The Use of Microwaves for the Hyperthermic Treatment of Cancer: Advantages and Disadvantages

  • George M. Hahn

Abstract

Currently there is a renewed interest in the use of hyperthermia as a treatment modality in the management of malignant disease. This interest is based on old, anecdotal data, as well as on recent quantitative investigations (reviews: Dietzel, 1975; Thrall et al., 1976; Har-Kedar and Bleehen, 1976; Bronk, 1976; Gerner et al., 1975). The mode of cell killing by hyperthermia is not well understood. Thermodynamic considerations suggest that protein molecules are at risk, and some authors have focused on chromosomal proteins (review: Dewey, 1977). Other evidence implicates RNA synthesis (Mondovi et al., 1969) or membranes (Bowler et al., 1973; Hahn et al., 1975). Survival curves of mammalian cells exposed to elevated (> 42°C) temperatures for variable lengths of time resemble curves for cells exposed to ionizing radiations, i.e., a shoulder at short exposure times followed then by an exponential part at longer exposure times.

Keywords

Convection Lymphoma Attenuation Iodine Radar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, B. D., and Norman, R. L., 1974, Hyperthermia and cancerous tissue water structure, Cancer Chemotherapy Reports 58(3):296–298.Google Scholar
  2. Andrea, J. A. d’., Gandhi, O. P., and Kesner, R. P., 1976, Behavioral effects of resonant electromagnetic power absorption in rats, in: Biological Effects of Electromagnetic Waves, Vol. 1 (C. C. Johnson and M. L. Shore, eds.), pp. 257–273, U.S. Dept. of Health, Education, and Welfare, Bureau of Radiological Health, Rockville, Maryland.Google Scholar
  3. Aurell, E., and Tengroth, B., 1973, Lenticular and retinal changes secondary to microwave exposure, Acta Opthalmologica 15:764–771.Google Scholar
  4. Baranski, S., 1971, Effect of chronic microwave irradiation on the blood forming system of guinea pigs and rabbits, Aerospace Med. 42:1196–1199.Google Scholar
  5. Baranski, S., 1972, Histological and histochemical effect of microwave irradiation on the central nervous system of rabbits and guinea pigs, Amer. J. of Phys. Med. 51(4):182–191.Google Scholar
  6. Bierman, H. R., Byron, R. L., Jr., Kelly, K. H., and Grady, A., 1951a, Studies on the blood supply of tumors in man. III. Vascular patterns of liver by hepatic arteriography in vivo, J. Nat. Cancer Inst. 12:107–132.Google Scholar
  7. Bierman, H. R., Kelly, K. H., Dod, K. S., and Byron, R. J., Jr., 1951b, Studies on the blood supply of tumors in man. I. Fluorescence of cutaneous lesions, J. Nat. Cancer Inst. 11:877–889.Google Scholar
  8. Birenbaum, L., Grosof, G. M., Rosenthal, S. W., and Zaret, M. M., 1969, Effect of microwaves on the eye, IEEE Trans. Biomed. Engin. 16:7–14.Google Scholar
  9. Blackman, C. F., Benane, S. G., Weil, C. M., and Ali, J. S., 1975, Effects of non-ionizing electromagnetic radiation on single cell biologic systems, in: Biologic Ejfects oj Non-ionizing Radiation (P. E. Tyler, ed.), Ann. N.Y. Acad. Sci. 247:352–366.Google Scholar
  10. Borek, C., and Sachs, L., 1967, Cell susceptibility to transformation by X-irradiation and fixation of the transformed state, Proc. Natl. Acad. Sci. USA 57:1522–1527.Google Scholar
  11. Bowler, K., Duncan, C. J., Gladwell, R. T., and Davison, T. F., 1973, Cellular heat injury, Comp. Biochem. Physiol. 45A:441–450.Google Scholar
  12. Bronk, B. V., 1976, Thermal potentiation of mammalian cell killing: Clues for understanding and potential for tumor therapy, Adv. Radiat. Biol. 6:267–324.Google Scholar
