The Melanins: Their Synthesis and Structure

  • Marsden S. Blois


Although the melanins are among the most widely distributed and visible of the biological pigments, the understanding of their synthesis, structure, and function has been a story so prolonged as to constitute a case study in the history of biology. From the early commentary by Aristotle (315 b.c.), to the most recent investigations, the study of melanins has involved virtually every applicable chemical and physical technique, and the motivation in this research has reflected the biological fashions of each era. Notwithstanding these efforts, we still do not know their chemical structures or molecular weights, their mode of. synthesis is not yet agreed upon, a satisfactory nomenclature remains to be devised, and even their biological roles are more a matter of surmise than proof.


Free Radical Reaction Electron Spin Resonance Study Melanin Synthesis Semiquinone Radical Synthetic Melanin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M., Blois, M. S., and Sands, R. H., 1958, Paramagnetic resonance spectra of some semiquinone free radicals, J. Chem. Phys. 28:774–776.CrossRefGoogle Scholar
  2. Altschule, M. D., and Hegedus, Z. L., 1976, The importance of studying visceral melanins, Clin. Pharm. Ther. 19:124–134.Google Scholar
  3. Aristotle, 315 B.C., Historia Animalia, Lib. IV, Cap. I, II.Google Scholar
  4. Beer, R. J. S., Broadhurst, T., and Robertson, A., 1954, The chemistry of melanins. Part V. The autooxidation of 5,6-dihydroxyindoles,.J. Chem. Soc. 1954:1947–1953.CrossRefGoogle Scholar
  5. Binns, F., and Swan, G. A., 1957, Oxidation of some synthetic melanins, Chem. and Ind. 396–397.Google Scholar
  6. Blois, M. S., 1955a, Observation of the semiquinone of benzoquinone, J. Chem. Phys. 23:1351.CrossRefGoogle Scholar
  7. Blois, M. S., 1955b A note on free radical formation in biologically occurring quinones, Biochim. Biophys. Acta 18:165.CrossRefGoogle Scholar
  8. Blois, M. S., 1965, Random polymer as a matrix for chemical evolution, in: The Origins of Prebiological Systems and of their Molecular Matrices (S. Fox, ed.), pp. 19–33, Academic Press, New York.Google Scholar
  9. Blois, M. S., 1966, On the spectroscopic properties of some natural melanins, J. Inv. Derm. 47:162–166.Google Scholar
  10. Blois, M. S., Zahlan, A. B., and Maling, J. E., 1964, Electron spin resonance studies of melanin, Biophys. J. 4:471–490.CrossRefGoogle Scholar
  11. Bourquelot, E., and Bertrand, G., 1895, Le bleuissement et le noircissement des champignons, Compt. Rend. Soc. Biol. 47:582–584.Google Scholar
  12. Clemo, G. R., Duxbury, F. K., and Swan, G. A., 1952, Formation of tyrosine melanin. Part III. The use of carboxyl-labelled tyrosine and dihydroxyphenylalanine in melanin formation, J. Chem. Soc. 1952:3464–3468.CrossRefGoogle Scholar
  13. Commoner, B., Townsend, J., and Pake, G., 1954, Free radicals in biological materials, Nature 174:689–691.CrossRefGoogle Scholar
  14. Fattorusso, E., Nicolaus, R. A., Sussman, H., and Kertesz, D., 1966, Sul processo di tras-formazione del 5,6-diossindolo in melanina, Rend. Accad. Sci. Fisc. Math. 33 (Ser. 4):372–377.Google Scholar
  15. Fitch, J. E., and Lavenberg, R. J., 1968, Deep Water Teleostean Fishes of California, University of California Press, Berkeley.Google Scholar
  16. Fraenkel, G. K., Hirshon, J. M., and Walling, C. J., 1954, Detection of polymerization radicals by paramagnetic resonance, J. Am. Chem. Soc. 76:3606.CrossRefGoogle Scholar
  17. Fridovich, I., 1974, Superoxide and evolution, in: Horizons in Biochemistry and Biophysics (E. Quagliariello, ed.), pp. 1–37, Addison-Wesley, Reading, Massachusetts.Google Scholar
  18. George, P., and Griffith, J. S., 1959, Electron transfer and enzyme catalysis, in: The Enzymes, Vol. 1 (P. D. Boyer, H. Lardy, and K. Myrback, eds.), pp. 347–389, Academic Press, New York.Google Scholar
  19. Gessard, C., 1903, Sur la formation du pigment melanique dans les tumeurs du cheval, Compt. Rend. 136:1086–1088.Google Scholar
  20. Gottlieb, A. J., and Wurzel, H. A., 1974, Protein-quinone interaction: In vitro induction of indirect antiglobulin reactions with methyldopa, Blood 43:85–97.Google Scholar
  21. Hegedus, Z. L., and Altschule, M. D., 1970, I. The formation of rheomelanins in human blood plasma and catecholamines, from L-dopa and from some of their derivatives, Archiv. Int. Physiol. Biochim. 78:443–459.CrossRefGoogle Scholar
  22. Hempel, K., 1966, Investigation on the structure of melanin in malignant melanoma with 3H-and 14C-DOPA labeled at different positions, in: Structure and Control of the Melanocyte (G. Delia Porta and O. Muhlbock, eds.), pp. 162–175, Springer, Berlin.Google Scholar
