Physical Properties of Excited States: A General Method for Measuring Triplet—Triplet Extinction Coefficients, Singlet—Triplet Intersystem Crossing Efficiencies, and Related Parameters

  • René Bensasson
  • Edward J. Land


The quantitative measurement of the various radiative and nonradiative deactivations of electronically excited states is the main purpose behind studies of photophysics and photochemistry. This objective is far from being achieved for any molecule. In this article we describe a general method for measuring two important photophysical parameters, molar extinction coefficients of triplet excited states, ϵT, and quantum yields of formation of lowest triplet, ΦT. Tabulations of all the triplet extinctions and singlet-triplet intersystem crossing efficiencies that have been thus measured to date are also given. A knowledge of these constants allows one to determine a variety of other parameters describing electronically excited molecules and their degradation, for instance: molar extinction coefficients of first excited singlet states, quantum yields of internal conversion, rate constants of intersystem crossing S1 → T1? internal conversion S1 → S0, or triplet-triplet annihilation.


Quantum Yield Triplet State Molar Extinction Coefficient Internal Conversion Triplet Excited State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amand, B., and Bensasson, R., 1974, Contribution à l’étude du spectre d’absorption du premier état singulet excité (S nS 1) du naphthalene en solution, C. R. Acad. Sci. Paris B278:981–983.Google Scholar
  2. Amand, B., and Bensasson, R., 1975, Determination of triplet quantum yields by laser flash absorption spectroscopy, Chem. Phys. Lett. 34:44–48.CrossRefGoogle Scholar
  3. Amouyal, E., Bensasson, R., and Land, E. J., 1974, Triplet states of ubiquinone analogs studied by ultraviolet and electron nanosecond irradiation, Photochem. Photobiol. 20:415–422.CrossRefGoogle Scholar
  4. Azerad, R., Bensasson, R., Cooper, M. A., Dawe, E. A., and Land, E. J., 1976, Singlet-triplet quantum efficiencies of retinal isomers, in: Proceedings of the Lisbon Conf. on Excited States of Biological Molecules (J. B. Birks, ed.), pp. 531–539, Wiley-Interscience, New York.Google Scholar
  5. Bäckstrom, H. L. J., and Sandros, K., 1958, The quenching of the long-lived fluorescence of biacetyl in solution, Acta. Chem. Scand. 12:828–832.Google Scholar
  6. Beckett, A., and Porter, G., 1963, Primary photochemical processes in aromatic molecules. Part 9. Photochemistry of benzophenone in solution. Trans. Faraday Soc. 59:2038–2050.CrossRefGoogle Scholar
  7. Bebelaar, D., 1974, Time resolved molecular spectroscopy using high power solid state lasers in pulse transmission mode. A re-examination of the Sn S1 spectra of naphthalene and anthracene, Chem. Phys. 3:205–216.CrossRefGoogle Scholar
  8. Bensasson, R., and Land, E. J., 1971, Triplet-triplet extinction coefficients via energy transfer, Trans. Faraday Soc. 67:1904–1915.CrossRefGoogle Scholar
  9. Bensasson, R. V., Richards, J. T. and Thomas, J. K., 1971, The pulsed laser photolysis of benzene in cyclohexane, Chem. Phys. Lett. 9:13–16.CrossRefGoogle Scholar
  10. Bensasson, R., Land, E. J., and Truscott, T. G., 1975, Wavelength dependence of the intersystem crossing efficiency for retinal isomers, Photochem. Photobiol. 21:419–421.CrossRefGoogle Scholar
  11. Bensasson, R., Land, E. J., and Maudinas, B., 1976a, Triplet states of carotenoids from photosynthetic bacteria studied by nanosecond ultraviolet and electron pulse irradiation, Photochem. Photobiol. 23:189–193.CrossRefGoogle Scholar