  13. Capon, A., 1970, Utilisation d’une méthode à thermodiffusion pour l’évaluation du débit sanguin dans les tumeurs cérébrales, Acta Clinica Belgica 25:174–178.Google Scholar
  14. Carpenter, R. L., 1970, Experimental microwave cataracts: A review, in: Biological Effects and Health Implications oj Microwave Radiation (S. F. Cleary, ed.), pp. 76–82, U.S. Dept. of Health, Education and Welfare, Technical Report, BRH, DBE, 70–2, Richmond, Virginia.Google Scholar
  15. Carpenter, R. L., Biddle, D. K., and Van Ummersen, C. A., 1960, Opacities in the lens of the eye experimentally induced by exposure to microwave radiation, IRE Trans., Medical Electronics, 7: 152–157.Google Scholar
  16. Cater, D. B., Silver, I. A., Watkinson, D. A., 1964, Combined therapy with 220 kv roentgen and 10 cm microwave heating in rat hepatoma, Acta. Radiol. Ther. Phys. Biol. 2:321–336.Google Scholar
  17. Cetas, T. C., 1975, Temperature measurement in microwave diathermy fields: Principles and probes, in: Proceedings of the International Symposium on Cancer Therapy by Hyperthermia and Radiation (J. E. Robinson and M.J. Wizenberg, eds.), pp. 193–203, National Cancer Institute and the American College of Radiology, Washington, D.C.Google Scholar
  18. Chaughule, R. S., Kasturi, S. R., and Vijayarghavan, R., 1974, Normal and malignant tissues: An investigation by pulsed nuclear resonance, Ind. J. Biochem. Biophys. 11(3):256–258.Google Scholar
  19. Chen, K. M., Samuel, A., and Hoopingarner, R., 1974, Chromosomal aberrations of living cells induced by microwave radiation, Environmental Letters 6(1):37–46.Google Scholar
  20. Cleary, S. F., and Wangemann, B. T., 1975, Effect of microwave radiation on pentobarbital-induced sleeping time, in: Biological Effects oj Electromagnetic Waves, Vol. 1 (C. C. Johnson and M. L. Shore, eds.), pp. 311–322, U.S. Dept. of Health, Education and Welfare, Bureau of Radiological Health, rockville, Maryland.Google Scholar
  21. Connor, W. C., Gerner, E. W., Miller, R. C., and Boone, M. L. M., 1977, Prospects for hyperthermia in human cancer therapy. Part II. Implications of biological and physical data for applications of hyperthermia to man, Radiology 123:497–503.Google Scholar
  22. Cronquist, S., Ingvar, D. H., and Lassen, N. A., 1966, Quantitative measures of regional cerebral blood flow related to neuroradiological findings, Acta Radiologica (Diagnosis) 5(2):760–766.Google Scholar
  23. Czerski, P., 1975a, Experimental models for the evaluation of microwave biological effects, Proc. IEEE 63(11):1540–1544.Google Scholar
  24. Czerski, P., 1975, Microwave effects on the blood-forming system with particular reference to the lymphocyte, in: Biologic Effects oj Non-ionizing Radiation (P. E. Tyler, ed.), Ann. N.Y. Acad. Sci. 247:232–242.Google Scholar
  25. Czerski, P., Poprocka-Stonka, E., Siekierzyňski, M., and Stolarska, A., 1974, Influence of microwave radiation on the hemotopoietic function, in: Biological Effects and Health Hazards of Microwave Radiation (P. Czerski, K. Ostrowski, M. L. Shore, Ch. Silverman, M. J. Suess, B. Waldeskog, and E. Shalmon, eds.), pp. 67–74, Polish Medical Publishers, Warsaw.Google Scholar
  26. Daily, L., Wakim, K. G., Herrick, J. G., and Parkhill, E. M., 1948, Effects of microwave diathermy on the eye, Am. J. Physiol. 155:432.Google Scholar
  27. Damadian, R., 1971, Tumor detection by nuclear magnetic resonance, Science 171:1151–1153.Google Scholar
