Advertisement

Mapping the Three-Dimensional Structure of Proteins by Photochemical Techniques

  • Giulio Jori
  • John D. Spikes

Abstract

At present, the X-ray diffraction technique is undoubtedly the most powerful method for determining the three-dimensional structure of macro-molecules in the crystalline state. Indeed, no other available technique can provide the thousands of parameters necessary to permit a detailed structural description. For the study of molecules in solution, however, other methods must be used. Such studies are especially important in the case of biomolecules that typically perform their functions in an aqueous environment. Many kinds of chemical and physical techniques have been devised for studying the structure and function of macrobiomolecules in solution. Each technique has certain advantages coupled with particular disadvantages with respect to the kinds of structural information desired. Even though these methods have not been entirely satisfactory, much information has been accumulated using them.

Keywords

Aromatic Amino Acid Amino Acid Side Chain Flash Photolysis Nucleic Acid Basis Hydrated Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adeleke, B. B., and Wan, J. K. S., 1976, Chemically induced dynamic electron polarization. Part 8. Simultaneous operations of the radical-pair and photoexcited triplet mechanisms in the photolysis of substituted benzoquinone, naphthoquinone, and anthraquinone, J. Chem. Soc. Faraday Transactions I:1799–1808.Google Scholar
  2. Allison, A. C., Magnus, I. A., and Young, M. R., 1966, Role of lysosomes and of cell membranes in photosensitization, Nature 209:874–878.Google Scholar
  3. Ananthaswamy, H. N., and Eisenstark, A., 1976, Near-UV-induced breaks in phage DNA: Sensitization by hydrogen peroxide (a tryptophan photoproduct), Photochem. Photobiol. 24:439–442.Google Scholar
  4. Anderson, E., Nakashima, Y., and Konigsberg, W., 1975, Photoinduced cross-linkage of gene- 5 protein and bacteriophage fd DNA, Nucleic Acid Res. 2:361–371.Google Scholar
  5. Antonoff, R. S., and Ferguson, J. J., Jr., 1974, Photoaffinity labeling with cyclic nucleotides,J. Biol. Chem. 249:3319–3321.Google Scholar
  6. Antonoff, R. S., Ferguson, J. J., Jr., and Idelkope, G., 1976, Direct photo-affinity labeling of cyclic nucleotide binding proteins with guanosine-3′,5′-monophosphate, Photochem. Photobiol. 23:327–329.Google Scholar
  7. Arnold, D. R., Hinman, R. L., and Glick, A. H., 1964, Chemical properties of the carbonyln, π* state. The photochemical preparation of oxetanes, Tetrah. Letters: 1425–1430.Google Scholar
  8. Augenstein, L., and Riley, P., 1964, The inactivation of enzymes by ultraviolet light. IV. The nature and involvement of cystine disruption, Photochem. Photobiol. 3:353–367.Google Scholar
  9. Badley, R. A., and Teale, F. W. J., 1969, Resonance energy transfer in pepsin conjugates, J. Mol. Biol. 44:71–88.Google Scholar
  10. Bannister, W. H., and Wood, E. J., 1971, Ultraviolet fluorescence of Murex trunculus haemo-cyanin in relation to the binding of copper and oxygen, Comp. Biochem. Physiol. 40B:7–18.Google Scholar
  11. Barta, A., Kuechler, E., Branlant, C., Sri Widada, J., Krol, A., and Ebel, J. P., 1975, Photo-affinity labelling of 23 S RNA at the donor site of the Escherichia coli ribosome, FEBS Letters 56:170–174.Google Scholar
  12. Baugher, J. F., and Grossweiner, L. I., 1975, Ultraviolet inactivation of papain, Photochem. Photobiol. 22:163–167.Google Scholar
  13. Baugher, J. F., Grossweiner, L. I., and Lewis, C., 1974, Intramolecular energy transfer in the lysozyme-eosin complex, J. Chem. Soc. Faraday Transactions II 70:1389–1398.Google Scholar
  14. Becker, R. S., 1969, The Theory and Interpretation of Fluorescence and Phosphorescence, Wiley-Interscience, New York.Google Scholar
  15. Bennett, R. G., Schwenker, R. P., and Kellogg, R. E., 1964, Radiationless intermolecular energy transfer. II. Triplet → singlet transfer, J. Chem. Phys. 41:3040–3041.Google Scholar
  16. Bent, D. V., and Hayon, E., 1975a, Excited state chemistry of aromatic amino acids and related peptides. I. Tyrosine,J. Amer. Chem. Soc. 97:2599–2606.Google Scholar
  17. Bent, D. V., and Hayon, E., 1975b, Excited state chemistry of aromatic amino acids and related peptides. II. Phenylalanine, J. Amer. Chem. Soc. 97:2606–2612.Google Scholar
  18. Bent, D. V., and Hayon, E., 1975c, Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan, J. Amer. Chem. Soc. 97:2612–2619.Google Scholar
  19. Beppu, M., Terao, T., and Osawa, T., 1975, Photoaffinity labeling of concanavalin A. Preparation of a concanavalin A derivative with reduced valence, J. Biochem. (Japan) 78:1013–1020.Google Scholar
  20. Beyer, C. F., Gibbons, W. A., Craig, L. C., and Longworth, J. W., 1974, Heterogeneous tryptophan environments in the cyclic peptides tyrocidines B and C., J. Biol. Chem. 249:3204–3211.Google Scholar
  21. Beyer, C. F., Craig, L. C., Gibbons, W. A., and Longworth, J. W., 1976, Studies of the conformation and self-association of cyclic decapeptides by triplet-triplet energy transfer, in: Excited States of Biological Molecules (J. B. Birks, ed.), pp. 411–424, John Wiley & Sons, New York.Google Scholar
  22. Bispink, L., and Matthaei, H., 1973, Photoaffinity labeling of 23 S rRNA in Escherichia coli ribosomes with poly(U)-coded ethyl 2-diazomalonyl-Phe-tRNA, FEBS Letters 37:291–294.Google Scholar
  23. Bon Hoa, G. H., and Douzou, P., 1973, Ionic strength and protonic activity of supercooled solutions used in experiments with enzymic systems, J. Biol. Chem. 248:4649–4654.Google Scholar
  24. Bowers, P. R., McLaughlan, K. A., and Sealy, R. C., 1976, Photodecarboxylation of carboxylic acids sensitized by triplet benzophenone and duroquinone. A flash photolysis, electron spin resonance and chemically induced dynamic nuclear polarization nuclear magnetic resonance investigation, J. Chem. Soc. Perkin Transactions II:915–920.Google Scholar
  25. Brand, L., and Gohlke, J. R., 1972, Fluorescence probes for structure, Ann. Rev. Biochem. 41:843–868.Google Scholar
  26. Brandt, J., Fredriksson, M., and Andersson, L. O., 1974, Coupling of dyes to biopolymers by sensitized photooxidation. Affinity labeling of a binding site in bovine serum albumin, Biochemistry 13:4758–4764.Google Scholar
  27. Braun, A., and Merrick, B., 1975, Properties of the ultraviolet-light-mediated binding of bovine serum albumin to DNA, Photochem. Photobiol. 21:243–247.Google Scholar
  28. Breslow, R., Baldwin, S., Flechtner, T., Kalicky, P., Liu, S., and Washburn, W., 1973, Remote oxidation of steroids by photolysis of attached benzophenone groups, J. Amer. Chem. Soc. 95:3251–3262.Google Scholar
  29. Breslow, R., Feiring, A., and Herman, F., 1974, Intramolecular insertion reactions of phos-phoryl nitrenes,J. Amer. Chem. Soc. 96:5937–5939.Google Scholar
  30. Bridges, A. J., and Knowles, J. R., 1974, An examination of the utility of photogenerated reagents by using α-chymotrypsin, Biochem. J. 143:663–668.Google Scholar
  31. Brinen, J. S., and Singh, B., 1971, Electron spin resonance and luminescence studies of the reaction of photochemically generated nitrenes with oxygen. Phosphorescence of nitroben-zenes, J. Amer. Chem. Soc. 93:6623–6629.Google Scholar
  32. Brittain, H. G., Richardson, F. S., and Martin, R. B., 1976, Terbium (III) emission as a probe of calcium (II) binding sites in proteins,J. Amer. Chem. Soc. 98:8255–8260.Google Scholar
  33. Browne, D. T., Hixson, S. S., and Westheimer, F. H., 1971, A diazo compound for the photochemical labeling of yeast alcohol dehydrogenase, J. Biol. Chem. 246:4477–4484.Google Scholar
  34. Bruce, J. M., 1967, Light-induced reactions of quinones, Quart. Revs. 21:405–428.Google Scholar
  35. Brunswick, D. J., and Cooperman, B. S., 1971, Photo-affmity labels for adenosine 3′:5′-cyclic monophosphate, Proc. Nat. Acad. Sci. USA 68:1801–1804.Google Scholar
  36. Brunswick, D. J., and Cooperman, B. S., 1973, Synthesis and characterization of photoaffinity labels for adenosine 3′:5′-cyclic monophosphate and adenosine 5′-monophosphate, Biochemistry 12:4074–4078.Google Scholar
  37. Bryant, F. D., Santus, R., and Grossweiner, L. I., 1975, Laser flash photolysis of aqueous tryptophan,J. Phys. Chem. 79:2711–2716.Google Scholar
  38. Bryce-Smith, D., and Gilbert, A., 1964, 1:1- and 2:1-photoaddition of cyclo-octene and cyclo-octa-1,5-diene to chloranil, Tetrah. Letters:3471–3473.Google Scholar
  39. Budzik, G. P., Lam, S. S. M., Schoemaker, H. J. P., and Schimmel, P. R., 1975, Two photo-cross-linked complexes of isoleucine specific transfer ribonucleic acid with aminoacyl transfer ribonucleic acid synthetases, J. Biol. Chem. 250:4433–4439.Google Scholar
  40. Bunting, J. R., and Cathou, R. E., 1973, Energy transfer distance measurements in immunoglobulins. II. Localization of the hapten binding sites and the interheavy chain disulfide bond in rabbit antibody, J. Mol. Biol. 77:223–235.Google Scholar