  12. Bensasson, R., Lafferty, J., Land, E. J., Sinclair, R. S., and Truscott, T. G., 1976, The triplet state of 1,6-diphenyl-1,3,5-hexatriene and l,8-diphenyl-1,3,5,7-octatetraene, Chem. Phys. Lett. 41:333–335.CrossRefGoogle Scholar
  13. Bensasson, R., Dawe, E. A., Land, E. J., and Long, D. A., 1977, Singlet-triplet intersystem crossing quantum yields of photosynthetic and related polyenes,J. Chem. Soc. (Faraday I), 73:1319–1325.Google Scholar
  14. Berlman, I. B., 1973, Energy Transfer Parameters of Aromatic Compounds, Academic Press, New York.Google Scholar
  15. Bonneau, R., Faure, J., and Joussot-Dubien, J., 1968, Singlet-singlet absorption and intersystem crossing from the 1 B 3n state of naphthalene, Chem. Phys. Lett. 2:65–67.CrossRefGoogle Scholar
  16. Borkman, R. F., and Yamanashi, B. S., 1973, Photodimerisation kinetics of thymine-H2 and thymine-D2, Photochem. Photobiol. 19:173–176.CrossRefGoogle Scholar
  17. Bowers, P. G., and Porter, G., 1967, Triplet state quantum yields for some aromatic hydrocarbons and xanthene dyes in dilute solution, Proc. Roy. Soc. A299:345–355.Google Scholar
  18. Capellos, C., and Bielski, B. H. J., 1972, Kinetic Systems, Wiley-Interscience, New York.Google Scholar
  19. Dawson, W., and Abrahamson, E. W., 1962, Population and decay of the lowest triplet state in polyenes with conjugated heteroatoms, J. Phys. Chem. 66:2542–2547.CrossRefGoogle Scholar
  20. Dorfman, L. M., 1974, Pulse radiolysis, investigation of rates and mechanisms of reactions, in: Techniques of Chemistry, 3rd ed., Part II, Vol. 6 (G. G. Hammes, ed.), pp. 469–519, Wiley-Interscience, New York.Google Scholar
  21. Dorfman, L. M., and Matheson, M. S., 1965, Pulse radiolysis in: Progress in Reaction Kinetics, Vol. 3 (G. Porter, ed.), pp. 237–301, Pergamon, Oxford.Google Scholar
  22. Fisher, G. J., Varghese, A. J., and Johns, H. E., 1974, Ultraviolet-induced reactions of thymine and uracil in the presence of cysteine, Photochem. Photobiol. 20:109–120.CrossRefGoogle Scholar
  23. Fisher, M. M., and Weiss, K., 1974, Laser photolysis of retinal and its protonated and unprotonated n-butylamine Schiff base, Photochem. Photobiol. 20:423–432.CrossRefGoogle Scholar
  24. Godfrey, T. S., and Porter, G., 1966, Absorption spectrum of triplet benzene, Trans. Faraday Soc. 62:7–10.CrossRefGoogle Scholar
  25. Heinzelmann, W., and Labhart, H., 1969, Triplet-triplet spectra and triplet quantum yields of some aromatic hydrocarbons in liquid solution, Chem. Phys. Lett. 4:20–24.CrossRefGoogle Scholar
  26. Horrocks, A. R., and Wilkinson, F., 1968, Triplet state formation efficiencies of aromatic hydrocarbons in solution, Proc. Roy. Soc. A306:257–273.Google Scholar
  27. Hulme, B. E., Land, E. J., and Phillips, G. O., 1972, Pulse radiolysis of 9, 10 anthraquinones. Part 2: Triplet excited states, J. Chem. Soc. (Faraday I) 68:2003–2012.CrossRefGoogle Scholar
  28. Jablonski, A., 1933, Efficiency of anti-stokes fluorescence, Nature 131:839–840.CrossRefGoogle Scholar
  29. Jablonski, A., 1935, Über den Mechanismus der Photolumineszenz von Farbstoffphosphoren, Z. Physik 94:38–46.CrossRefGoogle Scholar
  30. Keene, J. P., Kemp, T. J., and Salmon G. A., 1965, Effect of solvent on spectra produced by pulse radiolysis of solutions of organic electron scavengers, Proc. Roy. Soc. A287:494–509.Google Scholar
  31. Kellmann, A., 1977, Intersystem crossing and internal conversion quantum yields of acridine in polar and nonpolar solvents. J. Phys. Chem. 81:1195–1198.CrossRefGoogle Scholar