  28. Damir, Ye. A., Gulyayev, G. V., Kalantarov, K. D., Aksel’rod, A. Yu., Yevdokimov, Ye. A., Tsipis, A. E., and Zhanabayev, K. Zh., 1972, Clinical investigation of microcirculation using radioactive xenon (preliminary report), Vestnik Akademii Meditsinskikh Nauk (USSR) 8:26–30.Google Scholar
  29. Deichmann, W. B., Bemal, E., Stephens, F., and Landeen, K., 1963, Effects on dogs of chronic exposure to microwave radiation,J. Occup. Med. 5:418–425.Google Scholar
  30. Dewey, W. C., Hopwood, L. E., Sapareto, S. A., Gerweck, L. E., 1977, Cellular responses to combinations of hyperthermia and radiation, Radiology 123:463–474.Google Scholar
  31. Dietzel, F., 1975, Tumor und Temperatur, Urban and Schwarzenberg, Munchen-Berlin-Wien.Google Scholar
  32. Dietzel, F., Kern, W., Barth, G., and Sieg, T., 1971, Zur Frage der Tumorheilung durch alleinige hochfrequent Hyperthermie (Dezimeterwellen)-Tierexperimentelle Untersuchungen, Biomed. Technik. 16:213–220.Google Scholar
  33. Dos Santos, R., 1950, Arteriography in bone tumors, J. Bone and Joint Surg. 32B: 17–29.Google Scholar
  34. Doss, J. D., 1975, Use of RF fields to produce hyperthermia in animal tumors, in: Proceedings of the International Symposium on Cancer Therapy by Hyperthermia and Radiation (J. E. Robinson and M. J. Wizenberg, eds.), pp. 226–228, National Cancer Institute and the American College of Radiology, Washington, D.C.Google Scholar
  35. Doury, P., Boisselier, P., and Bernard, J. G., 1970, Pathological effects on man of the UHF electromagnetic radiation of aircraft radar: Concerning an observation, Sem. Hop., Paris 46:2681–2683.Google Scholar
  36. Falk, V., Forkman, B., and Lindell, S. E., 1967, Xenon133 clearance as a measure of blood flow through the human myometrium, in: Seventh International Symposium on Radioactive Isotopes in Clinical Medicine, Strahlentherapie 65:162–165.Google Scholar
  37. Forssman, L., 1976, Distribution of blood flow in myomatous uteri as measured by locally injected 133xenon, Acta Obstet. Gynecol. Scand. 55:101–104.Google Scholar
  38. Frey, A. J., Feld, S. R., and Frey, S., 1975, Neural function and behavior: Defining the relationship, Ann. N.Y. Acad. Sci. 247:433–439.Google Scholar
  39. Gandhi, O. P., 1974, Polarization and frequency effects on whole animal absorption of RF energy, Proc. IEEE 62:1171–1175.Google Scholar
  40. Gandhi, O. P., 1975, Conditions of strongest electromagnetic power deposition in man and animals, IEEE Trans. MTT, 23:1021–1029.Google Scholar
  41. Gandhi, O. P., Sedigh, K., Beck, G. S., and Hunt, E. L., 1976, Distribution of electromagnetic energy deposition in models of man with frequencies near resonance, in: Biological Ejfects of Electromagnetic Waves, Vol. 2 (C. C. Johnson and M. L. Shore, eds.), pp. 44–67, U.S. Dept. of Health, Education and Welfare, Bureau of Radiological Health, Rockville, Maryland.Google Scholar
  42. Gelin, L. E., Lewis, D. H., and Nilsson, L., 1968a, Liver blood flow in man during abdominal surgery. I. Description of a method utilizing intrahepatic injections of radioactive xenon [133Xe]. Normal values and effect of temporary occlusion, Acta Hepato-splenologica 15:13–20.Google Scholar
  43. Gelin, L. E., Lewis, D. H., and Nilsson, L., 1968b, Liver blood flow in man during abdominal surgery. II. The effect of the hepatic artery occlusion on the blood flow through metastatic tumor nodules, Acta Hepato-splenologica 15:21–24.Google Scholar
  44. Gerner, E. W., Connor, W. G., Boone, M. L. M., Doss, J. D., Mayer, E. G., and Miller, R. C., 1975, The potential of localized heating as an adjunct to radiation therapy, Radjology 116:433–439.Google Scholar
