Digital and Analog Measurements in Fluorescence Spectroscopy

  • J. M. Fitzgerald
Part of the Modern Analytical Chemistry book series (MOAC, volume 1)


It seems fairly clear that the next decade will see increasing application of new electronic signal processors to improve measurements in fluorescence spectroscopy. Some advances will undoubtedly occur in optics and excitation sources, but these will be overshadowed by electronic “tricks” which abstract improved signals from the inevitable background and noise associated with luminescence experiments. Just as inexpensive replica gratings revolutionized the cost and performance of monochromators, large-scale integrated circuits (LSI’s) are presently having significant economic and scientific impact on fluorescence readout devices. These LSI’s also allow the fluorescence experimentalist to revert to “black-box” electronics in many cases; it is no longer necessary, nor even feasible, to study and understand every diode and resistor in an LSI. The input and output specifications of the devices are sufficient. This chapter will be devoted to surveying recent published examples of the impact of new electronic methodology on luminescence signal processing.


Analog Signal Analog Measurement Pyroelectric Detector Digital Integration Excitation Monochromator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. V. Malmstadt, C. G. Enke, and S. R. Crouch, Electronic Measurements for Scientists (W. A. Benjamin, Inc., Menlo Park, Calif., 1974).Google Scholar
  2. 2.
    A. J. Diefenderfer, Principles of Electronic Instrumentation (W. B. Saunders Co., Philadelphia, 1972).Google Scholar
  3. 3.
    B. H. Vassos, and G. W. Ewing, Analog and Digital Electronics for Scientists (Wiley-Interscience, Inc., New York, 1973).Google Scholar
  4. 4.
    S. P. Perone and D. O. Jones, Digital Computers in Scientific Instrumentation (McGraw-Hill Book Co., New York, 1973).Google Scholar
  5. 5.
    H. A. Strobel, Chemical Instrumentation, 2nd ed. (Addison-Wesley Co., Reading, Mass., 1973).Google Scholar
  6. 6.
    C. K. Mann, T. J. Vickers, and W. M. Gulick, Instrumental Analysis (Harper & Row, New York 1974).Google Scholar
  7. 7.
    R. E. Dessy, P. J. Van Vuuren, and J. A. Titus, Anal. Chem. 46, 917A, 1055A (1974).CrossRefGoogle Scholar
  8. 8.
    R. A. Parker and H. L. Pardue, Anal. Chem. 44, 1622 (1972).CrossRefGoogle Scholar
  9. 9.
    K. F. Daly, American Laboratory 6(12), 38 (1974).Google Scholar
  10. 10.
    Aminco Laboratory News 30(2), 3 (1974) (American Instrument Co., 8030 Georgia Ave., Silver Spring, Md. 20910).Google Scholar
  11. 11.
    C. G. Enke, Anal. Chem. 43(1), 69A (1971).Google Scholar
  12. 12.
    H. V. Malmstadt, M. L. Franklin, and G. Horlick, Anal. Chem. 44(8), 63A (1972).Google Scholar
  13. 13.
    R. J. Lukasiewicz and J. M. Fitzgerald, Anal. Chem. 45, 511 (1973).CrossRefGoogle Scholar
  14. 14.
    R. J. Lukasiewicz and J. M. Fitzgerald, Appl. Spectrosc. 28, 151 (1974).CrossRefGoogle Scholar
  15. 15.
    P. C. Kelly and G. Horlick, Anal. Chem. 45, 518 (1973).CrossRefGoogle Scholar
  16. 16.
    J. Patenaude, K. Bibl, and B. W. Reinisch, American Laboratory 5(9), 95 (1973).Google Scholar
  17. 17.
    G. G. Guilbault, Practical Fluorescence: Theory, Methods and Techniques (Marcel Dekker, Inc., New York, 1973), pp. 15–17, 145–146, and 149–158.Google Scholar
  18. 18.
    J. F. Holland, R. E. Teets, and A. Timnick, Anal. Chem. 45, 145 (1973).CrossRefGoogle Scholar
  19. 19.
    I. Landa and J. C. Kremen, Anal. Chem. 46, 1694 (1974).CrossRefGoogle Scholar
  20. 20.
    D. W. Ellis, in Fluorescence and Phosphorescence Analysis, D. M. Hercules, ed. (Wiley-Interscience, New York, 1966), pp. 41–79.Google Scholar
  21. 21.
    J. Yguerabide, Rev. Sci. Instrum. 39, 7 (1968).CrossRefGoogle Scholar
  22. 22.
    L. S. Casper, Spex Industries, Inc., 3880 Park Ave., Metuchen, N.J. 08840 (private communication). (Fluorolog and Fluorocomp devices.)Google Scholar
  23. 23.
    M. K. Murphy, S. A. Clyburn, and C. Veillon, Anal. Chem. 45, 1468 (1973).CrossRefGoogle Scholar
  24. 24.
    G. M. Hieftje, Anal. Chem. 46(6), 81A (1972);Google Scholar
  25. 24a.
    G. M. Hieftje, Anal. Chem. 46(7), 69A (1972).Google Scholar
  26. 25.
    J. J. Aaron, J. E. Villafranca, V. R. White, and J. M. Fitzgerald, “A Quantitative Photo-chemical-Fluorimetric Method for Measurement of Non-Fluorescent Vitamin KI,” Appl. Spectrosc, 30(2), in press (1976).Google Scholar
  27. 26.
    Lab-Line ATP Photometer, Lab-Line Instruments, Inc., Melrose Park, Ill. 60160.Google Scholar
  28. 27.
    A. Weissler, Anal. Chem. 46, 500R (1974); and subsequent biannual reviews.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • J. M. Fitzgerald
    • 1
  1. 1.Department of ChemistryUniversity of HoustonHoustonUSA

Personalised recommendations