  32. Kellmann, A., and Lindqvist, L., 1967, Flash-photolytic detection of triplet acridine formed by energy transfer from biacetyl, in: The Triplet State (A. B. Zahlan, ed.), pp. 439–445, Cambridge University Press, Cambridge.Google Scholar
  33. Kelly, J. R., Gupta, A., and Hammond, G. S. 1975, Induced deactivation of naphthalene triplets by cis-piperylene, Photochem. Photobiol. 21:275–276.CrossRefGoogle Scholar
  34. Kemp, T. J., and Roberts, J. P., 1969, Yields of excited states in the pulse radiolysis of solutions of substituted anthracenes, Trans. Faraday Soc. 65:725–731.CrossRefGoogle Scholar
  35. Kliger, D. S., and Albrecht, A. C., 1970, Polarised spectroscopy of excited states of substituted anthracenes on a nanosecond time scale, J. Chem. Phys. 53:4059–4065.CrossRefGoogle Scholar
  36. Labhart, H., 1964, Eine experimentelle Methode zur Ermittlung der Singulett-Triplett-Konversionswahrscheinlichkeit und der Triplett-Spektren von gelösten organischen molekeln Messungen an 1,2-Benzanthracen, Helv. Chim. Acta 47:2279–2288.CrossRefGoogle Scholar
  37. Lamola, A. A., and Mittal, J. P., 1966, Solution photochemistry of thymine and uracil, Science 154:1560–1561.CrossRefGoogle Scholar
  38. Land, E. J., 1968, Extinction coeficients of triplet-triplet transitions, Proc. Roy. Soc. A305:457–471.Google Scholar
  39. Land, E. J., 1976, The triplet state of bilirubin, Photochem. Photobiol. 24:415–411.CrossRefGoogle Scholar
  40. Land, E. J., Richards, J. T., and Thomas, J. K., 1972, Excited states in the nanosecond pulse radiolysis and laser flash photolysis of N, N-dimethyl aniline,J. Phys. Chem. 76:3805–3812.CrossRefGoogle Scholar
  41. Land, E. J., McAlpine, E., Sinclair, R. S., and Truscott, T. G., 1976, Triplet excited states of 1,4-disubstituted anthraquinones: Possible evidence for association of quinones in solution, J. Chem. Soc. (Faraday I) 72:2091–2100.Google Scholar
  42. Lavalette, D., Bensasson, R., Amand, B., and Land, E. J., 1971, On the experimental determination of triplet-triplet extinction coefficients and oscillator strengths, Chem. Phys. Lett. 10:331–333.CrossRefGoogle Scholar
  43. Ledger, M. B., and Salmon, G. A., 1976, Triplet-triplet extinction coefficients of anthracene and 9-bromoanthracene determined by a ground state depletion method, J. Chem. Soc. (Faraday II) 72:883–886.CrossRefGoogle Scholar
  44. Lewis, G. N., and Kasha, M., 1944, Phosphorescence and the triplet state, J. Amer. Chem. Soc. 66:2100–2116.CrossRefGoogle Scholar
  45. Lewis, G. N., and Kasha, M., 1945, Phosphorescence in fluid media and the reverse process of singlet-triplet absorption,J. Am. Chem. Soc. 67:994–1003.CrossRefGoogle Scholar
  46. Medinger, T., and Wilkinson, F., 1965, Mechanism of fluorescence quenching in solution. Part Quenching by bromobenzene, Trans. Faraday Soc. 61:620–630.CrossRefGoogle Scholar
  47. Nafisi-Movaghar, J., and Wilkinson, F., 1970, Photochemical reactions of duroquinone. Part 2. Flash photolytic investigations, Trans. Faraday Soc. 66:2268–2278.CrossRefGoogle Scholar
  48. Novak, J. R., and Windsor, M. W., 1968, Laser photolysis and spectroscopy: A new technique for the study of rapid reactions in the nanosecond time range, Proc. Roy. Soc, A308:95–110.Google Scholar
  49. Perrin, P., 1929, La fluorescence des solutions, Ann. Phys. (Paris) 12:169–175.Google Scholar
  50. Platzman, R. L., 1967, Energy spectrum of primary activations in the action of ionizing radiation, in: Radiation Research (G. Silini, ed.), pp. 20–42, North-Holland, Amsterdam.Google Scholar