  45. Gerweck, L. F., and Rottinger, I., 1976, Enhancement of mammalian cell sensitivity to hyperthermia by pH alteration, Radiat. Res. 67:508–511.Google Scholar
  46. Giovanella, B. C., Lohman, W. A., and Heidelberger, C., 1970, Effects of elevated temperatures and drugs on the viability of L1210 leukemia cells, Cancer Res. 30:1623–1631.Google Scholar
  47. Giovanella, B. C., Morgan, A. C., Stehlin, J. S., and Williams, L. J., 1973, Selective lethal effect of supranormal temperature on mouse sarcoma cells, Cancer Res. 33:2568–2578.Google Scholar
  48. Glaser, Z. R., 1971–1976, “Supplement to Bibliography of Reported Biological Phenomena (‘Effects’) and Clinical Manifestation Attributed to Microwave and Radiofrequency Radiation,” 7th Supplement, EMR Project Office, Naval Medical Research and Development Command: (NMRDC Rept. No. 3); 6th Supplement, 1975 (AD#A015–622); 5th Supplement, 1973 (AD#770–621); 3rd Supplement, 1972 (AD#750–271), and 2nd Supplement, 1971; Original report, 1971 (AD#734–391).Google Scholar
  49. Goldacre, R. J., and Sylven, B., 1962, On the access of blood-borne dyes to various tumor regions, Brit. J. Cancer 16:306–322.Google Scholar
  50. Gordon, Z. V., 1966, Biological effect of microwaves on occupational hygiene, Izdatelstvo Medicina (TT70–50087, NASA TT, F-633, 1970), Leningrad.Google Scholar
  51. Gordon, Z. V., Roscin, A. V., and Byckov, M. S., 1974, Main directions and results of research conducted in the USSR on the biologic effects of microwaves, in: Biologic Ejfects and Health Hazards of Microwave Radiation (P. Czerski, K. Ostrowski, M. L. Shore, Ch. Silverman, M. J. Suess, B. Waldeskog, and E. Shalmon, eds.), pp. 22–35, Polish Medical Publishers, Warsaw.Google Scholar
  52. Gorodetskaia, S. F., 1964, Vplyv SVCh-polia i konvektsiínoho tepla na estral’nyï ts kl u mysheï, Fiziol. Zh. Akad. Nauk (USSR) 10:494–500.Google Scholar
  53. Gunn, S. A., Gould, T. C., and Anderson, W. A. D., 1961, The effect of microwave radiation (24,000 me) on the male endocrine system of the rat, in: Biological Effects of Microwave Radiation, Vol. 1 (M. F. Peyton, ed.), pp. 99–115, Plenum Press, New York.Google Scholar
  54. Hahn, G. M., 1974, Metabolic aspects of the role of hyperthermia in mammalian cell inactiva-tion and their possible relevance to cancer treatment, Cancer Res. 34:3117–3123.Google Scholar
  55. Hahn, G. M., 1977, Interactions of drugs and hyperthermia in vitro and in vivo, in: Proceedings of the 2nd International Symposium on Hyperthermia and Radiation, Strahlentherapie (in press).Google Scholar
  56. Hahn, G. M., and Pounds, D., 1976, Heat treatment of solid tumors: Why and how, Applied Radiology (Sept.-Oct. 1976), pp. 131–134, 144.Google Scholar
  57. Hahn, G. M., Braun, J., and Har-Kedar, I., 1975, Thermochemotherapy: Synergism between hyperthermia (42–43°) and adriamycin (or bleomycin) in mammalian cell inactivation, Proc. Nat Acad. Sci. USA 72(3):937–940.Google Scholar
  58. Har-Kedar, I., and Bleehen, N. M., 1976, Experimental and clinical aspects of hyperthermia applied to the treatment of cancer with special reference to the role of ultrasonic and microwave heating, Adv. Radiat. Biol. 6:229–266.Google Scholar
  59. Healer, J., 1969, Review of studies of people occupationally exposed to radiofrequency radiation, in: Biological Effects and Health Implications of Microwave Radiation (S. F. Cleary, ed.), pp. 90–97, U.S. Dept. of Health, Education and Welfare, Technical Report, BRH, DBE, 70–2, Richmond, Virginia.Google Scholar
