Advertisement

Fractionation of Diverse Steroid-Binding Proteins: Basic and Clinical Applications

  • Merry R. Sherman
  • Lorraine K. Miller
Part of the Current Topics in Molecular Endocrinology book series (CTME, volume 4)

Abstract

Two types of diversity in steroid-binding proteins have become apparent: 1) the presence of several intracellular receptors and/or serum steroid-binding components in a tissue; and 2) the existence of multiple forms of individual receptors. Resolution of these components is clearly essential to understanding the mechanisms of action of one or more steroids in a target cell. The techniques that can be used to fractionate such mixtures and characterize the constituents include analytical gel filtration, Polyacrylamide gel electrophoresis, preparative ion exchange filtration and polyamine precipitation, in addition to density gradient centrifu-gation. Applications of these techniques to a clinical problem, the influence of steroids on breast cancer, and a fundamental problem, the subunit structure of chick oviduct progesterone receptors, will be described in this chapter.

Keywords

Steroid Binding Globulin Label Complex Undiluted Serum Total Liquid Volume Protamine Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

Bis

N,N’-methylenebisacrylamide

DEAE

diethylaminoethyl

DES

diethylstilbestrol

DHT or dihydrotestosterone

5α-dihydrotestosterone

E2 or estradiol

17β-estradiol

E1

estrone

HSA

human serum albumin; SBG, sex steroid binding globulin (testosterone-estradiol binding globulin)

Tes

N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid

Tes-thioglycerol

10mM Tes, 12mM thioglycerol, pH 7.4

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sherman, M.R., P.L. Corvol and B.W. O’Malley, J. Biol. Chem. 245:6085, 1970.PubMedGoogle Scholar
  2. 2.
    Sherman, M.R., Methods Enzymol. 36:211, 1975.PubMedCrossRefGoogle Scholar
  3. 3.
    Mickelson, K.E. and P.H. Petra, Biochemistry 14:957, 1975.PubMedCrossRefGoogle Scholar
  4. 4.
    Corvol, P.L., A. Chrambach, D. Rodbard and C.W. Bardin, J. Biol. Chem. 246:3435, 1971.PubMedGoogle Scholar
  5. 5.
    Miller, L.K., S.C. Diaz and M.R. Sherman, Biochemistry 14: 4433, 1975.PubMedCrossRefGoogle Scholar
  6. 6.
    Davis, B.J., Ann. N.Y. Acad. Sci. 121:404, 1964.PubMedCrossRefGoogle Scholar
  7. 7.
    Rodbard, D., C. Levitov and A. Chrambach, Sep. Sci. 7:705, 1972.CrossRefGoogle Scholar
  8. 8.
    Ferguson, K.A., Metabolism 13:985, 1964.PubMedCrossRefGoogle Scholar
  9. 9.
    Chrambach, A. and D. Rodbard, Science 172:440, 1971.PubMedCrossRefGoogle Scholar
  10. 10.
    Rodbard, D. and A. Chrambach, Anal. Biochem. 40:95, 1971.PubMedCrossRefGoogle Scholar
  11. 11.
    Rodbard, D. and A. Chrambach, In: Allen, R.C. and H.R. Maurer (eds.), Electrophoresis and Isoelectric Focusing on Polyacrylamide Gel, Walter de Gruyter, Berlin, 1974, p. 28.Google Scholar
  12. 12.
    Santi, D.V., C.H. Sibley, E.R. Perriard, G.M. Tomkins and J.D. Baxter, Biochemistry 12:2412, 1973.PubMedCrossRefGoogle Scholar
  13. 13.
    Sherman, M.R., F.B. Tuazon, S.C. Diaz and L.K. Miller, Biochemistry 15:980, 1976.PubMedCrossRefGoogle Scholar
  14. 14.
    Schrader, W.T. and B.W. O’Malley, J. Biol. Chem. 247:51, 1972.PubMedGoogle Scholar
  15. 15.
    King, R.J.B., J. Gordon and A.W. Steggles, Biochem. J. 114: 649, 1969.PubMedGoogle Scholar
  16. 16.
    Sherman, M.R., S.B.P. Atienza, J.R. Shansky and L.M. Hoffman, J. Biol. Chem. 249:5351, 1974.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Merry R. Sherman
    • 1
  • Lorraine K. Miller
    • 1
  1. 1.Memorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations