Modulation and Derivative Techniques in Luminescence Spectroscopy

Approaches to Increased Analytical Selectivity
  • Thomas C. O’Haver
Part of the Modern Analytical Chemistry book series (MOAC, volume 1)


The major advantages of fluorometry as a quantitative analytical technique are generally recognized to be its high sensitivity and, to a lesser extent, its selectivity. For many fluorescent molecules the detection limits by fluorometry are at least two orders of magnitude less than those by absorption spectrophotometry. In some cases the selectivity of fluorometry may also be superior because of the more restricted scope of fluorescence (i.e., not all absorbing molecules fluoresce) and because of the ability of the analyst to select two wavelengths (excitation and emission) for the measurement of the fluorescing species.


American Chemical Society Wavelength Modulation Selective Excitation Selective Modulation Derivative Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. J. Hammond and W. C. Price, J. Opt. Soc. Amer. 43, 924 (1953).CrossRefGoogle Scholar
  2. 2.
    J. D. Morrison, J. Chem. Phys. 21(10), 1767 (1953).CrossRefGoogle Scholar
  3. 3.
    C. S. French, A. B. Church, and R. W. Eppley, Carnegie Inst. of Washington Year Book 53, 182 (1954).Google Scholar
  4. 4.
    A. T. Giese and C. S. French, Appl. Spectrosc. 9, 78 (1955).CrossRefGoogle Scholar
  5. 5.
    J. M. Vandenbelt and C. Henrich, Appl. Spectrosc. 7, 171 (1953).CrossRefGoogle Scholar
  6. 6.
    G. L. Collierand F. Singleton, J. Appl. Chem. 6, 495 (1956).Google Scholar
  7. 7.
    G. L. Collier and A. C. M. Panting, Spectrochim. Acta 14, 104 (1959).CrossRefGoogle Scholar
  8. 8.
    A. E. Martin, Nature 180, 231 (1957).CrossRefGoogle Scholar
  9. 9.
    J. P. Walters and H. V. Malmstadt, Appl Spectrosc. 20(3), 193 (1966).CrossRefGoogle Scholar
  10. 10.
    W. L. Butler, Arch. Biochem. Biophys. 93, 413 (1961).CrossRefGoogle Scholar
  11. 11.
    T. Shiga, K. Shiga, and M. Kuroda, Anal. Biochem. 44, 291 (1971).CrossRefGoogle Scholar
  12. 12.
    A. Perregaux and G. Ascarelli, Appl. Opt. 7, 2031 (1968).CrossRefGoogle Scholar
  13. 13.
    G. Bonfiglioli and P. Brovetto, Appl. Opt. 3, 1417 (1964).CrossRefGoogle Scholar
  14. 14.
    E. Gunders and B. Kaplan, J. Opt. Soc. Amer. 55, 1094 (1965).CrossRefGoogle Scholar
  15. 15.
    T. C. O’Haver, J. Chem. Educ. 49, A131, A211 (1972).CrossRefGoogle Scholar
  16. 16.
    J. D. Winefordner, S. G. Schulman, and T. C. O’Haver, Luminescence Spectroscopy in Analytical Chemistry (Wiley-Interscience, New York, 1972).Google Scholar
  17. 17.
    G. L. Green and T. C. O’Haver, Anal. Chem. 46, 2191 (1974).CrossRefGoogle Scholar
  18. 18.
    T. J. Porro, Anal. Chem. 44(4), 93A (1972).Google Scholar
  19. 19.
    R. N. Hager, Jr., Anal. Chem. 45, 1131A (1973).Google Scholar
  20. 20.
    T. C. O’Haver and G. L. Green, “Numerical Error Analysis of Derivative Spectroscopy for the Quantitative Analysis of Mixtures”, Anal. Chem., in press.Google Scholar
  21. 21.
    T. C. O’Haver and W. M. Parks, Anal. Chem. 46, 1886 (1974).CrossRefGoogle Scholar
  22. 22.
    T. C. O’Haver, G. L. Green, and B. R. Keppler, Chem. Instrumentation 4, 197 (1973).CrossRefGoogle Scholar
  23. 23.
    M. Zander, Angew. Chem., Int. Ed. 4, 930 (1965).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Thomas C. O’Haver
    • 1
  1. 1.Department of ChemistryUniversity of MarylandCollege ParkUSA

Personalised recommendations