  60. Heller, S. H., 1969, Cellular effects of microwave radiation, in: Biological Efjects and Health Implications oj Microwave Radiation (S. F. Cleary, ed.), pp. 116–124, U.S. Dept. of Health, Education and Welfare, Technical Report, BRH, DBE, 70–2, Richmond, Virginia.Google Scholar
  61. Holt, J. A. G., 1974, The cure of cancer: A preliminary hypothesis, Australasian Radiology 18(1):15–16.Google Scholar
  62. Holt, J. A. G., 1977, Increase in X-ray sensitivity of cancer after exposure to 434 MHz electromagnetic radiation, in: International Microwave Symposium Digest (E. R. Silverstein, ed.), pp. 259–262, IEEE Cat. No. 77CH1219–5MTT.Google Scholar
  63. Horvath, J., 1944, Ultraschallwirkung beim menschlichen Sarkom, Strahlentherapie 75:119–125.Google Scholar
  64. Imig, C. J., and Searle, G. W., 1958, Review of the work conducted at the State University of Iowa, in: Proceedings oj the Second Tri-service Conference of Biological Ejfects oj Microwave Energy (E. G. Pattishall and F. W. Banghart, eds.), pp. 242–253, Division of Educational Research, University of Virginia, Charlottesville.Google Scholar
  65. Jaffe, M. E., McHenry, L. C., Jr., and Goldberg, H. I., 1970, Regional blood flow measurement with small probes. II. Application of the method, Neurology 20:225–237.Google Scholar
  66. Janes, D. E., Leach, W. M., Mills, W. A., Moore, R. T., and Shore, M. L., 1969, Effects of 2450 MHz microwaves on protein synthesis and on chromosomes in Chinese hamsters, Nonionizing Radiation 1:125–130.Google Scholar
  67. Jansson, I., 1966, Personal communication as cited by Nyström, C., Forssman, L., and Roos, B., Myometrial blood flow studies in carcinoma of the corpus uteri, Acta Radio-logica (Therapy) 8:193–198 [1969].Google Scholar
  68. Johnson, C. C., and Guy, A. W., 1972, Non-ionizing electromagnetic wave effects in biological materials and systems, Proc. IEEE 60(6):692–718.Google Scholar
  69. Johnson, H. A., and Pavelec, M., 1973, Thermal enhancement of Thio-TEPA cytotoxicity, J. Natl. Cancer Inst. 50:903–908.Google Scholar
  70. Kase, K., and Hahn, G. M., 1975, Differential heat response of normal and transformed human cells in tissue culture, Nature 255:228–230.Google Scholar
  71. Kety, S. S., 1951, Theory and application of the exchange of inert gas at the lungs and tissues, Pharmacol. Rev. 3:1–41.Google Scholar
  72. Kramer, P., Harris, C., Guy, A. W., and Emery, A., 1975, Mechanism of microwave cataractogenesis in rabbits, in: Biological Effects of Electromagnetic Waves, Vol. 1 (C. C. Johnson and M. L. Shore, eds.), pp. 49–61, U.S. Dept. of Health, Education and Welfare, Bureau of Radiological Health, Rockville, Maryland.Google Scholar
  73. Lancranjan, I., 1975, Gonadic function in workmen with long-term exposure to microwaves, Health Physics 29(10):381–383.Google Scholar
  74. Lassen, N. A., and Trap-Jensen, J., 1968, Theoretical considerations on measurement of capillary diffusion capacity in skeletal muscle by the local clearance method, Scan. J. Clin. Lab. Invest. 21:108–115.Google Scholar
  75. Lassen, N. A., Lindbjerg, J., and Munck, O., 1964, Measurement of blood flow through skeletal muscle by intramuscular injection of xenon133, Lancet 1:686–689.Google Scholar
  76. Lele, P. P., 1975, Thermal factors in ultrasonic focal destruction in organized tissues, in: Fundamental and Applied Aspects of Non-ionizing Radiation (S. M. Michaelson, G. G. Berg, E. L. Carstensen, R. Magin, and M. W. Miller, eds), pp. 129–139, Plenum Press, New York.Google Scholar
