On Methods for the Large-Scale Production of Hydrogen from Water

  • J. O’M. Bockris


Off-peak power would give sufficiently cheap hydrogen with classical electrolyzers. Emerging technology could produce it at between $0.85 and $2.90 (106 Btu)-1 for electricity costs (bulk purchase) between 2 and 7 mils. High temperature electrolyzers are less advantageous than thermal assisted electrolysis of cuprous chloride ($2.08). Photoelectrochemical methods project costs at less than $0.70; photosynthetic at $0.40. Research stress should be on: use of off-peak power, cuprous chloride electrolysis, photo-oriented methods. The latter could offer hydrogen cheaper than from present natural gas.


Fuel Cell Kcal Mole Tungsten Bronze Electricity Cost Cuprous Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ung, A. Y. -M. and R. A. Back, Can. J. of Chem., 42, 753 (1964).CrossRefGoogle Scholar
  2. 2.
    Fujishima, A. and G. Honda, Nature, 238, 38 (1972).CrossRefGoogle Scholar
  3. 3.
    Gregory, D., assisted by P. J. Anderson, R. J. DuFour, R. H. Elkins, W. J. D. Escher, R. B. Foster, G. M. Long, J. Wurm and G. G. Yie, “The Hydrogen-Energy System,” prepared for American Gas Association by I.G.T., 1973.Google Scholar
  4. 4.
    Reference 3, p. III–5.Google Scholar
  5. 5.
    Bockris, J. O’M., N. Bonciocat and F. Gutmann, “An Introduction to Electrochemical Science,” Wykeham. Press, London, 1974, p. 66.Google Scholar
  6. 6.
    Bockris, J. O’M. and A. K. N. Reddy, “Modern Electrochemistry Rosetta Edition,” Plenum, 1973, p. 1135.Google Scholar
  7. 7.
    Bockris, J. O’M. and S. Srinivasan, “Fuel Cells: Their Electrochemistry,” McGraw-Hill, 1970, p. 289.Google Scholar
  8. 8.
    Reference 8, Appendix, p. 633.Google Scholar
  9. 9.
    Cahan, B., Thesis, University of Pennsylvania, 1968.Google Scholar
  10. 10.
    Damjanovic, A., D. Sepa and J. O’M. Bockris, J. Res. Inst. Catalysis, Hokkaido University, 164 1 (1968).Google Scholar
  11. 11.
    McHardy, J. and J. O’M. Bockris, J. Electrochem. Soc., 120, 53 and 6l (1973).Google Scholar
  12. 12.
    Tseung, A. and H. Bevan, J. Electroanal. Chem., 45, 429 (1973).CrossRefGoogle Scholar
  13. 13.
    Sporne, P., private communication.Google Scholar
  14. 14.
    Stuart, K., private communication.Google Scholar
  15. 15.
    Gregory, D. P., D. Y. C. Ng and G. M. Long, in “The Electro-chemistry of Cleaner Environments,” edited by J. O’M. Bockris Plenum, 1972, p. 239.Google Scholar
  16. 16.
    Reference 17, p. 240.Google Scholar
  17. 17.
    Mrochek, J. E., “The Economics of Hydrogen and Oxygen Production by Water Electrolysis and Competitive Processes,” Oak Ridge National Laboratory.Google Scholar
  18. 18.
    Reference 3, pp. III–32,33.Google Scholar
  19. 19.
    Juda, W. and D. McL. Moulton, Chem. Eng. Symp. Series, p. 59 (1972).Google Scholar
  20. 20.
    Bockris, J. O’M. in “Modern Aspects of Electrochemistry,” Volume 1, edited by J. O’M. Bockris, Butterworths, London, 195U, P. 243.Google Scholar
  21. 21.
    Copeland, Black and Garrett, Chem. Rev., 31, 177 (1942).Google Scholar
  22. 22.
    Matthews, D. B., Aust. J. Chem., 24, 1 (1971); 25, 206l (1972).CrossRefGoogle Scholar
  23. 23.
    Quickenden, B., private communication.Google Scholar
  24. 24.
    Wroblowa, H. and G. Razumney, private communication.Google Scholar
  25. 26.
    Reference 8, p. 606.Google Scholar
  26. 27.
    Casey, E. J., presented at the Brighton Battery Conference, 1960.Google Scholar
  27. 28.
    Benemann, J. R., “Hydrogen Production from Water and Sunlight by Photosynthetic Processes,” University of California, San Diego, La Jolla, December 1973.Google Scholar
  28. 29.
    Benemann, J. R., J. A. Berenson, N. O. Kaplan and M. D. Kamen, Proc. Nat. Acad. Sci., U.S.A., 70, 2317 (1973).CrossRefGoogle Scholar
  29. 30.
    Benemann, J. R., Symposium on Prokaryotic Photosynthetic Organisms, Freiburg, September 1973.Google Scholar
  30. 31.
    Begg, J. E., Nature, 205, 1025 (1965).CrossRefGoogle Scholar
  31. 32.
    Australian National Academyfs Report on “Solar Energy Research in Australia,” Report No. 17, September 1973, p. 39.Google Scholar
  32. 33.
    Reference 33, p. 22.Google Scholar
  33. 34.
    Eastlund, B. J. and W. C. Gough, presented at the l63rd National Meeting of the American Chem. Soc., Boston, Mass., 9-lU April, 1972.Google Scholar
  34. 35.
    McWhirter, H. W. P., in “Plasma Diagnostics,” edited by B. H. Huddlestone and S. L. Leonard, Academic Press, New York, 1965.Google Scholar
  35. 36.
    Karr, H. J., E. A. Knapp and J. E. Osher, Phys. of Fluids, 49 424 (1961).CrossRefGoogle Scholar
  36. 37.
    Hietbrink, E. H., J. McBreen, S. M. Selis, S. B. Tricklebank and R. H. Witherspoon in “Electrochemistry of Cleaner Environments,” edited by J. O’M. Bockris, Plenum, New York, 1972, p. 47.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • J. O’M. Bockris
    • 1
  1. 1.Institute for Solar and Electrochemical Energy ConversionFlinders UniversityAdelaideAustralia

Personalised recommendations