  41. Burstein, E. A., Vedenkina, N. S., and Ivkova, M. N., 1973, Fluorescence and the location of tryptophan residues in protein molecules, Photochem. Photobiol. 18:263–279.Google Scholar
  42. Cabantchik, Z. I., Knauf, P. A., Ostwald, T., Markus, H., Davidson, L., Breuer, W., and Rothstein, A., 1976, The interaction of an anionic photoreactive probe with the anion transport system of the human red blood cell, Biochim. Biophys. Acta 455:526–537.Google Scholar
  43. Calvert, J. G., and Pitts, J. N., Jr., 1966, Photochemistry, John Wiley & Sons, Inc., New York.Google Scholar
  44. Cannon, I. E., Woodward, D. K., Woehler, M. E., and Lovins, R. E., 1976, Affinity labeling of isoelectrofocused fractions from a DNP antibody preparation with the photoactive labels 2,4-dinitrophenyl-l-azide and 2,4-dinitrophenyl-ϵ-aminocaproyldiazo ketone, Immunology 26:1183–1194.Google Scholar
  45. Chaimovich, H., Vaughan, R. J., and Westheimer, F. H., 1968, Rearrangement accompanying the photolysis of diazoacyl esters, J. Amer. Chem. Soc. 90:4088–4093.Google Scholar
  46. Chakrabarti, P., and Khorana, H. G., 1975, A new approach to the study of phospholipid-protein interactions in biological membranes. Synthesis of fatty acids and phospholipids containing chromophoric groups, Biochemistry 14:5021–5033.Google Scholar
  47. Chapman, O. L., Griswold, A. A., Hoganson, E., Lenz, G., and Reasoner, J., 1964, Photochemistry of unsaturated nitro compounds, Pure Appl. Chem. 9:585–590.Google Scholar
  48. Charlier, M., and Hélène, C., 1975, Photosensitized splitting of pyrimidine dimers in DNA by indole derivatives and tryptophan-containing peptides, Photochem. Photobiol. 21:31–37.Google Scholar
  49. Charlier, M., Hélène, C., and Carrier, W. L., 1972, Photochemical reactions of aromatic ketones with nucleic acids and their components. III. Chain breakage and thymine dimeri-zation in benzophenone photosensitized DNA, Photochem. Photobiol. 15:527–536.Google Scholar
  50. Chen, R. F., and Kernohan, J. C., 1967, Combination of bovine carbonic anhydrase with a fluorescent sulfonamide, J. BioL Chem. 242:5813–5823.Google Scholar
  51. Chen, M. S., Chang, P. K., and Prusoff, W. H., 1976, Photochemical studies and ultraviolet sensitization of Escherichia coli thymidilate kinase by various halogenated substrate analogs,J. BioL Chem. 251:6555–6561.Google Scholar
  52. Chowdhry, V., Vaughan, R., and Westheimer, F. H., 1976, 2-Diazo-3,3,3-trifluoropropionyl chloride: reagent for photoaffinity labeling, Proc. Natl. Acad. Sci. USA 73:1406–1408.Google Scholar
  53. Cohen, S. G., and Aktipis, S., 1965, The photoreduction of benzophenone by an ether. Effect of mercaptan, Tetrah. Letters: 579–583.Google Scholar
  54. Converse, C. A., and Richards, F. F., 1969, Two-stage photosensitive label for antibody combining sites, Biochemistry 8:4431–4436.Google Scholar
  55. Cooperman, B. S., 1976, Photoaffinity labeling of proteins and more complex receptors, in: Aging, Carcinogenesis and Radiation Biology (K. C. Smith, ed.), pp. 315–340, Plenum Press, New York.Google Scholar
  56. Cooperman, B. S., Jaynes, E. N., Brunswick, D. J., and Luddy, M. A., 1975, Photoincorporation of puromycin and N-(Ethyl-2-diazomalonyl)-puromycin into Escherichia coli ribosomes, Proc. Natl. Acad. Sci. USA 72:2974–2978.Google Scholar
  57. Cowgill, R. W., 1967, Fluorescence and protein structure. XI. Fluorescence quenching by disulfide and sulfhydryl groups, Biochim. Biophys. Acta 140:37–44.Google Scholar
  58. Coxon, J. M., and Halton, B., 1974, Organic Photochemistry, Cambridge University Press, London.Google Scholar
  59. Creed, D., 1974, Photochemical probes for biological interactions, Photochem. Photobiol. 19:459–462.Google Scholar
  60. Cuatrecasas, P., Edelhoch, H., and Anfinsen, C. B., 1967, Fluorescence studies of the interaction of nucleotides with the active site of the nuclease of Staphylococcus aureus, Proc. Natl. Acad. Sci. USA 58:2043–2050.Google Scholar
  61. Cysyk, R., and Prusoff, W. H., 1972, Alteration of ultraviolet sensitivity of thymidine kinase by allosteric regulators, normal substrates, and a photoaffinity label, 5-iodo-2′-deoxyuridine, a metabolic analog of thymidine,J. Biol. Chem. 247:2522–2532.Google Scholar
  62. Dale, R. E., and Eisinger, J., 1974, Intramolecular distances determined by energy transfer. Dependence on orientational freedom of donor and acceptor, Biopolymers 13:1573–1605.Google Scholar
  63. Dandliker, W. B., and Portmann, A. J., 1971, Fluorescent protein conjugates, in: Excited States of Proteins and Nucleic Acids (R. F. Steiner and I. Weinryb, eds.), pp. 199–275, Plenum Press, New York.Google Scholar
  64. Darnall, D. W., Abbott, F., Gomez, J. E., and Birnbaum, E. R., 1976, Fluorescence energy-transfer measurements between the calcium binding site and the specificity pocket of bovine trypsin using lanthanide probes, Biochemistry 15:5017–5023.Google Scholar
  65. Das Gupta, U., and Rieske, J. S., 1973, Identification of a protein component of the antimycin-binding site of the respiratory chain by photoaffinity labeling, Biochem. Biophys. Res. Comm. 54:1247–1254.Google Scholar
  66. Dexter, D. L., 1953, A theory of sensitized luminescence in solids,J. Chem. Phys. 21:836–850.Google Scholar
  67. Dixon, C. J., and Grant, D. W., 1973, The photolysis of cystine in acidic aqueous solution, Photochem. Photobiol. 18:387–391.Google Scholar
  68. Doering, W. V. E., and Knox, L. H., 1961, Comparative reactivity of methylene, car-bomethoxy carbene and bis-carboethoxycarbene toward the saturated carbon-hydrogen bond,J. Amer. Chem. Soc. 83:1989–1992.Google Scholar
  69. Dose, K., 1967, Theoretical aspects of the UV inactivation of proteins containing disulfide bonds, Photochem. Photobiol. 6:437–443.Google Scholar
  70. Dose, K., 1968, The photolysis of free cysteine in the presence of aromatic amino acids, Photochem. Photobiol. 8:331–335.Google Scholar
  71. Dose, K., and Risi, S., 1972, The action of UV light of various wavelengths on papain, Photochem. Photobiol. 15:43–50.Google Scholar
  72. Eberle, A., and Schwyzer, R., 1976, Synthese von [D-Alanin1, 4′-azido-3′,5′-ditritio-L-phenylalanine2, norvalin4] α-melanotropin als “Photoaffinitätsprobe” für Hormon-Rezeptor-Wechselwirkungen, Helve t. Chim. Acta 59:2421–2431.Google Scholar
  73. Eisinger, J., 1969, Intramolecular energy transfer in adrenocorticotropin, Biochemistry 8:3902–3907.Google Scholar
  74. Eisinger, J., and Dale, R. E., 1976, What has energy transfer done for biochemistry lately? in: Excited States of Biological Molecules (J. W. Birks, ed.), pp. 579–590, John Wiley & Sons, New York.Google Scholar
  75. Eisinger, J., Feuer, B., and Lamola, A. A., 1969, Intramolecular singlet excitation transfer. Applications to polypeptides, Biochemistry 8:3908–3915.Google Scholar
  76. El Ashmawy, A. E., Horton, D., and Philips, K. D., 1969, Photochemical degradation of some 2,4-dinitroanilino derivatives of sugars, Carbohyd. Res. 9:350–355.Google Scholar
  77. Elad, D., 1970, Photochemical modification of peptides, Israel J. Chem. 8:253–257.Google Scholar
  78. Elad, D., 1976, Photochemically induced adducts of DNA, in: Aging, Carcinogenesis and Radiation Biology (K. C. Smith, ed.), pp. 243–260, Plenum Press, New York.Google Scholar
  79. Elad, D., and Sperling, J., 1969, Photochemical modification of glycine dipeptides, J. Chem. Soc. C:1579–1585.Google Scholar
  80. Feitelson, J., 1970, Environmental effects on the fluorescence of tryptophan and other indole derivatives, Israel J. Chem. 8:241–252.Google Scholar
  81. Feitelson, J., and Hayon, E., 1973, Electron transfer from the excited state of tyrosine to compounds containing disulfide linkages, Photochem. Photobiol. 17:265–274.Google Scholar
  82. Feitelson, J., Hayon, E., and Treinin, A., 1973, Photoionization of phenols in water. Effects of light intensity, oxygen, pH, and temperature, J. Amer. Chem. Soc. 95:1025–1029.Google Scholar
  83. Finazzi-Agrò, A., Rotilio, G., Avigliano, L., Guerrieri, P., Boffi, V., and Mondovi, B., 1970, Environment of copper in Pseudomonas fluorescense azurin: fluorometric approach, Biochemistry 9:2009–2014.Google Scholar
  84. Finnström, B., 1971, The kinetics of the reaction between the hydrated electron and amino acids studied by flash photolysis, Photochem. Photobiol. 13:375–377.Google Scholar
  85. Fisher, C. E., and Press, E. M., 1974, Affinity labeling of the binding site of rabbit antibody. Evidence for the involvement of the hypervariable regions of the heavy chain, Biochem. J. 139:135–149.Google Scholar
  86. Fisher, G. J., Varghese, A. J., and Johns, H. E., 1974, Ultraviolet-induced reactions of thymine and uracil in the presence of cysteine, Photochem. Photobiol. 20:109–120.Google Scholar
  87. Fleet, G. W. J., Porter, R. R., and Knowles, J. R., 1969, Affinity labelling of antibodies with aryl nitrene as reactive group, Nature 224:511–512.Google Scholar
  88. Fleet, G. W. J., Knowles, J. R., and Porter, R. R., 1972, The antibody binding site. Labelling of a specific antibody against the photo-precursor of an aryl nitrene, Biochem. J. 128:499–508.Google Scholar