  77. Le Veen, H. H., Wapnick, S., Piccone, V., Falk, G., and Ahmed, N., 1976, Tumor eradication by radiofrequency therapy: Response in 21 patients, J. Amer. Med. Assoc. 235:2188–2200.Google Scholar
  78. Li, G. C., Hahn, G. M., and Tolmach, L. J., 1977, Cellular inactivation by ultrasound, Nature 267:163–165.Google Scholar
  79. Mallard, J. R., and Kent, M., 1969, Electron spin resonance in biologic tissues, Phys. Med. Biol. 14(3):373–396.Google Scholar
  80. Mäntylä, M., Kuikka, J., and Rekonen, A., 1976, Regional blood flow in human tumours with special reference to the effect of radiotherapy, Brit. J. Radiol. 49:335–338.Google Scholar
  81. Marha, K., 1969, Maximum admissable values of HF and UHF electromagnetic radiation at work places in Czechoslovakia, in: Biological Effects and Health Implications of Microwave Radiation (S. F. Cleary, ed.), pp. 188–196, U.S. Dept. of Health, Education and Welfare, Technical Report, BRH, DBE, 70–2, Richmond, Virginia.Google Scholar
  82. Marmor, J. B., Hahn, N., and Hahn, G. M., 1977, Tumor cure and cell survival after localized radiofrequency heating, Cancer Res. 37:879–883.Google Scholar
  83. Mendecki, J., Friedenthal, E., and Botstein, C., 1976, Effects of microwave induced local hyperthermia on mammary adenocarcinoma in C3H mice, Cancer Res. 36:2113–2114.Google Scholar
  84. Michaelson, S. M., 1969, Biological effects of microwave exposure, in: Biological Effects and Health Implications oj Microwave Radiation (S. F. Cleary, ed.), pp. 35–58, U.S. Dept. of Health, Education and Welfare, Technical Report, BRH, DBE, 70–2, Richmond, Virginia.Google Scholar
  85. Michaelson, S. M., 1974, Thermal effects of single and repeated exposures to microwaves, in: Biological Effects and Health Hazards of Microwave Radiation (P. Czerski, K. Ostrowski, M. L. Shore, Ch. Silverman, M. J. Suess, B. Waldeskog, and E. Shalmon, eds.), pp. 1–14, Polish Medical Publishers, Warsaw.Google Scholar
  86. Michaelson, S. M., 1975, Biochemical and neuroendocrine aspects of exposure to microwaves, in: Biologic Effects of Non-ionizing Radiation (P. E. Tyler, ed.), Ann. N.Y. Acad. Sci. 247:21–45.Google Scholar
  87. Michaelson, S. M., Thomson, R. A. E., and Quinlon, W. J., 1967, Effects of electromagnetic radiation on physiological responses, Aerospace Med. 38:293–298.Google Scholar
  88. Michaelson, S. M., Howland, J. W., and Deichman, W. B., 1971, Response of dog to 24,000 and 1285 Hz microwave exposure, Ind. Med. Sur. 40(5): 18.Google Scholar
  89. Milroy, W. C., and Michaelson, S. M., 1972, Thyroid pathophysiology of microwave radiation, Aerospace Med. 43:1126–1131.Google Scholar
  90. Mondovi, B., Argo, G., Rotilio, G., Strom, R., Moricca, G., and Rossi-Fanelli, A., 1969, The biochemical mechanism of selective heat sensitivity of cancer cells. II. Studies on nucleic acids and protein synthesis, Europ. J. Cancer 5:137–146.Google Scholar
  91. Nelson, A. J. M., 1974, V.H.F. (very high frequency) radiation therapy: A preliminary report on Tornado S 101, Institute of Radiotherapy and Oncology, Shenton Park, Western Australia (presented at the 11th International Cancer Congress, Florence, Italy).Google Scholar
  92. Nyström, C., Forssman, L., and Roos, B., 1969, Myometrial blood flow studies in carcinoma of the corpus uteri, Acta Radiologica (Therapy) 8:193–198.Google Scholar
