Advertisement

The Formation and Properties of Rare-Earth and Transition Metal Hydrides

  • L. C. Beavis
  • R. S. Blewer
  • J. W. Guthrie
  • E. J. Nowak
  • W. G. Perkins

Abstract

Research on metal hydrides indicates that surface chemical effects and dynamic thermal properties will play major roles in the use of these materials as hydrogen fuel storage media. Various techniques have been developed to optimize the formation of metal hydride films, and near-surface analytical techniques including ion microprobe mass analysis, Auger electron spectroscopy, and proton backscattering have been used to elucidate the surface chemistry of these materials. Thermal diffusivities have been measured for hydrides of Sc, Y, Zr, and Er.

Keywords

Metal Film Hydrogen Isotope Metal Hydride Titanium Hydride Hydride Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mueller, W. M., J. P. Blackledge, and G. G. Libowitz, Metal Hydrides, Academic Press, New York, 1968.Google Scholar
  2. 2.
    Libowitz, G. G., The Solid-State Chemistry of Binary Metal Hydrides, New York: W. A. Benjamin, Inc., 1965.Google Scholar
  3. 3.
    Heckman, R. C., J. Chem. Phys., 48, 528l (1968).Google Scholar
  4. 4.
    Schreiber, D. S. and R. M. Cotts, Phys. Rev. 131, 1118 (1963); Korn, C. and D. Zamir, J. Phys. Chem. Solids, 34, 725 (1973); Weaver, H. T., J. Chem. Phys., 56, 3193 (l972); Weaver, H. T., Phys. Rev. B, 6, 2544 (1972).Google Scholar
  5. 5.
    Reichardt, J. W., J. Vac. Sci. Technol. 9, 548 (1972).CrossRefGoogle Scholar
  6. 6.
    Schoenfelder, C. W. and J. M. Swisher, J. Vac. Sci. Technol., 10, 862 (1973).CrossRefGoogle Scholar
  7. 7.
    Smith, D. P., Hydrogen in Metals, Chicago: University of Chicago Press, 1948; Gulbransen, E. A. and K. W. Andrew, Trans. Met. Soc. AIME, 185, 74 (1949).Google Scholar
  8. 8.
    Beavis L. C., J. Vac. Sci. Technol., 10, 386 (1973).CrossRefGoogle Scholar
  9. 9.
    Duke, C. B. and H. L. Park, Physics Today, 25 (1972); Todd, C. J., Vacuum, 23, 195 (1973).Google Scholar
  10. 10.
    Gerlach, R. L., J. Vac. Sci. Technol., 10, 122 (1973).CrossRefGoogle Scholar
  11. 11.
    Gerlach, R. L., J. Vac. Sci. Technol., 8, 599 (1971).CrossRefGoogle Scholar
  12. 12.
    Gerlach, R. L., J. E. Houston, and R. L. Park, Appl. Phys. Letters, l6, 179 (1970).CrossRefGoogle Scholar
  13. 13.
    Andersen, C. A. and J. R. Hinthorne, Anal. Chem., 45, 1421 (1973).CrossRefGoogle Scholar
  14. 14.
    Benninghoven, A., Surface Science, 427 (1973).Google Scholar
  15. 15.
    Guthrie, J. W., J. Less-Common Metals, 30, 317 (1973). 1Google Scholar
  16. 16.
    Biewer, R. S., Appl. Phys. Lett., 23, 593 (1973). 1Google Scholar
  17. 17.
    Biewer, R. S., in Applications of Ion Beams to Metals, S. T. Picraux, E. P. EerNisse, and F. L. Vook, editors (to be published by Plenum Press, New York, 19740Google Scholar
  18. 18.
    Biewer, R. S., J. Nucl. Mat, (to be published). IGoogle Scholar
  19. 19.
    Carslaw, H. S. and J. C. Jaeger, Conduction of Heat in Solids, Oxford: Clarendon Press, 1959.Google Scholar
  20. 20.
    Brice, D. K., private communication.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • L. C. Beavis
    • 1
  • R. S. Blewer
    • 1
  • J. W. Guthrie
    • 1
  • E. J. Nowak
    • 1
  • W. G. Perkins
    • 1
  1. 1.Sandia LaboratoriesAlbuquerqueUSA

Personalised recommendations