Optimal Location of Hydrogen Supply Centers to Minimize Distribution Costs

  • M. Avriel
  • V. Gurovich


The problem of where to locate in an optimal way supply centers for distributing hydrogen to given destinations is considered. A numerical method is derived based on geometric programming. This method enables efficient solution of geographically, environmentally or economically constrained problems which cannot be handled by other existing methods.


Location Problem Geometric Programming Weber Problem Supply Center Optimal Location Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burstall, R. M., R. A. Leaver and J. E. Sussans, “Evaluation of Transport Costs for Alternative Factory Sites - A Case Study,” Operational Research Quarterly, 13, 345–354 (1962).CrossRefGoogle Scholar
  2. 2.
    Haley, K. B., “The Siting of Depots,” Int. J, of Prod. Research, 12, 41–45 (1963).CrossRefGoogle Scholar
  3. 3.
    Cooper, L., “Location-Allocation Problems,” Operations Research, 11, 331–343 (1963).CrossRefGoogle Scholar
  4. 4.
    Cooper, L., “Heuristic Methods for Location-Allocation Problems,” SIAM Review, 6, 37–53 (1964).CrossRefGoogle Scholar
  5. 5.
    Kuhn, H. W. and R. E. Kuenne, “An Efficient Algorithm for the Numerical Solution of the Generalized Weber Problem in Spatial Economics,” J. of Regional Science, 4, 21–33 (1962).CrossRefGoogle Scholar
  6. 6.
    Miehle, W., “Link-Length Minimization in Networks,” Operations Research, 6, 232–243 (1958).CrossRefGoogle Scholar
  7. 7.
    Weiszfeld, E., “Sur le Point pour Lequel la Somme des Distances de n Points Donnés est Minimum,” Tohoku Math. J., 43, 355–386 (1937).Google Scholar
  8. 8.
    Katz, N., “On the Convergence of a Numerical Scheme for Solving Some Locational Equilibrium Problems,” SIAM J. Appl. Math., 17, 122–1231 (1969).CrossRefGoogle Scholar
  9. 9.
    Wesolowsky, G. 0. and R. F. Love, “A Nonlinear Approximation Method for Solving a Generalized Rectangular Distance Weber Problem,” Management Science, 18, 656–663 (1972).CrossRefGoogle Scholar
  10. 10.
    Love, R. F., G. D. Wesolowsky and S. A. Kraemer, “A Multi- Facility Maximax Location Method for Euclidean Distances,” Int. J. of Prod. Res., 11, 37–45 (1973).CrossRefGoogle Scholar
  11. 11.
    Fiacco, A. V. and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, New York: Wiley, 1968.Google Scholar
  12. 12.
    Cooper, L., “Solutions of Generalized Locational Equi¬librium Problems,” J. of Regional Science, 7, 1–18 (1967).CrossRefGoogle Scholar
  13. 13.
    Cooper, L., “An Extension of the Generalized Weber Problem,” J. of Regional Science, 8, 181–197 (1968).CrossRefGoogle Scholar
  14. 14.
    Kuenne, R. E. and R. M. Soland, The Multisource Weber Problem: Exact Solutions by Branch and Bound, IDA Economic Series, Institute for Defense Analysis, Arlington, Va., 1971.Google Scholar
  15. 15.
    Kuenne, R. E. and R. M. Soland, “Exact and Approximate Solutions to the Multisource Weber Problem,” Mathematical Programming, 73, 193–209 (1972).CrossRefGoogle Scholar
  16. l6.
    Cooper, L., A Random Locational Equilibrium Problem/1 Computer Science/Operations Research Center, Southern Methodist University Technical Report CP 72020, March 1973.Google Scholar
  17. 17.
    Katz, I. N. and L. Cooper, “An Always-Convergent Numerical Scheme for a Random Locational Equilibrium Problem,” Computer Science/Operations Research Center, Southern Methodist University Technical Report CP 72021, February 1973.Google Scholar
  18. 18.
    Francis, R. L., “A Selective Review of the Location Problem Literature,” ORSA Bulletin, 21, Supplement 1, B-25 (1973).Google Scholar
  19. 19.
    Duffin R. J., E. L. Peterson and C. Zener, Geometric Programming, New York: Wiley, 1967. 1Google Scholar
  20. 20.
    Zener, C., Engineering Design by Geometric Programming New-York: Wiley, 1971. IGoogle Scholar
  21. 21.
    Avriel, M., M. J. Rijckaert and D. J. Wilde (eds.), Optimization and Design, Englewood Cliffs, N.J.: Prentice-Hall, 1973.Google Scholar
  22. 22.
    Avriel, M. and A. C. Williams, “Complementary Geometric Programming,” SIAM J. Appl. Math., 19, 125–l4l (1970).CrossRefGoogle Scholar
  23. 23.
    Avriel, M. and A. C. Williams, “An Extension of Geometric 1 Programming with Applications in Engineering Optimization,” J. of Engineering Mathematics, 187–194 (1971).Google Scholar
  24. 24.
    Dembo, R., “Solution of Complementary Geometric Programming Problems,” M.Sc. Thesis, Department of Chemical Engineering, Technion, Israel Institute of Technology, 1972.Google Scholar
  25. 25.
    Avriel, M., R. Dembo and U. Passy, “Solution of Generalized Geometric Programs,” Technion, Operations Research, Statistics and Economics Mimeograph Series No. l40, August 1973.Google Scholar
  26. 26.
    Dantzig, G. B., Linear Programming and Extensions Princeton, N.J.: Princeton University Press, 1963.Google Scholar
  27. 27.
    Peterson, E. L., “Geometric Programming and Some of its Extensions,” in Optimization and Design, M. Avriel, M. J. Rijckaert and D. J. Wilde (eds.), Englewood Cliffs, N.J.: Prentice-Hall, 1973.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • M. Avriel
    • 1
  • V. Gurovich
    • 1
  1. 1.Israel Institute of TechnologyHaifaIsrael

Personalised recommendations