphate Blood Urea Nitrogen Level Cellulose Acetate Butyrate Glutaraldehyde Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bricker, N. S., 1964, The functional adaptation of the diseased kidney: I. Glomerular filtration rate, J. Clin. Invest. 43: 1915.CrossRefGoogle Scholar
  2. Chang, T. M. S., 1964, Semipermeable aqueous microcapsules, Science 146: 524.CrossRefGoogle Scholar
  3. Chang, T. M. S., and Poznansky, M. J., 1968, Semipermeable microcapsules containing catalase for enzyme replacement in acatalosemic mice, Nature 218: 243.CrossRefGoogle Scholar
  4. Chang, T. M. S., Johnson, L. J., and Ransom, O., 1967, Semipermeable aqueous microcapsules, Can. J. Physiol. Pharmacol. 45: 705.CrossRefGoogle Scholar
  5. Gardner, D. L., Falb, R. D., Kim, B. C., and Emmerling, D. C., 1971, Possible uremic detoxification via oral-ingested microcapsules, Trans. Amer. Soc. Artificial Internal Organs 17: 239.Google Scholar
  6. Gardner, D. L., Emmerling, D. C., Hassler, C. R., and Kim, B. C., 1972, Characterization of nitrogenous metabolites in intestinal fluid of stabilized uremic dogs, Trans. Amer. Soc. Artificial Internal Organs 18 (1): 18.Google Scholar
  7. Gardner, D. L., Emmerling, D.C., Williamson, K. D., Hassler, C. R., and Baytos, W. C., 1973, Combination microcapsule for controlling chronic uremia urea levels, Ann. Conf. Eng. Med. Biol. 26: 267.Google Scholar
  8. Gardner, D. L., Emmerling, D. C., Williamson, K. D., Baytos, W. C., and Hassler, C. R., 1975, Encapsulated adsorbents for removal of nitrogenous metabolites via oral ingestion, Kidney Intern. 7:S-393.Google Scholar
  9. Goldstein, L., and Katchalski, E., 1968, Use of water-insoluble enzyme derivatives in biochemical analysis and separation, Fresenius, J. Anal. Chem. 243: 375.Google Scholar
  10. Haynes, R., and Walsh, K. E., 1969, Enzyme envelopes on colloidal particles, Biochem. Biophys. Res. Commun. 36: 235.CrossRefGoogle Scholar
  11. Lowry, D. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., 1951, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193: 265.Google Scholar
  12. Silman, I. H., and Katchalski, E., 1966, Water insoluble derivatives of enzymes, antigens, and antibodies, Ann. Rev. Biochim. 35: 873.CrossRefGoogle Scholar
  13. Sparks, R. E., Salemme, R. M., Meier, P. M., Litt, M. H., and Lindan, O., 1969, Removal of waste metabolites in uremia by microencapsulated reactants, Trans. Amer. Soc. Artificial Internal Organs 15: 353.Google Scholar
  14. Weatherburn, N. W., 1967, Phenol-hypochlorite reaction for determination of ammonia, Anal. Chem. 39 (8): 971.CrossRefGoogle Scholar
  15. Weetall, H. H., 1970, Storage stability of water insoluble enzymes covalently coupled to organic and inorganic carriers, Biochim. Biophys. Acta 212: 1.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • David L. Gardner
    • 1
  • Donald C. Emmerling
    • 1
  1. 1.Columbus LaboratoriesBattelleColumbusUSA

Personalised recommendations