  93. Olesen, J., and Paulson, O. B., 1971, The effect of intra-arterial papaverine on the regional cerebral blood flow in patients with stroke or intracranial tumor, Stroke 2:148–159.Google Scholar
  94. Olmstead, E. C., 1966, Mammalian Cell Water, pp. 185–195, Lea and Febiger, Philadelphia.Google Scholar
  95. Overgaard, K., and Overgaard, J., 1972, Investigations on the possibility of a thermic tumor therapy. I. Short-wave treatment of a transplanted isologous mouse mammary carcinoma, Europ. J. Cancer 8:65–78.Google Scholar
  96. Overgaard, K., and Overgaard, J., 1975, Effect of environmental acidity on the hyperthermia treatment of tumour cells, IRCS Med. Sci. 3:386.Google Scholar
  97. Parker, L. N., 1973, Thyroid suppression and adrenomedullary activation by low intensity microwave radiation, Amer. J. Physiol. 224:1388–1390.Google Scholar
  98. Pettigrew, R. T., Galt, J. M., Ludgate, C. M., and Smith, A. N., 1974, Clinical effects of whole body hyperthermia in advanced malignancy, Brit. Med. J. 4:679–682.Google Scholar
  99. Portela, A., Llobera, O., Michaelson, S. M., Stewart, O. A., Perez, J. C., Guerro, A. H., Rodriguez, C. A., and Perez, R. J., 1975, Transient effects of low-level microwave irradiation on bioelectric and muscle cell properties and on water permeability and its distribution, in: Fundamental and Applied Aspects of Non-ionizing Radiation (S. M. Michaelson, G. G. Berg, E. L. Carstensen, R. Magin, and M. W. Miller, eds.), pp. 93–129, Plenum Press, New York.Google Scholar
  100. Richardson, A. W., Duane, T. D., and Hines, H. M., 1948, Experimental lenticular opacities produced by microwave irradiations, Arch. Phys. Med. 29:765–769.Google Scholar
  101. Robinson, J. E., Wizenberg, M. J., McCready, W. A., and Edelsack, E., 1974, Tumor response to a three-fraction regimen combining hyperthermia and X-irradiation, Radiat. Res. 59:185.Google Scholar
  102. Rotkovska, D., and Vacek, A., 1975, The effect of electromagnetic radiation on the hematopoietic stem cells of mice, in: Biologic Efjects of Non-ionizing Radiation (P. E. Tyler, ed.), Ann. N.Y. Acad. Sci. 247:243–250.Google Scholar
  103. Rugh, R., Ginns, E. I., Ho, H. S., and Leach, W. M., 1974, Are microwaves teratogenic?, in: Biological Efjects and Health Hazards of Microwave Radiation (P. Czerski, K. Ostrowski, M. L. Shore, Ch. Silverman, M. J. Suess, B. Waldeskog, and E. Shalmon, eds.), pp. 98–108, Polish Medical Publishers, Warsaw.Google Scholar
  104. Rugh, R., Ginns, E. I., Ho, H. S., and Leach, W. M., 1975, Responses of the mouse to microwave radiation during estrous cycle and pregnancy, Radiat. Res. 62:225–241.Google Scholar
  105. Schwan, H. P., 1969, Effects of microwave irradiation on tissue: A survey of basic mechanism, Non-ionizing Radiation 1:23–31.Google Scholar
  106. Schwan, H. P., 1972, Microwave radiation: Biophysical considerations and standards criteria, IEEE Trans. Biomed. 19:304–312.Google Scholar
  107. Shibata, H. R., and MacLean, L. D., 1965, Blood flow tumors, in: Progress in Clinical Cancer (I. M. Artel, ed.), P- 33, Grune and Stratton, New York.Google Scholar
  108. Shimkovich, I. S., and Shilyaev, V. G., 1959, Cataract of both eyes which developed as a result of repeated short exposures to an electromagnetic field of high density, Vestn. Oftalmol. (Moscow) 72:12–16.Google Scholar
  109. Skinhoj, E., 1965, Bilateral depression of CBF in unilateral cerebral diseases, Act. Neur. Sci. 41:161–163.Google Scholar
