Chemiluminescence Analysis in Water Pollution Studies

  • W. Rudolf Seitz
Part of the Modern Analytical Chemistry book series (MOAC, volume 1)


Certain energetic chemical reactions lead to electronically excited products. If these products either emit photons themselves or transfer their energy to emitting species, the resulting luminescence is known as chemiluminescence (CL). Thus it is the nature of the excitation process that distinguishes CL from normal fluorescence or phosphorescence. The emission step is the same. In fact, showing that a CL spectrum matches the fluorescence spectrum of a known compound is an important method for identifying the emitting species in a CL reaction.


Indicator Reaction Important Potential Application Autotrophic Index Luminol Reaction Water Pollution Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chemiluminescence and Bioluminescence edited by M. J. Cormier, D. M. Hercules, and J. Lee (Plenum Press, New York, 1973).Google Scholar
  2. 2.
    K. D. Gundermann, Chemilumineszenz Organischer Verbindungen (Springer-Verlag, New York, 1969).Google Scholar
  3. 3.
    Light and Life edited by W. D. McElroy and B. Glass (Johns Hopkins Press, Baltimore, Md., 1961).Google Scholar
  4. 4.
    Bioluminescence in Progress edited by F. H. Johnston and Y. Haneda (Princeton University Press, Princeton, N.J., 1966).Google Scholar
  5. 5.
    E. N. Harvey, Bioluminescence (Academic Press, New York, 1952).Google Scholar
  6. 6.
    A. C. Giese, Photophysiology (Academic Press, New York, 1970), Vols. 2, 4, 5.Google Scholar
  7. 7.
    E. White and H. H. Seliger, Sci. Amer. 207, 76 (1962).CrossRefGoogle Scholar
  8. 8.
    B. L. Strehler, in Methods of Biochemical Analysis, edited by D. Glick (Interscience, New York, 1968), Vol. 16, pp. 99–179.CrossRefGoogle Scholar
  9. 9.
    W. R. Seitz and M. P. Neary, Anal. Chem. 46, 188A (1974).Google Scholar
  10. 10.
    U. Isacsson and G. Wettermark, Anal. Chim. Acta 68, 339 (1974).CrossRefGoogle Scholar
  11. 11.
    M. P. Neary and W. R. Seitz, in Analytical and Clinical Chemistry: A Series of Current Topics, edited by D. M. Hercules, S. Cram, G. Hieftje, and R. Melville (Plenum Press, New York, 1976), Vol. 1.Google Scholar
  12. 12.
    W. D. McElroy, H. H. Seliger, and E. H. White, Photochem. Photobiol. 10, 153 (1969).CrossRefGoogle Scholar
  13. 13.
    O. Holm-Hansen, in Estuarine Microbiol Ecology, edited by L. H. Stevenson and R. R. Colwell (University of South Carolina Press, Columbia, S.C., 1973), p. 73.Google Scholar
  14. 14.
    K. Bancroft, E. A. Paul, and W. J. Wiebe, Limnol. Oceanog, in press.Google Scholar
  15. 15.
    “Biometer Flashes” (Du Pont Instruments, 1971).Google Scholar
  16. 16.
    C. I. Weber, in Bioassay Techniques and Environmental Chemistry, edited by G. E. Glass, (Ann Arbor Science Publishers, Inc., Ann Arbor, Mich., 1973), p. 119.Google Scholar
  17. 17.
    W. R. Seitz and D. M. Hercules, in Chemiluminescence and Bioluminescence, edited by M. J. Cormer, D. M. Hercules, and J. Lee (Plenum Press, New York, 1973), p. 427.Google Scholar
  18. 18.
    W. R. Seitz and D. M. Hercules, Anal. Chem. 44, 2143 (1972).CrossRefGoogle Scholar
  19. 19.
    J. E. McKee and H. W. Wolf, Water Quality Criteria, 2nd ed. (California State Water Quality Board, Pub. No. 3A, 1963).Google Scholar
  20. 20.
    J. Shapiro, Limnol. Oceanogr. 11, 293 (1966).CrossRefGoogle Scholar
  21. 21.
    M. M. Ghosh, J. T. O’Connor, and R. S. Englebrecht. J. Amer. Water Works Assoc. 59, 897 (1967).Google Scholar
  22. 22.
    J. W. McMahon, Water Res. 3, 743 (1969).CrossRefGoogle Scholar
  23. 23.
    C. P. Fenimore and G. W. Jones, Combust. Flame 8, 133 (1964).CrossRefGoogle Scholar
  24. 24.
    R. M. Dagnall, K. C. Thompson, and T. S. West, Analyst 93, 72 (1968).CrossRefGoogle Scholar
  25. 25.
    M. Beroza and M. C. Bowman, Environ. Sci. Technol. 2, 450 (1968).CrossRefGoogle Scholar
  26. 26.
    H. W. Grice, M. L. Yates, and D. J. David, J. Chrom. Sci. 8, 90 (1970).Google Scholar
  27. 27.
    A. Syty, Anal. Lett. 4, 531 (1971).CrossRefGoogle Scholar
  28. 28.
    M. J. Prager and W. R. Seitz, Anal. Chem. 47, 148 (1975).CrossRefGoogle Scholar
  29. 29.
    K. M. Aldous, R. M. Dagnall, and T. S. West, Analyst 95, 417 (1970).CrossRefGoogle Scholar
  30. 30.
    G. L. Everett, T. S. West, and R. W. Williams, Anal Chim. Acta 68, 387 (1974).CrossRefGoogle Scholar
  31. 31.
    D. R. Campbell, University of Georgia (unpublished study).Google Scholar
  32. 32.
    D. Bostick and D. M. Hercules, Anal. Lett. 7, 347 (1974).CrossRefGoogle Scholar
  33. 33.
    J. P. Auses, S. L. Cook, and J. T. Maloy, Anal. Chem. 47, 244 (1975).CrossRefGoogle Scholar
  34. 34.
    R. L. Bowman and N. Alexander, Science 154, 1454 (1966).CrossRefGoogle Scholar
  35. 35.
    M. M. Rauhut, B. G. Roberts, and A. M. Semsel, J. Amer. Chem. Soc. 88, 3604 (1966).CrossRefGoogle Scholar
  36. 36.
    A. U. Khan and M. Kasha, J. Amer. Chem. Soc. 92, 3293 (1970).CrossRefGoogle Scholar
  37. 37.
    A. Hartkopf and R. DeLumyea, Anal. Lett. 7, 79 (1974).CrossRefGoogle Scholar
  38. 38.
    M. P. Neary, W. R. Seitz, and D. M. Hercules, Anal. Lett. 7, 583 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • W. Rudolf Seitz
    • 1
  1. 1.Department of ChemistryUniversity of GeorgiaAthensUSA

Personalised recommendations