  89. Foote, C. S., 1976, Photosensitized oxidation and singlet oxygen. Consequences in biological systems, in: Free Radicals in Biology, Vol. 2 (W. A. Pryor, ed.), pp. 85–134, Academic Press, New York.Google Scholar
  90. Foote, C. S., Denny, R. W., Weaver, L., Chang, Y., and Peters, J., 1970, Quenching of singlet oxygen, Ann. N.Y. Acad. Sci. 171:139–148.Google Scholar
  91. Förster, T., 1948, Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Physik 2:55–75.Google Scholar
  92. Förster, T., 1959, Transfer mechanisms of electronic excitation, Disc. Faraday Soc. 27:7–17.Google Scholar
  93. Frey, H. M., 1966, The photolysis of diazirines, in: Advances in Photochemistry, Vol 4 (W. A. Noyes, G. S. Hammond, and J. N. Pitts, eds.), pp. 225–239, Interscience, New York.Google Scholar
  94. Galardy, R. E., Craig, L. C., and Printz, M. P., 1973, Benzophenone triplet: A new photochemical probe of biological ligand-receptor interactions, Nature New Biol. 242:127–128.Google Scholar
  95. Galardy, R. E., Craig, L. C., Jamieson, J. D., and Printz, M. P., 1974, Photoaffinity labeling of peptide hormone binding sites, J. Biol. Chem. 249:3510–3518.Google Scholar
  96. Galiazzo, G., Jori, G., and Marchetti, D., 1972, Photoreactions of biacetyl with methionine and related compounds, Experientia 28:18–19.Google Scholar
  97. Galley, W. C., and Strambini, G. B., 1976, Kinetics of triplet-triplet energy transfer and intramolecular distances in enzyme-inhibitor complexes, Nature 261:521–522.Google Scholar
  98. Galley, W. C., and Stryer, L., 1968, Triplet-triplet energy transfer in proteins as a criterion of proximity, Proc. Natl. Acad. Sci. USA 60:108–114.Google Scholar
  99. Galley, W. C., and Stryer, L., 1969, Triplet-singlet energy transfer in proteins, Biochemistry 8:1831–1838.Google Scholar
  100. Gennari, G., and Jori, G., 1970, Acetone-sensitized anaerobic photo-oxidation of methionine, FEBS Letters 10:129–131.Google Scholar
  101. Gérard, D., Lemieux, G., and Laustriat, G., 1975, Intrinsic fluorescence of S4 and S3 E. coli ribosomal proteins, Photochem. Photobiol. 22:89–95.Google Scholar
  102. Ghiron, C. A., Volkert, W. A., and Lahmeyer, H., 1971, Studies on the mechanism of cystine destruction and inactivation of trypsin irradiated with 280 nm light, Photochem. Photobiol. 13:431–436.Google Scholar
  103. Ghiron, C. A., Bumpus, F. M., and Longworth, J. W., 1976, Luminescent properties of Angiotensin II and its analogues, in: Excited States of Biological Molecules (J. W. Birks, ed.), pp. 486–497, John Wiley & Sons, New York.Google Scholar
  104. Girotti, A. W., 1975, Photodynamic action of bilirubin on human erythrocyte membranes. Modification of polypeptide constituents, Biochemistry 14:3377–3383.Google Scholar
  105. Girotti, A. W., 1976, Photodynamic action of protoporphyrin IX on human erythrocytes: Cross-linking of membrane proteins, Biochem. Biophys. Res. Commun. 72:1367–1374.Google Scholar
  106. Girshovich, A. S., Bochkareva, E. S., Kramarov, V. M., and Ovchinnikov, Y. A., 1974, E. coli 30 S and 50 S ribosomal subparticle components in the localization region of the tRNA acceptor terminus, FEBS Letters 45:213–217.Google Scholar
  107. Girshovich, A. S., Bochkareva, E. S., and Ovchinnikov, Y. A., 1976, Application of photoaffinity chemical modification for identification of the components of the streptomycin-binding center of ribosomes from E. coli MRE-600, Bioorganicheskaya Khimiya 2:1073–1084.Google Scholar
  108. Glazer, A. N., DeLange, R. J., and Sigman, D. S., 1976, Chemical modification of proteins, in: Laboratory Techniques in Biochemistry and Molecular Biology (T. S. Work and E. Work, eds.), pp. 1–205, North-Holland Publishing Company, Amsterdam.Google Scholar
  109. Glover, G. I., Mariano, P. S., Wilkinson, T. J., Hildreth, R. A., and Lowe, T. W., 1974, The photofragmentation and photoaffinity labeling of phenacyl and naphtacyl α -chymotrypsins, Arch. Biochem. Biophys. 162:73–82.Google Scholar
  110. Godfrey, T. S., Porter, G., and Suppan, P., 1965, Proton transfer during reactions in the excited state, Discussions Faraday Soc. 39:194–199.Google Scholar
  111. Gollnick, K., Franken, T., Schade, G., and Dörhöfer, G., 1970, Photosensitized oxygenation as a function of the triplet energy of sensitizers. Ann. N.Y. Acad. Sci. 171:89–107.Google Scholar
  112. Gorelic, L., 1975, Photoinduced covalent cross linkage, in situ, of Escherichia coli 50 S ribosomal proteins to rRNA, Biochim. Biophys. Acta 390:209–225.Google Scholar
  113. Gorelic, L., 1976, Demonstration of ribosome-dependent photoinduced chain breakage of the 16 S ribosomal ribonucleic acid component of the Escherichia coli 30 S ribosomal subunit, Biochemistry 15:5424–5480.Google Scholar
  114. Gorelic, L. S., Lisagor, P., and Yang, N. C., 1972, The photochemical reactions of 1,3-dimethyluracil with 1-aminopropane and poly-1-lysine, Photochem. Photobiol. 16:465–480.Google Scholar
  115. Grossweiner, L. I., 1970, Flash photolysis research in photobiology, in: Photophysiology, Vol. 5 (A. C. Giese, ed.), pp. 1–33, Academic Press, New York.Google Scholar
  116. Grossweiner, L. I., 1976, Photochemical inactivation of enzymes, in: Current Topics in Radiation Research, Vol. 11 (M. Ebert and A. Howard, eds.), pp. 141–199, North-Holland Publishing Co., Amsterdam.Google Scholar
  117. Grossweiner, L. I., and Baugher, J. F., 1977, Decay kinetics of the hydrated electron, J. Phys. Chem. 81:93–98.Google Scholar
  118. Grossweiner, L. I., and Kepka, A. G., 1972, Photosensitization in biopolymers, Photochem. Photobiol. 16:305–314.Google Scholar
  119. Grossweiner, L. I., and Usui, Y., 1970, The role of the hydrated electron in photoreduction of cystine in the presence of indole, Photochem. Photobiol. 11:53–56.Google Scholar
  120. Grossweiner, L. I., and Usui, Y., 1971, Flash photolysis and inactivation of aqueous lysozyme, Photochem. PhotobioL 13:195–214.Google Scholar
  121. Grossweiner, L. I., Swenson, G. W., and Zwicker, E. F., 1963, Photochemical generation of the hydrated electron, Science 141:805–806.Google Scholar
  122. Grossweiner, L. I., Kaluskar, R. G., and Baugher, J. F., 1976, Flash photolysis of enzymes, Int. J. Radiat. Biol. 29:1–16.Google Scholar
  123. Guermonprez, M., Santus, R., and Ptak, M., 1965, Delayed luminescence of aromatic amino acids in boric acid, Comp. Rend. 261:387–390.Google Scholar
  124. Guthrow, C. E., Rasmussen, H., Brunswick, D. J., and Cooperman, B. S., 1973, Specific photoaffinity labeling of the adenosine 3′:5′-cyclic monophosphate receptor in intact ghosts from human erythrocytes, Proc. Nat. Acad. Sci. USA 70:3344–3346.Google Scholar
  125. Guttenplan, J. B., and Cohen, S. G., 1973, Quenching and reduction of photoexcited benzo-phenone by thioethers and mercaptans, J. Org. Chem. 38:2001–2007.Google Scholar
  126. Haley, B. E., 1975, Photoaffinity labeling of adenosine 3′,5′-cyclic monophosphate binding sites of human red cell membranes, Biochemistry 14:3852–3857.Google Scholar
  127. Haley, B. E., and Hoffman, J. F., 1974, Interactions of photo-affinity ATP analog with cation-stimulated adenosine triphosphatases of human red cell membranes, Proc. Natl. Acad. Sci. USA 71:3367–3371.Google Scholar
  128. Hall, J. H., Hill, J. W., and Tasi, H., 1965, Insertion reactions of aryl nitrenes, Tetrah. Letters:2211–2216.Google Scholar
  129. Hammond, G. S., and Leermakers, P. A., 1962, Mechanisms of photoreactions in solution. VI. Reduction of 1-naphthaldehyde and 2-acetonaphthone,J. Amer. Chem. Soc. 84:207–211.Google Scholar
  130. Hammond, G. S., and Moore, W. M., 1959, The role of a triplet state in the photoreduction of benzophenone, J. Amer. Chem. Soc. 81:6334.Google Scholar
  131. Harbour, J. R., and Tollin, G., 1974, ESR studies of solvent radicals formed upon photoreduction of quinones in alcohols and acetone, Photochem. PhotobioL 20:387–391.Google Scholar
  132. Hasselmann, C., and Laustriat, G., 1973, Photochimie des acides amines aromatiques en solution. I. DL-Phenylalanine, DL-tyrosine et l-DOPA, Photochem. Photobiol. 17:275–294.Google Scholar
  133. Hasselmann, C., and Laustriat, G., 1975, Ring opening as a photochemical reaction of phenylalanine at 254 nm, Photochem. Photobiol. 21:133–134.Google Scholar
  134. Hasselmann, C., Santus, R., and Laustriat, G., 1976, Indole-induced photodegradation of imidazole derivatives and disulfide groups in oxygen-free aqueous solutions, Abstracts of the VII International Congress of Photobiology, Rome, 1976, abstract P 13.Google Scholar
  135. Heath, R. L., and Packer, L., 1968, Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys. 125:189–198.Google Scholar
  136. Hélène, C., 1973, Energy transfer between nucleic acid bases and tryptophan in aggregates and in oligopeptide-nucleic acid complexes, Photochem. PhotobioL 18:255–262.Google Scholar
  137. Hélène, C., 1976a, Excited state interactions and energy transfer processes in the photochemistry of protein-nucleic acid complexes, in: Excited States of Biological Molecules (J. B. Birks, ed.), pp. 151–166, John Wiley & Sons, New York.Google Scholar