  51. Porter, G., and Topp, M. R., 1970, Nanosecond flash photolysis, Proc. Roy. Soc. A315: 163–184.Google Scholar
  52. Porter, G., and Wilkinson, F., 1961a, Energy transfer from the triplet state, Proc. Roy. Soc. A264:1–18.Google Scholar
  53. Porter, G., and Wilkinson, F., 1961, Primary photochemical processes in aromatic molecules. Part 5. Flash photolysis of benzophenone in solution, Trans. Faraday Soc. 57:1686–1691.CrossRefGoogle Scholar
  54. Porter, G., and Windsor, M. W., 1958, The triplet state in fluid media, Proc. Roy. Soc. A245:238–258.Google Scholar
  55. Rentzepis, P. M., 1970, Ultrafast processes, Science 169:239–247.CrossRefGoogle Scholar
  56. Richards, J. T., and Thomas, J. K., 1970, Effect of solvent on the flash photolysis and laser photolysis of N, N, N’, N’-tetramethyl paraphenylene Diamine in solution, Trans. FaradaySoc. 66:621–632.Google Scholar
  57. Richards, J. T., West, G., and Thomas, J. K., 1970, Formation of ions and excited states in the laser photolysis of solutions of pyrene, J. Phys. Chem. 74:4137–4141.CrossRefGoogle Scholar
  58. Rosenfeld, T., Alchalel, A., and Ottolenghi, M., 1973, Primary photoprocesses in retinol, Chem. Phys. Lett. 20:291–297.CrossRefGoogle Scholar
  59. Rosenfeld, T., Alchalel, A., and Ottolenghi, M., 1974, On the role of the triplet state in the photoisomerisation of retinal isomers,J. Phys. Chem. 78:336–341.CrossRefGoogle Scholar
  60. Rosenfeld, T., Alchalel, A., and Ottolenghi, M., 1976, Intersystem crossing, ionic dissociation and cis-trans isomerisation in the photolysis of retinol and related molecules, in: Proceedings of the Lisbon Conf. on the Excited States of Biological Molecules (J. B. Birks, ed.), pp. 540–554, Wiley-Interscience, New York.Google Scholar
  61. Salet, C., and Bensasson, R., 1975, Studies of thymine and uracil triplet excited state in acetonitrile and water, Photochem. Photobiol. 22:231–235.CrossRefGoogle Scholar
  62. Sandros, K., 1969, Transfer of triplet state energy in fluid solutions: IV. Determination of triplet yields by the measurement of sensitised biacetyl phosphorescence, Acta. Chem. Scand. 23:2815–2829.CrossRefGoogle Scholar
  63. Speiser, S., Van der Werf, R., and Kommandeur, J., 1973, Photoquenching: The dependence of the primary quantum yield of a monophotonic laser-induced photochemical process on the intensity and duration of the exciting pulse, Chem. Phys. 1:297–305.CrossRefGoogle Scholar
  64. Tetreau, C., Lavalette, D., Land, E. J., and Peradejordi, F., 1972, Sensitised triplet-triplet absorption of biphenylene, Chem. Phys. Lett. 17:245–247.CrossRefGoogle Scholar
  65. Thomas, J. K., 1970, Excited states and their reactions in liquids, Ann. Rev. Phys. Chem. 21:17–38.CrossRefGoogle Scholar
  66. Vander Donckt, E., and Lietaer, D., 1972, Photochemistry of aromatic compounds. Part 5. Measurement of quantum yields of triplet state formation by flash photolysis, J. Chem. Soc. (Faraday I) 68:112–120.Google Scholar
  67. West, M., 1976, Experimental methods in flash photolysis, in: Creation and Detection of the Excited State, Vol. 4 (W. R. Ware, ed.), pp. 218–308, Dekker, New York.Google Scholar
  68. Wigner, E., 1927, Uber die Erhaltungssätze in der Quantenmechanik, Nachr. Ges. Wiss. Göttingen math. Physik, pp. 375–381.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • René Bensasson
    • 1
  • Edward J. Land
    • 2
  1. 1.ER CNRS 98, Laboratoire de Chimie PhysiqueUniversité de Paris XIOrsayFrance
  2. 2.Paterson LaboratoriesChristie Hospital and Holt Radium InstituteManchesterEngland

Personalised recommendations