  110. Smielowicz, R. J., 1975, The effect of microwaves (2450 MHz) on lymphocyte blast formation in vitro, in: Biological Effects oj Electromagnetic Waves, Vol. 1 (C. C. Johnson and M. L. Shore, eds.), pp. 472–483, U.S. Dept. of Health, Education and Welfare, Bureau of Radiological Health, Rockville, Maryland.Google Scholar
  111. Stodolnik-Baranska, W., 1974, The effects of microwaves on human lymphocyte cultures, in: Biologic Effects and Health Hazards oj Microwave Radiation (P. Czerski, K. Ostrowski, M. L. Shore, Ch. Silverman, M. J. Suess, B. Waldeskog, and E. Shalmon, eds.), pp. 189–195, Polish Medical Publishers, Warsaw.Google Scholar
  112. Szmigielski, S., 1975, Effect of 10 cm (3 GHz) electromagnetic radiation on granulocytes in vitro, in: Biologic Effects oj Non-ionizing Radiation (P. E. Tyler, ed.), Ann. N.Y. Acad. Sci. 247:275–281.Google Scholar
  113. Szmigielski, S., Luczak, M., and Wiranowska, M., 1975a, Effect of microwaves on cell function and virus replication in cell cultures irradiated in vitro, in: Biologic Effects of Nonionizing Radiation (P. E. Tyler, ed.), Ann. N.Y. Acad. Sci. 247:263–274.Google Scholar
  114. Szmigielski, S., Luczak, M., and Wiranowska, M., 1975, Karyometric observations of WISH cell cultures irradiated with 3 GHz microwaves, Folia Histochemica et Cytochemica 13:151–160.Google Scholar
  115. Szmigielski, S., Luczak, M., Janiak, M., Kobus, M., Laskowska, B., DeClercq, E., and De Somer, P., 1977, In vitro and in vivo inhibition of virus multiplication by microwave hyperthermia, Archives of Virology 53:71–77.Google Scholar
  116. Thomlinson, R. H., and Gray, L. H., 1955, The histological structure of some human lung cancers and the possible implications for radiotherapy, Brit. J. Cancer 9:539–549.Google Scholar
  117. Thrall, D. E., Gerweck, L. E., Gillette, F. L., and Dewey, W. C., 1976, Responses of cells in vitro and tissues in vivo to hyperthermia and X-irradiation, Adv. Radiat. Biol. 6:211–227.Google Scholar
  118. Touloukian, R. J., Rickert, R. R., Lane, R. C., and Spencer, R. P., 1971, The microvascular circulation of lymphangiomas: A study of Xe133 clearance and pathology, Pediatrics 48:36–40.Google Scholar
  119. Varma, M. M., and Traboulay, E. A., 1975, Evaluation of dominant lethal test and DNA studies in measuring mutagenicity caused by non-ionizing radiation, in: Biological Effects of Electromagnetic Waves, Vol. 1 (C. C. Johnson and M. L. Shore, eds.), pp. 386–397, U.S. Dept. of Health, Education and Welfare, Bureau of Radiological Health, Rockville, Maryland.Google Scholar
  120. Von Ardenne, M., 1971, Theoretische und experimentelle Grundlagen der Krebs-Mehrschritt-Therapie, 2 Auflage, VEB Verlag Volk und Gesundheit, Berlin.Google Scholar
  121. Wachtel, H., Seaman, R., and Joines, W., 1975, The effects of low intensity microwaves on isolated neurons, in: Biologic Effects of Non-ionizing Radiation (P. E. Tyler, ed.), Ann. N.Y. Acad. Sci. 247:46–62.Google Scholar
  122. Woeber, K. H., 1965, The effect of ultrasound in the treatment of cancer, in: Ultrasonic Energy (E. Kelly, ed.), pp. 137–149, University of Chicago Press, Chicago.Google Scholar
  123. Woeber, K., and Stein, G., 1963, Ergebnisse bei Kombinierter Röntgenund Ultraschallbehandlung bösartiger Hauttumoren, Strahlentherapie 122:285–289.Google Scholar
  124. Zaret, M. M., 1964, An experimental study of the cataractogenic effects of microwave radiation, Rome Air Development Center Report (RADC-TDR) 64:273.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • George M. Hahn
    • 1
  1. 1.Department of RadiologyStanford University School of MedicineStanfordUSA

Personalised recommendations