  138. Hélène, C., 1976b, Photosensitized cross-linking of proteins to nucleic acids, in: Aging, Carcinogenesis and Radiation Biology (K. C. Smith, ed.), pp. 169–193, Plenum Press, New York.Google Scholar
  139. Hélène, C., and Dimicoli, J. L., 1972, Interaction of oligopeptides containing aromatic amino acids with nucleic acids. Fluorescence and proton magnetic resonance studies, FEBS Letters 26:6–10.Google Scholar
  140. Hélène, C., and Dimicoli, J. L., and Brun, F., 1971, Binding of tryptamine and 5-hydroxytryptamine (serotonin) to nucleic acids. Fluorescence and proton magnetic resonance studies, Biochemistry 10:3802–3809.Google Scholar
  141. Hélène, C., Montenay-Garestier, T., and Charlier, M., 1973, Excited-state interactions and energy transfer between aromatic amino acids and nucleic acid components, Anais da Academia Brasileira de Ciẽncias 45 (suplemento 1973):59–62.Google Scholar
  142. Hew, C.-L., Lifter, J., Yoshioka, M., Richards, F. F., and Konigsberg, W. H., 1973, Affinity-labeled peptides obtained from the combining region of protein 460. Light chain labeling patterns using dinitrophenyl based photoaffinity labels, Biochemistry 12:4685–4689.Google Scholar
  143. Hexter, C. S., and Westheimer, F. H., 1971a, Intermolecular reaction during photolysis of diazoacetyl α-chymotrypsin, J. Biol. Chem. 246:3928–3933.Google Scholar
  144. Hexter, C. S., and Westheimer, F. H., 1971b, S-Carboxymethylcysteine from the photolysis of diazoacyl trypsin and chymotrypsin, J. Biol. Chem. 246:3934–3938.Google Scholar
  145. Hirayama, F., 1965, Intramolecular excimer formation. I. Diphenyl and triphenyl alkanes, J. Chem. Phys. 42:3163–3171.Google Scholar
  146. Hixson, S. S., and Hixson, S. H., 1972, The photochemistry of S-methyl diazothioacetate, J. Org. Chem. 37:1279–1280.Google Scholar
  147. Hixson, S. S., and Hixson, S. H., 1973, Photochemical labeling of yeast alcohol dehydrogenase with an azide analog of NAD+, Photochem. Photobiol. 18:135–138.Google Scholar
  148. Hixson, S. C., White, W. E., and Yielding, K. L., 1975, Selective covalent binding of an ethidium analog to mitochondrial DNA with production of petite mutants in yeast by photoaffinity labeling, J. Mol. Biol. 92:319–329.Google Scholar
  149. Hsiung, N., Reines, S. A., and Cantor, C. R., 1974, Investigation of the ribosomal peptidyl transferase center using a photoaffinity label, J. Mol. Biol. 88:841–855.Google Scholar
  150. Hucho, F., Layer, P., Kiefer, H. R., and Bandini, G., 1976, Photoaffinity labeling and quaternary structure of the acetylcholine receptor from Torpedo californica, Proc. Natl. Acad. Sci. USA 73:2624–2628.Google Scholar
  151. Iaccarino, M., and Berg, P., 1969, Requirement of sulfhydryl groups for the catalytic and tRNA recognition functions of isoleucyl-tRNA synthetase, J. Mol. Biol. 42:151–169.Google Scholar
  152. Ito, Y., and Matsuura, T., 1974, The photochemical addition of acrylonitrile to imidazoles, Tetrah. Letters:513–516.Google Scholar
  153. Iweibo, I., 1976, Protein fluorescence and electronic energy transfer in the determination of molecular dimensions and rotational relaxation times of native and coenzyme-bound horse liver alcohol dehydrogenase, Biochim. Biophys. Acta 446:192–205.Google Scholar
  154. Jellinek, T., and Johns, R. B., 1970, The mechanism of photochemical addition of cysteine to uracil and formation of dihydrouracil, Photochem. Photobiol. 11:343–353.Google Scholar
  155. Jori, G., 1973, Photosensitized oxidation of biomolecules as a tool for probing their three-dimensional structure, Anais de Academia Brasileira de Ciẽncias 45 (suplemento 1973):33–44.Google Scholar
  156. Jori, G., and Folin, M., 1975, Photoreactions of ketones with amino acids and proteins, Abstracts 3rd Meeting of the American Society jor Photobiology, Louisville, June 1975, pp. 61–62.Google Scholar
  157. Jori, G., and Genov, N., 1973, Fluorescence studies of the bacterial protease E-30-III, Int. J. Protein Res. 5:171–177.Google Scholar
  158. Jori, G., Galiazzo, G., Tamburro, A. M., and Scoffone, E., 1970, Dye-sensitized photooxidation as a tool for determining the degree of exposure of amino acid residues in proteins. The methionyl residues in ribonuclease A, J. Biol. Chem. 245:3375–3383.Google Scholar
  159. Joschek, H.-L., and Grossweiner, L. I., 1966, Optical generation of hydrated electrons from aromatic compounds. II.,J. Amer. Chem. Soc. 88:3261–3268.Google Scholar
  160. Ka Luk, C., 1971, Energy transfer between tryptophans and aromatic ligands in apomyo-globin, Biopolymers 10:1317–1329.Google Scholar
  161. Kaluskar, A. G., and Grossweiner, L. I., 1974, Photochemical inactivation of trypsin, Photochem. Photobiol. 20:329–338.Google Scholar
  162. Kan, R. O., 1966, Organic Photochemistry, McGraw-Hill Book Company, New York.Google Scholar
  163. Karolczyk-Kostuch, S., and Zubek, M., 1973, Role of disulfide bond disruption in ultraviolet inactivation of enzyme and hormones, Post. Biochem. 19:471–481.Google Scholar
  164. Katzenellenbogen, J. A., and Hsiung, H. M., 1975, Iodohexestrols. I. Synthesis and photo-reactivity of iodinated hexestrol derivatives, Biochemistry 14:1736–1741.Google Scholar
  165. Katzenellenbogen, J. A., Johnson, H. J., and Myers, H. N., 1973, Photoaffinity labels for estrogen binding proteins of rat uterus, Biochemistry 12:4085–4092.Google Scholar
  166. Katzenellenbogen, J. A., Johnson, H. J., Jr., Carlson, K. E., and Myers, H. N., 1974, Photoreactivity of some light-sensitive estrogen derivatives. Use of an exchange assay to determine their photointeraction with the rat uterine estrogen binding protein, Biochemistry 13:2986–2994.Google Scholar
  167. Keeler, E. K., and Campbell, P., 1976, A fluorescent photo-affinity label for cyclic AMP binding proteins, Biochem. Biophys. Res. Commun. 72:575–580.Google Scholar
  168. Kiefer, H., Lindstrom, J., Lennox, E. S., and Singer, S. J., 1970, Photo-affinity labeling of specific acetylcholine-binding sites on membranes, Proc. Natl. Acad. Sci. USA 67:1688–1694.Google Scholar
  169. King, L. A., and Miller, J. N., 1976, Factors affecting the luminescence of tryptophan at 77 K, Biochim. Biophys. Acta 446:206–213.Google Scholar
  170. Klarman, A., Shaklai, N., and Daniel, E., 1977, Tyrosyl fluorescence in hemocyanin from the scorpion Jeirus quinquestriotus, Biochim. Biophys. Acta 490:322–330.Google Scholar
  171. Klip, A., and Gitler, C., 1974, Photoactive covalent labeling of membrane components from within the lipid core, Biochem. Biophys. Res. Commun. 60:1155–1162.Google Scholar
  172. Knauf, P. A., Proverbio, F., and Hoffman, J. F., 1974, Chemical characterization and pronase susceptibility of the Na:K pump-associated phosphoprotein of human red blood cells, J. Gen. Physiol. 63:305–323.Google Scholar
  173. Knowles, J. R., 1972, Photogenerated reagents for biological receptor-site labeling, Accs. Chem. Res. 5:155–160.Google Scholar
  174. Koberstein, R., 1976, 8-Azidoadenine analogs of NAD+ and FAD. Synthesis and coenzyme properties with NAD+-dependent and FAD-dependent enzymes, Eur. J. Biochem. 67:223–229.Google Scholar
  175. Koberstein, R., Cobianchi, L., and Sund, H., 1976, Interaction of the photoaffinity label 8-azido-ADP with glutamate dehydrogenase, FEBS Letters 64:176–180.Google Scholar
  176. Kochevar, I. E., and Harker, L. C., 1977, Photoreactions of 3,3′,4′,5-tetra-chlorosalicylanilide with proteins,J. Invest. Dermatol. 68:151–156.Google Scholar
  177. Kornhauser, A., 1975, UV induced DNA-protein cross-links in vitro and in vivo, Photochem. Photobiol. 23:457–460.Google Scholar
  178. Kreher, R., and Bockhorn, G. H., 1964, The photochemical decomposition of alkyl azidoformates in aliphatic alcohols, Angew. Chem. 76:681.Google Scholar
  179. Kronman, M. J., and Holmes, L. G., 1971, The fluorescence of native, denatured, and reduced-denatured proteins, Photochem. Photobiol. 14:113–134.Google Scholar
  180. Ku, K. Y., and Prusoff, W. H., 1974, A comparative study of the effect of normal substrates and 5-iodo-2′-deoxyuridine triphosphate, a metabolic analog of thymidine triphosphate, on the inactivation of E. coli deoxyribonucleic acid polymerase I and II by ultraviolet irradiation,J. Biol. Chem. 249:1239–1246.Google Scholar
  181. Laird, T., and Williams, H., 1969, Photolysis of phenacylsulphonium salts, Chem. Comm. 1969:561–562.Google Scholar
  182. Lamola, A. A., 1968, Applications of electronic energy transfer in solution, Photochem. Photobiol. 8:601–616.Google Scholar
  183. Lamola, A. A., 1969, Electronic energy transfer in solution: Theory and applications, in: Techniques oj Organic Chemistry, Vol. 14, Energy Transfer and Organic Photochemistry (P. A. Leermakers and A. Weissberger, eds.), Interscience, New York.Google Scholar
  184. Lamola, A. A., Leermakers, P. A., Byers, G. W., and Hammond, G. S., 1965, Intramolecular electronic energy transfer between nonconjugated chromophores in some model compounds,J. Amer. Chem. Soc. 87:2322–2332.Google Scholar
