Advertisement

Dye Lasers

Fundamentals and Analytical Applications
  • Howard W. Latz
Part of the Modern Analytical Chemistry book series (MOAC, volume 1)

Abstract

The invention of the ruby laser by Maiman(1) in 1960 introduced a new era in scientific research that remains unabated today. The early solid-state lasers based on fluorescence emission from metal ions in crystalline or glassy matrices were rapidly developed into practical devices useful in medicine and industry, which produced a public glamour as well as increased impetus in the search for new laser-active media. The first lasers were limited by the fact that they were based on transitions between well-defined atomic energy levels and thus limited to the corresponding emission wavelengths. The desire to obtain intense, monochromatic, coherent emission at other wavelengths in the visible region and other spectral regions led initially to the investigation of other atomic systems with different energy spacings and eventually to the continuous-wave (cw) helium-neon, argon, and CO2 gas lasers; the pulsed nitrogen laser; semiconductor lasers; and even chemical lasers based on the production of excited states by chemical reaction to initiate stimulated emission. In spite of this progress the situation in which a specific laser wavelength was required but was not available, e.g., spectroscopic applications, still existed.

Keywords

Laser Emission Nitrogen Laser Pump Radiation Output Mirror Pulse Nitrogen Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. H. Maiman, Nature 187, 493 (1960).CrossRefGoogle Scholar
  2. 2.
    J. P. Gordon, H. J. Zeiger, and C. H. Townes, Phys. Rev. 95, 431 (1954).CrossRefGoogle Scholar
  3. 3.
    A. L. Schawlow and C. H. Townes, Phys. Rev. 112, 1940 (1958).CrossRefGoogle Scholar
  4. 4.
    J. A. Giordmaine and R. C. Miller, Phys. Rev. Lett. 14, 973 (1965).CrossRefGoogle Scholar
  5. 5.
    P. P. Sorokin and J. R. Lankard, IBM J. Res. Develop. 10, 162 (1966).CrossRefGoogle Scholar
  6. 6.
    P. P. Sorokin, J. R. Lankard, E. C. Hammond, and V. L. Moruzzi, IBM J. Res. Develop. 11, 130 (1967).CrossRefGoogle Scholar
  7. 7.
    F. P. Schafer, W. Schmidt, and J. Volze, Appl. Phys. Lett. 9, 306 (1966).CrossRefGoogle Scholar
  8. 8.
    M. L. Spaeth and D. P. Bortfeld, Appl. Phys. Lett. 9, 179 (1966).CrossRefGoogle Scholar
  9. 9.
    P. P. Sorokin and J. R. Lankard, IBM J. Res. Develop. 11, 148 (1967).CrossRefGoogle Scholar
  10. 10.
    P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, and E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).CrossRefGoogle Scholar
  11. 11.
    J. Brinton, Electronics 42(25), 169(1969).Google Scholar
  12. 12.
    A. Schawlow, Sci. Amer. 204(6), 52 (1961).CrossRefGoogle Scholar
  13. 13.
    P. P. Sorokin, Sci. Amer. 220(2), 30 (1969).CrossRefGoogle Scholar
  14. 14.
    D. J. Morantz, B. C. White, and A. J. C. Wright, J. Chem. Phys. 37, 2041 (1962).CrossRefGoogle Scholar
  15. 15.
    F. Wilkinson and E. B. Smith, Nature 199, 691 (1963).CrossRefGoogle Scholar
  16. 16.
    A. Lempicki and H. Samelson, Appl. Phys. Lett. 2, 159 (1963).CrossRefGoogle Scholar
  17. 17.
    A. Lempicki and H. Samelson, Appl. Phys. Lett. 4, 133 (1963).Google Scholar
  18. 18.