  23. Mason, H. S., 1953, The structure of melanins, in: Pigment Cell Growth (M. Gordon, ed.), pp. 277–301, Academic Press, New York.Google Scholar
  24. Mason, H. S., 1959, Structure of melanins, in: Pigment Cell Biology (M. Gordon, ed.), pp. 563–582, Academic Press, New York.Google Scholar
  25. Mason, H. S., Ingram, D. J. E., and Allen, B., 1960, The free radical property of melanins, Arch. Biochem. Biophys. 86:225–230.CrossRefGoogle Scholar
  26. Michaelis, L., 1935, Semiquinone, the intermediate steps of reversible organic oxidation-reduction, Chem. Revs. 16:243–286.CrossRefGoogle Scholar
  27. Misra, H. P., and Fridovich, I., 1972, The univalent reduction of oxygen by reduced flavins and quinones,J. Biol. Chem. 247:188–192.Google Scholar
  28. Nicolaus, R. A., 1962, Biogenesis of melanins, Rass. di Med. Sperim. 9(suppl. 1):1–32.Google Scholar
  29. Nicolaus, R. A., 1968, Melanins, Herman, Paris.Google Scholar
  30. Panizzi, L., and Nicolaus, R. A., 1952, Melanin I—The Melanin of Sepia, Gazz. Chim. Ital. 83:435–460.Google Scholar
  31. Pathak, M. S., 1967, Photobiology of melanogenesis: Biophysical aspects, in: Advances in Biology of the Skin (W. Montagna, ed.), pp. 397–420, Pergamon Press, New York.Google Scholar
  32. Pathak, M. S., Jimbow, K., Szabo, G., and Fitzpatrick, T. B., 1976, Sunlight and melanin pigmentation, in: Photochemical and Photobiological Reviews, Vol. 2 (K. C. Smith, ed.), pp. 211–239, Plenum Press, New York.Google Scholar
  33. Piatelli, M., Fattorusso, E., Magno, S., and Nicolaus, R. A., 1962, The structure of melanins and melanogenesis. II. Sepiomelanin and synthetic pigments, Tetrahedron 18:941–949.CrossRefGoogle Scholar
  34. Przibram, H., 1901, Hof. Beitr. 1:229 (cited in Nicolaus, 1968); see alsoGoogle Scholar
  35. Przibram, H., and Schmalfuss, H., 1927, Das Dioxyphenylalanin in der Kokon des Nachtpfanenauges Samia cecropia L. (Saturnidae), Biochem. Z. 187:467–469.Google Scholar
  36. Prota, G., and Thompson, R. H., 1976, Melanin pigmentation in mammals, Endeavor 35:32–38.CrossRefGoogle Scholar
  37. Raper, H. S., 1928, The aerobic axidases, Physiol. Rev. 8:245–282.Google Scholar
  38. Robson, N. C., and Swan, G. A., 1966, Studies on the structure of some synthetic melanins, in: Structure and Control of the Melanocyte (G. Delia Porta and O. Muhlbock, eds.) p. 155, Springer, New York.Google Scholar
  39. Sarna, T., Hyde, J. S., and Swartz, H. M., 1976, Ion-exchange in melanin: An electron spin resonance study with lanthanide probes, Science 192:1132–1134.CrossRefGoogle Scholar
  40. Seiji, M., Fitzpatrick, T. B., Simpson, R. T., and Birbeck, M. S. C., 1963, Chemical composition and terminology of specialized organelles (melanosomes and melanin granules) in mammalian melanocytes, Nature 32:1082–1084.CrossRefGoogle Scholar
  41. Swan, G. A., 1974, Structure, chemistry, and biosynthesis of the melanins, Fortschritte der Chem. Org. Naturst. 31:521–582.CrossRefGoogle Scholar
  42. Tappel, A. L., 1975, Lipid peroxidation and fluorescent molecular damage to membranes, in: Pathobiology of Cell Membranes, Vol. 1 (B. F. Trump and A. Arstila, eds.), pp. 145–170, Academic Press, New York.Google Scholar
  43. Thathachari, Y. T., 1971, Physical studies on melanin, Jour. Sci. Ind. Res. (India), 30:10, 529–537.Google Scholar
  44. Thathachari, Y. T., and Blois, M. S., 1969, Physical studies on melanins. II. X-ray diffraction, Biophys. J. 9:77–89.CrossRefGoogle Scholar
  45. Vivo-Acrivos, J. F., and Blois, M. S., 1958, An electron spin resonance study of stable free radicals in natural and synthetic melanins, in: Informal Discussions on Free Radical Stailization (Faraday Soc), p. 93, Sheffield, England.Google Scholar
  46. Wertz, J. E., Reitz, D. C., and Dravnieks, F., 1961, Electron spin resonance studies of antioxidation of 3,4-dihydroxyphenylalanine, in: Free Radicals in Biological Systems (M. S. Blois, H. W. Brown, R. M. Lemmon, R. O. Lindblom, and M. Weissbluth, eds.), pp. 183–193, Academic Press, New York.Google Scholar
  47. Westheimer, F. H., 1954, “One electron” and “two electron” oxidation-reduction reaction in inorganic and organic chemistry, in: The Mechanism of Enzyme Action (W. D. McElroy, ed.), pp. 321–356, Johns Hopkins Press, Baltimore.Google Scholar
  48. Yamazaki, I., 1971, One-electron and two-electron transfer mechanisms in enzymic oxidation-reduction reactions, Adv. Biophys. 2:33–76.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Marsden S. Blois
    • 1
  1. 1.Department of DermatologyUniversity of California-San FranciscoSan FranciscoUSA

Personalised recommendations