  185. Latt, S. A., Auld, D. S., and Vallee, B. L., 1970, Surveyor substrates: Energy-transfer gauges of active center topography during catalysis, Proc. Natl. Acad. Sci. USA 67:1383–1389.Google Scholar
  186. Latt, S. A., Auld, D. S., and Vallee, B. L., 1972, Distance measurements at the active site of carboxypeptidase A during catalysis, Biochemistry 11:3015–3022.Google Scholar
  187. Lebourgeois, P., Arnaud, R., and Lemaire, J., 1976, Population du niveau triplet nπ* d’aldéhydes aliphatiques saturés,J. Chim. Phys. 73:135–140.Google Scholar
  188. Lehrer, S. S., 1969, Fluorescence and absorption studies of the binding of copper and iron to transferrin,J. Biol. Chem. 244:3613–3617.Google Scholar
  189. Leonov, D., Salomon, J., Sasson, S., and Elad, D., 1973, Ultraviolet- and 7-ray-induced reactions of nucleic acid constituents with alcohols. On the selectivity of these reactions for purines, Photochem. Photobiol. 17:465–468.Google Scholar
  190. Lerner, J., and Lami, H., 1976, Electronic energy transfer in some class B proteins: Trypsin, lysozyme, α-chymotrypsin and chymotrypsinogen A, in: Excited States of Biological Molecules (J. W. Birks, ed.), pp. 601–611, John Wiley & Sons, New York.Google Scholar
  191. Levy, D., 1973, Preparation of photo-affinity probes for the insulin receptor site in adipose and liver cell membranes, Biochim. Biophys. Acta 322:329–336.Google Scholar
  192. Lifter, J., Hew, C.-L., Yoshioka, M., Richards, F. F., and Konigsberg, W. H., 1976, Affinity-labeled peptides obtained from the combining region of myeloma protein 460. I. Heavy chain-labeling patterns using dinitrophenyl azide photoaffinity labeling, Biochemistry 13:3567–3571.Google Scholar
  193. Lin, S. Y., and Riggs, A. D., 1974, Photochemical attachment of lac repressor to bromodeoxyuridine-substituted lac operator by ultraviolet radiation, Proc. Natl. Acad. Sci. USA 71:947–951.Google Scholar
  194. Lion, M. B., 1976, Effect of the DNA conformation on the debromination of 5-bromouracil substituted DNA irradiated at 313 nm. A possible “cage effect” in UV irradiated DNA, Abstracts of the VII International Congress of Photobiology, Rome, 1976, abstract P 123.Google Scholar
  195. Longworth, J. W., 1971, Luminescence of polypeptides and proteins, in: Excited States of Proteins and Nucleic Acids (R. F. Steiner and I. Weinryb, eds.), pp. 319–484, Plenum Press, New York.Google Scholar
  196. Longworth, J. W., and Hélène, C., 1976, Luminescence of model indole-disulphide compounds, in: Excited States of Biological Molecules (J. B. Birks, ed.), pp. 468–476, John Wiley & Sons, New York.Google Scholar
  197. Longworth, J. W., McLaughlin, C. L., and Solomon, A., 1976, Luminescence studies on Bence-Jones proteins and light chains of immunoglobulins and their subunits, Biochemistry 15:2953–2958.Google Scholar
  198. Loutfy, R. O., and Loutfy, R. O., 1973, Correlation between the n, π* triplet energy of some ketones and aldehydes and their electroreduction potential,J. Phys. Chem. 77:336–339.Google Scholar
  199. Louvard, D., Semeriva, M., and Maroux, S., 1976, The brush-border intestinal aminopeptidase, a transmembrane protein as probed by macromolecular photolabelling, J. Mol. Biol. 106:1023–1035.Google Scholar
  200. Luse, R. A., and McLaren, A. D., 1963, Mechanism of enzyme inactivation by ultraviolet light and the photochemistry of amino acids (at 2537Â), Photochem. Photobiol. 2:343–360.Google Scholar
  201. MacKnight, M. L., and Spikes, J. D., 1970, Investigation of the quantum yield of the dyesensitized photoinactivation of ribonuclease, Experientia 26:255–256.Google Scholar
  202. Marche, P., Montenay-Garestier, T., Hélène, C., and Fromageot, P., 1976a, Conformational characteristics of luliberin. Circular dichroism and fluorescence studies, Biochemistry 15:5730–5737.Google Scholar
  203. Marche, P., Montenay-Garestier, T., Fromageot, P., and Hélène, C., 1976b, Conformational characteristics of luliberin. Luminescence properties at liquid-nitrogen temperature, Biochemistry 15:5738–5743.Google Scholar
  204. Mariano, P. S., Glover, G. I., and Wilkinson, T. J., 1976a, Photochemistry of modified proteins. Benzophenone-containing bovine serum albumin, Photochem. Photobiol. 23:147–154.Google Scholar
  205. Mariano, P. S., Glover, G. I., and Wilkinson, T. J., 1976b, The mechanism of energy transfer from poly-p-benzoylphenylacetimido-bovine serum albumin to small-molecule quenchers, Photochem. Photobiol. 23:155–161.Google Scholar
  206. Markovitz, A., 1972, Ultraviolet light-induced stable complexes of DNA and DNA polymerase, Biochim. Biophys. Acta 281:522–534.Google Scholar
  207. Martinson, H. G., and McCarthy, B. J., 1976, Histone-histone interactions within chromatin. Preliminary characterization of presumptive H2B-H2A and H2B-H4 binding sites, Biochemistry 15:4126–4131.Google Scholar
  208. Martinson, H. G., Shetlar, M. D., and McCarthy, B. J., 1976, Histone-histone interactions within chromatin. Cross-linking studies with ultraviolet light, Biochemistry 15:2002–2007.Google Scholar
  209. Martyr, R. J., and Benisek, W. F., 1973, Affinity labeling of the active sites of Δ5-ketosteroid isomerase using photoexcited natural ligands, Biochemistry 12:2172–2178.Google Scholar
  210. Martyr, R. J., and Benisek, W. F., 1975, Chemical modification of amino acid residues associated with the Δ4–3-ketosteroid-dependent photoinactivation of Δ5–3-ketosteroid isomerase,J. Biol. Chem. 250:1218–1222.Google Scholar
  211. Maycock, A. L., and Berchtold, G. A., 1970, Photochemical reactions of phenacyl- and benzylsulfonium salts, J. Org. Chem. 35:2532–2538.Google Scholar
  212. Mayo, M. A., Harrison, B. D., Murant, A. F., and Barker, H., 1973, Cross-linking of RNA induced by ultraviolet irradiation of particles of raspberry ringspot virus, J. Gen. Virol. 19:155–159.Google Scholar
  213. McCormick, D. B., 1977, Interactions of flavins with amino acid residues: assessments from spectral and photochemical studies, Photochem. Photobiol. 26:169–182.Google Scholar
  214. McDaniel, D. M., Cully, D., and Ianno, F., 1976, Photochemical probes of biomembrane structure and function. Cyclohexanone photochemistry in a model system, Photochem. Photobiol. 24:9–12.Google Scholar
  215. McLaren, A. D., and Shugar, D., 1964, Photochemistry of Proteins and Nucleic Acids, Pergamon Press, Oxford.Google Scholar
  216. McLaren, A. D., Gentile, P., Kirk, D. C., Jr., and Levin, N. A., 1953, Photochemistry of proteins. XVII. Inactivation of enzymes with ultraviolet light and photolysis of the peptide bond,J. Polymer Sci. 10:333–344.Google Scholar
  217. Merkel, P. B., Nilsson, R., and Kearns, D. R., 1972, Remarkable solvent effects on the lifetime of 1Δg oxygen, J. Amer. Chem. Soc. 94:1029–1030.Google Scholar
  218. Mikkelsen, R. B., and Wallach, D. F. H., 1976, Photoactivated cross-linking of proteins within the erythrocyte membrane core, J. Biol. Chem. 251:7413–7416.Google Scholar
  219. Moe, O. A., Lerner, D. A., and Hammes, G. G., 1976, Fluorescence energy transfer between the thiamine diphosphate and the flavine adenine dinucleotide binding site on the pyruvate dehydrogenase multienzyme complex, Biochemistry 15:2552–2557.Google Scholar
  220. Montenay-Garestier, T., 1975, Singlet energy transfer between aromatic amino acids and nucleic acid bases. Theoretical calculations, Photochem. Photobiol. 22:3–6.Google Scholar
  221. Montenay-Garestier, T., 1976, Interaction and energy transfer between tyrosine and nucleic acid bases, in: Excited States of Biological Molecules (J. B. Birks, ed.), pp. 207–216, John Wiley & Sons, New York.Google Scholar
  222. Montenay-Garestier, T., and Hélène, C., 1971, Reflectance and luminescence studies of molecular complex formation between tryptophan and nucleic acid components in frozen aqueous solutions, Biochemistry 10:300–306.Google Scholar
  223. Montenay-Garestier, T., Brun, F., and Hélène, C., 1976a, Interaction of disulfide groups with nucleic acid bases, Photochem. Photobiol. 23:87–91.Google Scholar
  224. Montenay-Garestier, T., Charlier, M., and Hélène, C., 1976b, Aggregate formation, excited-state interactions, and photochemical reactions in frozen aqueous solutions of nucleic acid constituents, in: Photochemistry and Photobiology of Nucleic Acids, Vol. 1 (S. Y. Wang, ed.), pp. 381–417, Academic Press, New York.Google Scholar
  225. Moriconi, E. J., and Murray, J. J., 1964, Pyrolysis and photolysis of l-methyl-3-diazooxindole. Base decomposition of isatin 2-tosylhydrazone, J. Org. Chem. 29:3577–3584.Google Scholar
  226. Morrison, H., and Migdalof, B. H., 1965, Photochemical hydrogen abstraction by the nitro group, J. Org. Chem. 30:3996.Google Scholar
  227. Morrison, H., and Palensky, F., 1975, Concerning the question of intramolecular photosensitization of the peptide bond by the phenyl chromophore, Photochem. Photobiol. 21:367–368.Google Scholar