    R. B. Green, Amer. Lab. 3(11), 47 (1971).Google Scholar
  19. 19.
    B. H. Soffer and B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).CrossRefGoogle Scholar
  20. 20.
    A. Lempicki and R. Pappalardo, Ind. Res. 13(5), 36 (1971).Google Scholar
  21. 21.
    A. Lempicki and H. Samelson, Sci. Amer. 216(6), 80 (1967).CrossRefGoogle Scholar
  22. 22.
    R. G. Smith, Anal. Chem. 41(10), 75A (1969).Google Scholar
  23. 23.
    J. L. Emmett, Phys. Today 24(3), 29 (1971).CrossRefGoogle Scholar
  24. 24.
    J. P. Webb, Anal. Chem. 44(6), 30A (1972).Google Scholar
  25. 25.
    G. H. C. New, Alta Freq. 42(10), 706, 334E (1972).Google Scholar
  26. 26.
    H. R. Schlossberg and P. L. Kelly, Phys. Today 25(7), 36 (1972).CrossRefGoogle Scholar
  27. 27.
    K. H. Drexhage, Laser Focus 9(3), 35 (1973).Google Scholar
  28. 28.
    R. A. Keller, Chemtech. 3(10), 626 (1973).Google Scholar
  29. 29.
    G. Magyar, Appl. Opt. 13, 25 (1974).CrossRefGoogle Scholar
  30. 30.
    D. Harrington and H. V. Malmstadt, Amer. Lab. 6(3), 33 (1974).Google Scholar
  31. 31.
    M. Nakashima and J. A. Sousa, Spectrosc. Lett. 7, 15 (1974).CrossRefGoogle Scholar
  32. 32.
    B. B. McFarland, Appl. Phys. Lett. 10, 208 (1967).CrossRefGoogle Scholar
  33. 33.
    H. W. Furomoto and H. L. Green, Appl. Opt. 8, 1613 (1969).CrossRefGoogle Scholar
  34. 34.
    B. B. Snavely, Proc. IEEE 57, 1374 (1969).CrossRefGoogle Scholar
  35. 35.
    B. B. Snavely and F. P. Schafer, Phys. Lett. 28A, 728 (1969).Google Scholar
  36. 36.
    O. G. Peterson, S. A. Tuccio, and B. B. Snavely, Appl. Phys. Lett. 17, 245 (1972).CrossRefGoogle Scholar
  37. 37.
    T. W. Hansch, A. L. Schawlow, and P. E. Toschek, IEEE J. Quantum Electron. QE-8, 802 (1972).CrossRefGoogle Scholar
  38. 38.
    C. Gabel and M. Hercher, IEEE J. Quantum Electron. QE-8, 850 (1972).CrossRefGoogle Scholar
  39. 39.
    J. A. Myer, C. L. Johnson, E. Kierstead, R. A. Sharma, and I. Itzkhan, Appl. Phys. Lett. 16, 3 (1970).CrossRefGoogle Scholar
  40. 40.
    H. P. Broida and S. C. Haydon, Appl. Phys. Lett. 16, 142 (1970).CrossRefGoogle Scholar
  41. 41.
    P. Schenck and H. Metcalf, Appl. Opt. 12, 183 (1973).CrossRefGoogle Scholar
  42. 42.
    G. Horlick and E. G. Codding, Anal. Chem. 46, 133 (1974).CrossRefGoogle Scholar
  43. 43.
    K. W. Busch, N. G. Howell, and G. H. Morrison, Anal. Chem. 46, 1231 (1974).CrossRefGoogle Scholar
  44. 44.
    T. G. Pavlopoulos, IEEE J. Quantum Electron. QE-9, 510 (1973).CrossRefGoogle Scholar
  45. 45.
    P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, and E. C. Hammond, IBM Research Paper, No. RC-150, November 30, 1967.Google Scholar
  46. 46.
    J. B. Marling, D. W. Gregg, and L. Wood, Appl. Phys. Lett. 17, 527 (1970).CrossRefGoogle Scholar
  47. 47.
    R. Pappalardo, H. Samelson, and A. Lempicki, Appl. Phys. Lett. 16, 267 (1970).CrossRefGoogle Scholar
  48. 48.
    B. I. Stepanov, Sov. Phys. Doklady 13, 933 (1969).Google Scholar
  49. 49.
    B. I. Stepanov and A. N. Rubinov, Sov. Phys. Uspekhi 11, 304 (1968).CrossRefGoogle Scholar
  50. 50.
    O. G. Peterson, W. C. McColgin, and J. H. Eberly, Phys. Lett. 29A, 399 (1969).Google Scholar
  51. 51.
    R. A. Keller, IEEE J. Quantum Electron. QE-6, 411 (1970).Google Scholar
  52. 52.