  228. Muneyama, K., Bauer, R. J., Shuman, D. A., Robins, R. K., and Simon, L. N., 1971, Chemical synthesis and biological activity of 8-substituted adenosine 3′,5′-cyclic monophosphate derivatives, Biochemistry 10:2390–2395.Google Scholar
  229. Muszkat, K. A., and Weinstein, M., 1976, Reversible hydrogen photoabstraction by nitroaromatic compounds. A chemically induced nuclear polarization study, J. Chem. Soc. Perkin Transactions II:1072–1073.Google Scholar
  230. Nakano, T., and Santana, M., 1976, Photoaddition of benzophenone to azaindole. Synthesis of the oxetane of 7-azaindole, J. Heteroc. Chem. 13:585–587.Google Scholar
  231. Nakashima, Y., and Konigsberg, W., 1975, Photo-induced cross-linkage of gene 5 protein and Fd DNA, Abstracts of the International Symposium on Protein and Other Adducts to DNA: Their Signijicance to Aging, Carcinogenesis and Radiation Biology, Williamsburg, Virginia.Google Scholar
  232. Nakayama, H., and Kanaoka, Y., 1973, A photoaffinity labeling of the active site of α-chymotrypsin with TPDK, FEBS Letters 37:200–202.Google Scholar
  233. Obrig, T., Antonofř, R. S., Kirwin, K. S., and Ferguson, J. J., Jr., 1975, The binding of adenosine-3′,5′-monophosphate by messenger ribonucleoprotein-like particles, Biochem. Biophys. Res. Commun. 66:637–643.Google Scholar
  234. Ofengand, J., and Bierbaum, J., 1973, Use of photochemically induced cross-linking as a conformational probe of the tertiary structure of certain regions in transfer ribonucleic acid, Biochemistry 12:1977–1984.Google Scholar
  235. Orlov, S. N., Malkov, Yu. A., Rebrov, V. G., and Danilov, V. S., 1976, Free radical oxidation of biological membrane lipids. VII. Effect of ultraviolet radiation on free radical oxidation of lipids complexed with proteins and biomembranes, Biofizika 21:276–279.Google Scholar
  236. Owens, C. E., and Teale, F. W. J., 1976, Energy transfer in multi-acceptor proteins and model systems, in: Excited States in Biological Molecules (J. W. Birks, ed.), pp. 612–617, John Wiley & Sons, New York.Google Scholar
  237. Owens, J. R., and Haley, B. E., 1976, A study of adenosine-3′,5′-cyclic monophosphate binding sites of human erythrocyte membranes using 8-azidoadenosine-3′,5′-cyclic monophosphate. A photoaffinity probe, J. Supramol. Structure 5:91–102.Google Scholar
  238. Pailthorpe, M. T., Bonjour, J. P., and Nicholls, C. H., 1973, The photolysis of tryptophan in the presence of oxygen, Photochem. Photobiol. 17:209–223.Google Scholar
  239. Perry, M. B., and Heung, L. L. W., 1972, 2-Nitro-4-azidophenyl glycoside affinity labeling agents. Can. J. Biochem. 50:510–515.Google Scholar
  240. Pileni, M. P., Lavalette, D., and Muel, B., 1975, Wavelength dependence of the photoioniza-tion of phenolic compounds, J. Amer. Chem. Soc. 97:2283–2284.Google Scholar
  241. Pomerantz, A. H., Rudolph, S. A., Haley, B. E., and Greengard, P., 1975, Photoaffinity labeling of a protein kinase from bovine brain with 8-azido-adenosine 3′,5′-monophosphate, Biochemistry 14:3858–3862.Google Scholar
  242. Poppe, W., and Grossweiner, L. I., 1975, Photodynamic sensitization by 8-methoxypsoralen via the singlet oxygen mechanism, Photochem. Photobiol. 22:217–219.Google Scholar
  243. Porter, G., and Suppan, P., 1966, Primary photochemical processes in aromatic molecules. Part 14. Comparative photochemistry of aromatic carbonyl compounds, Trans. Faraday Soc. 62:3375–3383.Google Scholar
  244. Poupko, R., Rosenthal, I., and Elad, D., 1973, Photochemical decarboxylation of amino acids in the presence of metal ions, Photochem. Photobiol. 17:395–402.Google Scholar
  245. Rabinovitch, B., 1968a, Transference of triplet state excitation energy from tyrosine to tryptophan. I. Amino acids in simple and mixed solutions, Arch. Biochem. Biophys. 124:258–270.Google Scholar
  246. Rabinovitch, B., 1968b, The transference of triplet state excitation energy. II. Kinetics of formation and decay of triplet state species, Arch. Biochem. Biophys. 128:252–260.Google Scholar
  247. Rao, C. N. R., 1975, Ultra-violet and Visible Spectroscopy, 3rd Edition, Butterworths & Co., Ltd., London.Google Scholar
  248. Rao, P. S., and Hayon, E., 1975, Reaction of hydroxyl radicals with oligopeptides in aqueous solution. A pulse radiolysis study,J. Phys. Chem. 79:109–115.Google Scholar
  249. Rathinasamy, T. K., and Augenstein, L. G., 1968, Photochemical yields in ribonuclease and oxidized glutathione irradiated at different wavelengths in the ultraviolet, Biophys. J. 8:1275–1287.Google Scholar
  250. Ray, W. J., Jr., and Koshland, D. E., Jr., 1962, Identification of amino acids involved in phosphoglucomutase action, J. Biol. Chem. 237:2493–2505.Google Scholar
  251. Reiser, A., and Leyshon, L., 1970, A correlation between negative charge on nitrogen and the reactivity of aromatic nitrenes, J. Amer. Chem. Soc. 92:7487.Google Scholar
  252. Reiser, A., and Wagner, H. M., 1971, Photochemistry of the azido group, in: The Chemistry of the Azido Group (S. Patai, ed.), pp. 441–462, Interscience, New York.Google Scholar
  253. Reiser, A., Willets, F. W., Terry, G. C., Williams, V., and Marley, R., 1968, Photolysis of aromatic azides. Part 4. Lifetimes of aromatic nitrenes and absolute rates of some of their reactions, Trans. Faraday Soc. 64:3265–3275.Google Scholar
  254. Reiter, M. J., Cowburn, D. A., Prives, J. M., and Karlin, A., 1972, Affinity labeling of the acetylcholine receptor in the electroplax: Electrophoretic separation in sodium dodecyl sulphate, Proc. Natl. Acad. Sci. USA 69:1168–1172.Google Scholar
  255. Richards, F. F., Lifter, J., Hew, C.-L., Yoshioka, M., and Konigsberg, W. H., 1974, Photoaffinity labeling of the combining region of myeloma protein 460. II. An interpretation of the labeling patterns, Biochemistry 13:3572–3575.Google Scholar
  256. Risi, S., Dose, K., Rathinasamy, T. K., and Augenstein, L., 1967, The effect of environment on cystine disruption by ultraviolet light, Photochem. Photobiol. 6:423–436.Google Scholar
  257. Rosenstein, R. W., and Richards, F. F., 1972, Synthesis of a photo-activated menadione (VIT K1) affinity label and its reaction with a menadione-binding myeloma protein,J. Immunol. 108:1467–1469.Google Scholar
  258. Roshchupkin, D. I., Pelenitsyn, A. B., Potapenko, A. Ya., Talitsky, V. V., and Vladimirov, Yu. A., 1975, Study of the effects of ultraviolet light on biomembranes. IV. The effect of oxygen on UV-induced hemolysis and lipid photoperoxidation in rat erythrocytes and liposomes, Photochem. Photobiol. 21:63–69.Google Scholar
  259. Roth, H. D., and Manion, M. L., 1976, Solution photochemistry of diazoacetone. Wolff rearrangement and acetylmethylene,J. Amer. Chem. Soc. 98:3392–3393.Google Scholar
  260. Rudnick, G., Kaback, H. R., and Weil, R., 1975, Photoinactivation of the β-galactoside transport system in Escherichia coli membrane vesicles with 2-nitro-4-azidophenyl-l-thio-β-D-galactopyranoside, J. Biol. Chem. 250:1371–1375.Google Scholar
  261. Ruoho, A., and Kyte, J., 1974, Photoaffinity labeling of the ouabain-binding site on (Na+ + K+) adenosinetriphosphatase, Proc. Nat. Acad. Sci. USA 71:2352–2356.Google Scholar
  262. Ruoho, A. E., Kiefer, H., Roeder, P. E., and Singer, S. J., 1973, The mechanism of photo-affinity labeling, Proc. Nat. Acad. Sci. USA 70:2567–2571.Google Scholar
  263. Rupp, W. D., and Prusoff, W. H., 1964, Incorporation of 5-iodo-2′-deoxyuridine into bacteriophage T1 as related to ultra-violet sensitization or protection, Nature 202:1288–1290.Google Scholar
  264. Salomon, J., and Elad, D., 1974, Ultraviolet and 7-ray-induced reactions of nucleic acid constituents. Reactions of purines with amines, Photochem. Photobiol. 19:21–27.Google Scholar
  265. Saltiel, J., Neuberger, K. R., and Wrighton, M., 1969, The nature of the intermediates in the sensitized cis-trans photoisomerization of alkenes, J. Amer. Chem. Soc. 91:3658–3659.Google Scholar
  266. Saman, E., Claeyssens, M., Kersters-Hilderson, H., and De Bruyne, C. K., 1973, Azido compounds as potential affinity labels for glycosidases, Carbohyd. Res. 30:207–210.Google Scholar
  267. Santus, R., and Grossweiner, L. I., 1972, Primary products in the flash photolysis of tryptophan, Photochem. Photobiol. 15:101–105.Google Scholar
  268. Sawada, F., 1974, Kinetics of 4-thiouridylate-sensitized photoinactivation of ribonuclease A, Photochem. Photobiol. 20:523–526.Google Scholar
  269. Schäfer, G., Schrader, E., Rowohl-Quisthoudt, G., Penades, S., and Rimpler, M., 1976, 8-Azido-ADP, a covalent-binding inhibitor of mitochondrial adenine nucleotide translocation, FEBS Letters 64:185–189.Google Scholar
  270. Schechter, A. N., and Epstein, C. J., 1968, Spectral studies on the denaturation of myoglobin, J. Mol. Biol. 35:567–589.Google Scholar
  271. Schiller, P. W., 1972, Study of adrenocorticotropic hormone conformation by evaluation of intramolecular resonance energy transfer in Nϵ-Dansyl-lysine21-ACTH-(l-24)-tetrakosipeptide, Proc. Natl. Acad. Sci. USA 69:975–979.Google Scholar
  272. Schimmel, P. R., Budzik, G. P., Lam, S. L., and Schoemaker, H. J. P., 1976, In vitro studies of photochemically cross-linked protein-nucleic acid complexes. Determination of cross-linked regions and structural relationships in specific complexes, in: Aging, Carcinogenesis and Radiation Biology (K. C. Smith, ed.), pp. 123–148, Plenum Press, New York.Google Scholar
  273. Schoemaker, H. J. P., and Schimmel, P. R., 1974, Photo-induced joining of a transfer RNA with its cognate amino acyl-transfer RNA synthetase, J. Mol. Biol. 84:503–513.Google Scholar
  274. Schoemaker, H. J. P., Budzik, G. P., Giegé, R., and Schimmel, P. R., 1975, Three photo-cross-linked complexes of yeast phenylalanine specific transfer ribonucleic acid with aminoacyl transfer ribonucleic acid synthetases, J. Biol. Chem. 250:4440–4444.Google Scholar
  275. Schott, H. N., and Shetlar, M. D., 1974, Photochemical addition of amino acids to thymine, Biochem. Biophys. Res. Commun. 59:1112–1116.Google Scholar
  276. Schroeter, S. H., and Orlando, C. M., Jr., 1969, The photocycloaddition of various ketones and aldehydes to vinyl ethers and ketene diethyl acetal, J. Org. Chem. 34:1181–1187.Google Scholar
  277. Schuster, D. I., and Barile, G. C., 1976, Observation of a ketyl radical on flash excitation of a 2,5-cyclohexadienone, Tetrah. Letters:3017–3020.Google Scholar
  278. Schwartz, I., Gordon, E., and Ofengand, J., 1975, Photoaffinity labeling of the ribosomal A site with S-(p-azidophenacyl)valyl-tRNA, Biochemistry 14:2907–2914.Google Scholar
  279. Schwarzberg, M., Sperling, J., and Elad, D., 1973, Photoalkylation of peptides. Visible light-induced conversion of glycine residues into branched α-amino acids, J. Amer. Chem. Soc. 95:6418–6426.Google Scholar
  280. Schwyzer, R., and Caviezel, M., 1971, p-Azido-L-phenylalanine: a photo-affinity “probe” related to tyrosine, Helv. Chim. Acta 54:1395–1400.Google Scholar
  281. Seela, F., and Cramer, F., 1976, Synthesis of 4-denitro-4-azido-chloramphenicol. A photo-chemically activatable analog of chloramphenicol, Bioorg. Chem. 5:25–30.Google Scholar
  282. Sellers, D. R., and Ghiron, C. A., 1973, Role of the tryptophan fluorescent state in the ultraviolet-induced inactivation of β-trypsin, Photochem. Photobiol. 18:393–402.Google Scholar
  283. Shafer, J., Baronowsky, P., Laursen, R., Finn, F., and Westheimer, F. H., 1966, Products from the photolysis of diazoacetyl chymotrypsin, J. Biol. Chem. 241:421–427.Google Scholar
  284. Shaklai, N., and Daniel, E., 1970, Fluorescence properties of hemocyanin from Levantina hierosolima, Biochemistry 9:564–568.Google Scholar
  285. Shepherd, G. B., Papadakis, N., and Hammes, G. C., 1976, Fluorescence energy-transfer measurements between coenzyme A and flavin adenine dinucleotide binding sites of the Escherichia coli pyruvate dehydrogenase multienzyme complex, Biochemistry 15:2888–2893.Google Scholar
  286. Shinitzky, M., and Goldman, R., 1967, Fluorometric detection of histidine-tryptophan complexes in peptides and proteins, Europ. J. Biochem. 3:139–144.Google Scholar
  287. Singer, S. J., 1967, Covalent labeling of active sites, Advan. Protein Chem. 22:1–54.Google Scholar
  288. Singh, A., Thornton, E. R., and Westheimer, F. H., 1962, The photolysis of diazo-acetylchymotrypsin, J. Biol. Chem. 237:3006–3008.Google Scholar
  289. Singh, H., and Vadasz, J. A., 1976, Sensitized photoinactivation of bacterial ribosomes, Abstracts of the VII International Congress of Photobiology, Rome, 1976, abstract P 122.Google Scholar
  290. Smith, K. C., 1962, Dose-dependent decrease in extractability of DNA from bacteria following irradiation with ultraviolet light or with visible light plus dye, Biochem. Biophys. Res. Commun. 8:157–163.Google Scholar
  291. Smith, K. C., 1964, The photochemical interaction of deoxyribonucleic acid and protein in vivo and its biological importance, Photochem. Photobiol. 3:415–427.Google Scholar
  292. Smith, K. C., 1969, Photochemical addition of amino acids to 14C-uracil, Biochem. Biophys. Res. Commun. 34:354–357.Google Scholar
  293. Smith, K. C., 1970, A mixed photoproduct of thymine and cysteine: 5-S-cysteine, 6-hydrothymine, Biochem. Biophys. Res. Commun. 39:1011–1016.Google Scholar
  294. Smith, K. C., 1974, Molecular changes in the nucleic acids produced by ultraviolet and visible radiation, in: Sunlight and Man (T. B. Fitzpatrick, M. A. Pathak, L. C. Harber, M. Seiji, and A. Kukita, eds.), pp. 57–66, University of Tokyo Press, Tokyo.Google Scholar
  295. Smith, K. C., 1976, Radiation-induced cross-linking of DNA and protein in bacteria, in: Aging, Carcinogenesis and Radiation Biology (K. C. Smith, ed.), pp. 67–81, Plenum Press, New York.Google Scholar
  296. Smith, K. C., and Aplin, R. T., 1966, A mixed photoproduct of uracil and cysteine (5–5-cysteine-6-hydrouracil). A possible model for the in vivo cross-linking of deoxyribonucleic acid and protein by ultraviolet light, Biochemistry 5:2125–2130.Google Scholar
  297. Smith, K. C., and Hanawalt, P. C., 1969, Molecular Photobiology, Academic Press, New York.Google Scholar
  298. Smith, K. C., and Meun, D. H. C., 1968, Kinetics of the photochemical addition of [35S] cysteine to polynucleotides and nucleic acids, Biochemistry 7:1033–1037.Google Scholar
  299. Smith, K. C., and O’Leary, M. E., 1967, Photoinduced DNA-protein cross-links and bacterial killing: A correlation at low temperatures, Science 155:1024–1026.Google Scholar
  300. Smith, R. A. G., and Knowles, J. R., 1973, Aryldiazirines. Potential reagents for photolabeling of biological receptor sites, J. Amer. Chem. Soc. 95:5072–5073.Google Scholar
  301. Sonenberg, N., Zamir, A., and Wilchek, M., 1974, A photo-induced reaction of chloramphenicol with E. coli ribosomes: Covalent binding of the antibiotic and inactivation of peptidyl transferase, Biochem. Biophys. Res. Comm. 59:693–696.Google Scholar
  302. Sonenberg, N., Wilchek, M., and Zamir, A., 1975, Identification of a region in 23 S rRNA located at the peptidyl transferase center, Proc. Natl. Acad. Sci. USA 72:4332–4336.Google Scholar
  303. Spikes, J. D., and Livingston, R., 1969, The molecular biology of photodynamic action: Sensitized photoautooxidations in biological systems, Advan. Radiat. Biol. 3:29–121.Google Scholar
  304. Spikes, J. D., and MacKnight, M. L., 1970, Dye-sensitized photooxidation of proteins, Ann. N.Y.Acad. Sci. 171:149–162.Google Scholar
  305. Staros, J. V., and Richards, F. M., 1974, Photochemical labeling of the surface proteins of human erythrocytes, Biochemistry 13:2720–2726.Google Scholar
  306. Stefanovsky, Y., and Westheimer, F. H., 1973, Diazoacetyl subtilisin, Proc. Nat. Acad. Sci. USA 70:1132–1136.Google Scholar
  307. Steiner, R. F., 1968, The phosphorescence of tyrosine oligopeptides, Biochem. Biophys. Res. Comm. 30:502–507.Google Scholar
  308. Steiner, R. F., and Kolinski, R., 1968, The phosphorescence of oligopeptides containing tryptophan and tyrosine, Biochemistry 7:1014–1018.Google Scholar
  309. Steinmaus, H., Rosenthal, I., and Elad, D., 1969, Photochemical and γ-ray-induced reactions of purines and purine nucleosides with 2-propanol, J. Amer. Chem. Soc. 91:4321–4323.Google Scholar
  310. Steinmaus, H., Rosenthal, I., and Elad, D., 1971, Light- and γ-ray-induced reactions of purines and purine nucleosides with alcohols,J. Org. Chem. 36:3594–3598.Google Scholar
  311. Strambini, G. B., and Galley, W. C., 1975, Laser-pulsed phosphorescence studies of the distance dependence for triplet-triplet energy transfer, J. Chem. Phys. 63:3467–3472.Google Scholar
  312. Strniste, G. F., and Rall, S. C., 1976, Induction of stable protein-deoxyribonucleic acid adducts in Chinese Hamster cell chromatin by ultraviolet light, Biochemistry 15:1712–1719.Google Scholar
  313. Strniste, G. F., and Smith, D. A., 1974, Induction of stable linkage between the deoxyribonucleic acid dependent ribonucleic acid polymerase and d(A-T)nd(A-T)n by ultraviolet light, Biochemistry 13:485–493.Google Scholar
  314. Stryer, L., 1968, Fluorescence spectroscopy of proteins, Science 162:526–533.Google Scholar
  315. Subramanyan, V., and Tollin, G., 1972, Flash photolysis studies of proteins and indole derivatives in solution, Photochem. Photobiol. 15:449–456.Google Scholar
  316. Tallandini, L., Salvato, B., and Jori, G., 1975, Photochemical effects associated with the copper absorption bands of the native hemocyanin from Octopus vulgaris, FEBS Letters 54:283–285.Google Scholar
  317. Tan, A. T., and Woodworth, R. C., 1970, Differences in absorption and emission properties of conalbumin and metal-saturated conalbumin,J. Polymer. Sci., Part C 30:539–606.Google Scholar
  318. Templer, H., and Thistlethwaite, P. J., 1976, Flash photolysis of aqueous tryptophan, alanyltryptophan and tryptophylalanine, Photochem. Photobiol. 23:79–85.Google Scholar
  319. Terenin, A., and Ermolaev, V., 1956, Sensitized phosphorescence in organic solutions at low temperature-energy transfer between triplet states, Trans. Faraday Soc. 52:1042–1052.Google Scholar
  320. Tien, F. T., Grossweiner, L. I., and Kepka, A. G., 1974, Radiosensitization of lysozyme by dye binding, Int. J. Radiat. Biol. 26:405–407.Google Scholar