    J. P. Webb, W. C. McColgin, O. G. Peterson, D. L. Stockman, and J. H. Eberly, J. Chem. Phys. 53, 4227 (1970).CrossRefGoogle Scholar
  53. 53.
    O. G. Peterson, J. P. Webb, W. C. McColgin and J. H. Eberly, J. Appl. Phys. 42, 1917 (1971).CrossRefGoogle Scholar
  54. 54.
    J. T. Warden and L. Gough, Appl. Phys. Lett. 19, 345 (1971).CrossRefGoogle Scholar
  55. 55.
    H. W. Furomoto and H. L. Ceccon, IEEE J. Quantum Electron. QE-6, 262 (1970).CrossRefGoogle Scholar
  56. 56.
    Anal. Chem. Lab Guide 45, 154LG (1973).Google Scholar
  57. 57.
    W. J. Treytl, J. B. Orenberg, K. W. Marich, A. J. Saffir, and D. Glick, Anal. Chem. 44, 1903 (1972).CrossRefGoogle Scholar
  58. 58.
    S. G. Coloff and N. E. Vanderborgh, Anal. Chem. 45, 1507 (1973).CrossRefGoogle Scholar
  59. 59.
    J. Kuhl, G. Marowsky, and R. Torge, Anal. Chem. 44, 375 (1972).CrossRefGoogle Scholar
  60. 60.
    H. W. Furomoto and H. L. Ceccon, Appl. Phys. Lett. 13, 335 (1968).CrossRefGoogle Scholar
  61. 61.
    H. F. Wyles, Ph.D. dissertation (Ohio University, December 1973).Google Scholar
  62. 62.
    H. W. Latz, H. F. Wyles, and R. B. Green, Anal. Chem. 45, 2405 (1973).CrossRefGoogle Scholar
  63. 63.
    N. C. Peterson, M. J. Kurylo, W. Braun, A. M. Bass, and R. A. Keller, J. Opt. Soc. Amer. 49, 746 (1971).Google Scholar
  64. 64.
    R. A. Keller, E. F. Zalewski, and N. C. Peterson, J. Opt. Soc. Amer. 62, 319 (1972).CrossRefGoogle Scholar
  65. 65.
    R. J. Thrash, H. von Weyssenhoff, and J. S. Shirk, J. Chem. Phys. 55, 4659 (1971).CrossRefGoogle Scholar
  66. 66.
    R. B. Green and H. W. Latz, Spectrosc. Lett. 7, 419 (1974).CrossRefGoogle Scholar
  67. 67.
    R. Konjevic and N. Konjevic, Spectrosc. Lett. 6, 177 (1973).CrossRefGoogle Scholar
  68. 68.
    R. C. Spiker and J. S. Shirk, Anal. Chem. 46, 572 (1974).CrossRefGoogle Scholar
  69. 69.
    R. A. Keller, J. D. Simmons, and D. A. Jennings, J. Opt. Soc. Amer. 63, 1552 (1973).CrossRefGoogle Scholar
  70. 70.
    G. H. Atkinson, A. H. Laufer, and M. J. Kurylo, J. Chem. Phys. 59, 350 (1973).CrossRefGoogle Scholar
  71. 71.
    M. B. Denton and H. V. Malmstadt, Appl. Phys. Lett. 18, 485 (1975).CrossRefGoogle Scholar
  72. 72.
    L. M. Fraser and J. D. Winefordner, Anal. Chem. 43, 1693 (1971).CrossRefGoogle Scholar
  73. 73.
    L. M. Fraser and J. D. Winefordner, Anal. Chem. 44, 1444 (1972).CrossRefGoogle Scholar
  74. 74.
    N. Omenetto, N. N. Hatch, L. M. Fraser, and J. D. Winefordner, Spectrochim. Acta. 28B, 65 (1972).Google Scholar
  75. 75.
    N. Omenetto, L. M. Fraser, and J. D. Winefordner, Appl. Spectrosc. Rev. 7, 147 (1973).CrossRefGoogle Scholar
  76. 76.
    N. Omenetto, P. Benetti, L. P. Hart, J. D. Winefordner, and C. T. J. Alkemade, Spectrochim. Acta 28B, 289 (1973).Google Scholar
  77. 77.
    N. Omenetto, L. P. Hart, P. Benetti, and J. D. Winefordner, Spectrochim. Acta 28B, 301 (1973).Google Scholar
  78. 78.
    M. I. Bell and R. N. Tyte, Appl. Opt. 13, 1610 (1974).CrossRefGoogle Scholar
  79. 79.
    R. M. Wilson and T. L. Miller, Anal. Chem. 47, 256 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Howard W. Latz
    • 1
  1. 1.Department of Chemistry, Clippinger Graduate Research LaboratoriesOhio UniversityAthensUSA

Personalised recommendations