  321. Todd, P., and Han, A., 1976, UV-induced DNA to protein cross-linking in mammalian cells, in: Aging, Carcinogenesis and Radiation Biology (K. C. Smith, ed.), pp. 83–104, Plenum Press, New York.Google Scholar
  322. Todd, P., Allen, B. S., and Hardin, J. M., 1974, A search for a nucleoprotein photoproduct in mammalian cells exposed to ultraviolet light, Abstracts, Second Annual Meeting of the American Society for Photobiology, Vancouver, 1974, p. 66.Google Scholar
  323. Tometsko, A. M., and Turula, J., 1976, Evaluating the stability and reactivity of a light-sensitive probe by enzyme analysis, Photochem. Photobiol. 24:579–585.Google Scholar
  324. Toth, B., and Dose, K., 1976, Photochemically induced cross-links between DNA and alcohol dehydrogenase or salmine, respectively, Rad. Environm. Biophys. 13:105–113.Google Scholar
  325. Turro, N. J., Dalton, J. C., Dawes, K., Farrington, G., Hautala, R., Morton, D., Niemczyk, M., and Schore, N., 1972, Molecular photochemistry of alkanones in solution: α-cleavage, hydrogen abstraction, cycloaddition and sensitization reaction, Aces. Chem. Res. 5:92–101.Google Scholar
  326. Turro, N. J., Liu, K.-C., and Chow, M.-F., 1977, Solvent sensitivity of Type II photoreactions of ketones as a device to probe solute location in micelles, Photochem. Photobiol. 26:413–415.Google Scholar
  327. Van de Vorst, A., Lion, Y., and Saucin, M., 1976, Photosensibilisation des constituants des acides nucleiques par la proflavine. Mecanisme de formation de radicaux d’addition d’hydrogene en solutions aqueuses gelées, Biochim. Biophys. Acta 430:467–477.Google Scholar
  328. Varghese, A. J., 1972, Photochemistry of nucleic acids and their constituents, in: Photo-physiology, Vol. 7 (A. C. Giese, ed.), pp. 207–274, Academic Press, New York.Google Scholar
  329. Varghese, A. J., 1974a, Photochemical addition of glutathione to uracil and thymine, Photochem. Photobiol. 20:339–343.Google Scholar
  330. Varghese, A. J., 1974b, Photoaddition products of uracil and cysteine, Biochim. Biophys. Acta 374:109–114.Google Scholar
  331. Varghese, A. J., 1976, Photochemical addition of amino acids and related compounds to nucleic acid constituents, in: Aging, Carcinogenesis and Radiation Biology (K. C. Smith, ed.), pp. 207–223, Plenum Press, New York.Google Scholar
  332. Varkonyi, Z., and Azalay, L., 1974, The complexity of the fluorescence of peroxidase, Acta Biochim. et Biophys. Acad. Sci. Hung. 9:255–264.Google Scholar
  333. Vaughan, R. J., and Westheimer, F. H., 1969, A method for marking the hydrophobic binding sites of enzymes. An insertion into the methyl group of an alanine residue of trypsin, J. Amer. Chem. Soc. 91:217–218.Google Scholar
  334. Vaz, W. L. C., and Schoellmann, C., 1976a, Specific fluorescent derivatives of macro-molecules. Reaction of dansyl fluoride with serine proteinases, Biochim. Biophys. Acta 439:194–205.Google Scholar
  335. Vaz, W. L. C., and Schoellmann, C., 1976b, Specific fluorescent derivatives of macro-molecules. A fluorescence study of some specifically modified derivatives of chymo-trypsin, trypsin and subtilisin, Biochim. Biophys. Acta 439:206–218.Google Scholar
  336. Volkert, W. A., and Ghiron, C. A., 1973, The destruction of tryptophanyl residues in trypsin by 280-nm radiation, Photochem. Photobiol. 17:9–16.Google Scholar
  337. Volkert, W. A., and Grossweiner, L. I., 1973, Flash photolysis of ribonuclease A, Photochem. Photobiol. 17:81–90.Google Scholar
  338. Volkert, W. A., Kuntz, R. R., Ghiron, C. A., and Evans, R., 1976, Flash photolysis studies of N-acetyl tryptophanamide: Bromide enhancement of radical yields, Abstracts of the VII International Congress of Photobiology, Rome, 1976, abstract, p. 9.Google Scholar
  339. Voytek, P., 1975, Purification of thymidine Phosphorylase from Escherichia coli and its photoinactivation in the presence of thymine, thymidine, and some halogenated analogs, J. Biol. Chem. 250:3660–3665.Google Scholar
  340. Wallace, W. L., Van Duyne, R. P., and Lewis, F. D., 1976, Quenching of aromatic hydrocarbon singlets and aryl ketone triplets by alkyl disulfides, J. Amer. Chem. Soc. 98:5319–5326.Google Scholar
  341. Walling, C., and Gibian, M. J., 1965, Hydrogen abstraction reactions by the triplet states of ketones,J. Amer. Chem. Soc. 87:3361–3364.Google Scholar
  342. Walrant, P., and Santus, R., 1974a, N-formyl-kynurenine, a tryptophan photooxidation product, as photodynamic sensitizer, Photochem. Photobiol. 19:411–417.Google Scholar
  343. Walrant, P., and Santus, R., 1974b, Ultraviolet and N-formyl-kynurenine-sensitized photoinactivation of bovine carbonic anhydrase. An internal photodynamic effect, Photochem. Photobiol. 20:455–460.Google Scholar
  344. Walrant, P., Santus, R., and Grossweiner, L. I., 1975, Photosensitizing properties of N-formyl kynurenine, Photochem. Photobiol. 22:63–65.Google Scholar
  345. Walrant, P., Santus, R., and Charlier, M., 1976, Role of complex formation in the photosensitized degradation of DNA induced by N-formyl kynurenine, Photochem. Photobiol. 24:13–19.Google Scholar
  346. Weber, G., 1976, What we have learnt about proteins from the study of their photoexcited states, in: Excited States of Biological Molecules (J. B. Birks, ed.), pp. 363–374, John Wiley & Sons, New York.Google Scholar
  347. Weber, G., and Rosenheck, K., 1964, Proton-transfer effects in the quenching of fluorescence of tyrosine copolymers, Biopolymers Symp. 1:333–341.Google Scholar
  348. Weber, G., and Teale, F. J. W., 1959, Electronic energy transfer in haem proteins, Disc. Faraday Soc. 27:134–141.Google Scholar
  349. Weinreb, A., and Werner, A., 1974, On the luminescence of estrogens, Photochem. Photobiol 20:313–321.Google Scholar
  350. Weinryb, I., and Steiner, R. F., 1971, The luminescence of the aromatic amino acids, in: Excited States of Proteins and Nucleic Acids (R. F. Steiner and I. Weinryb, eds.), pp. 277–318, Plenum Press, New York.Google Scholar
  351. Weintraub, H., 1973, The assembly of newly replicated DNA into chromatin, Cold Spring Harbor Symp. Quant. Biol. 38:247–256.Google Scholar
  352. Wentrup, C., and Crow, W. D., 1970, Pyrolysis of l(H)-triazoloarenes. Ring contraction to 5-ring nitriles, and CN-group migration, Tetrah. 26:3965–3981.Google Scholar
  353. Werner, T. C., Bunting, J. R., and Cathou, R. E., 1972, The shape of immunoglobulin G molecules in solution, Proc. Natl. Acad. Sci. USA 69:795–799.Google Scholar
  354. Wetlaufer, D. B., 1962, Ultraviolet spectra of proteins and amino acids, Advan. Protein Chem. 17:303–390.Google Scholar
  355. Wettermark, G., 1962, A flash photolysis study of 2-(2′,4′-dinitrobenzyl)-pyridine in water, J. Amer. Chem. Soc. 84:3658–3661.Google Scholar
  356. White, W. E., and Yielding, K. L., 1973, Labeling of the active site of glutamate dehydrogenase with a photogenerated species, Biochem. Biophys. Res. Comm. 52:1129–1133.Google Scholar
  357. Wiegand, G., and Kaleja, R., 1976, Fluorescent guanosine-nucleotide analogs suitable for photoaffinity-labeling experiments, Eur. J. Biochem. 65:473–479.Google Scholar
  358. Wieland, T., Von Dungen, A., and Birr, C., 1971, Synthese einer antitoxischen Antamanid-Variante mit p-Azido-phenylalanin in Stelle 6, Liebigs Ann. Chem. 752:109–114.Google Scholar
  359. Williams, D. S., and Slater, T. F., 1973, Photosensitization of isolated lysosomes, Biochem. Soc. Transactions 1:200–202.Google Scholar
  360. Wolff, M. E., Feldman, D., Catsoulacos, P., Funder, J. W., Hancock, C., Amano, Y., and Edelman, I. S., 1975, Steroidal 21-diazoketones: Photogenerated corticosteroid receptor labels, Biochemistry 14:1750–1759.Google Scholar
  361. Wu, C.-W., and Stryer, L., 1972, Proximity relationships in rhodopsin, Proc. Natl. Acad. Sci. USA 69:1104–1108.Google Scholar
  362. Yang, N. C., 1967, Reactivity of the Photoexcited Organic Molecule, Interscience, New York.Google Scholar
  363. Yoshioka, M., Lifter, J., Hew, C.-L., Converse, C. A., Armstrong, M. Y. K., Konigsberg, W. H., and Richards, F. F., 1973, Studies on the combining region of protein 460, a mouse γA immunoglobulin which binds several haptens. Binding and reactivity of two types of photoaffinity labeling reagents, Biochemistry 12:4679–4685.Google Scholar
  364. Ziffer, H., and Sharpless, N. E., 1962, Extension of the Hammett equation to photochemical quantum yields,J. Org. Chem. 27:1944–1946.Google Scholar
  365. Zolin, V. F., and Koreneva, L. G., 1976, The use of rare earth elements as a probe for investigation of biologically active compounds. V. Luminescence spectra and binding sites of europium in some proteins, Biofizika 21:1003–1007.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Giulio Jori
    • 1
    • 2
  • John D. Spikes
    • 1
    • 2
  1. 1.The C.N.R. Center for the Biochemistry and Physiology of Hemocyanins and Other Metalloproteins, Istituto di Biologia AnimaleUniversita di PadovaPadovaItaly
  2. 2.Department of BiologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations