Skip to main content

The Activation of Enzymes with Light

  • Chapter
Photochemical and Photobiological Reviews

Abstract

Photoresponses have been described for bacteria, fungi, protozoa, algae, plants, invertebrates, and higher animals. These responses include phototaxis, phototropism, photomorphogenesis, photoperiodism, vision, and photocontrol of biological rhythms. The molecular details for the translation of a light stimulus to the observed biological response remain largely unknown for most responses to light. One possibility for the primary process in the stimulation of biological responses is the enhancement by light of an enzyme reaction. This can involve direct absorption of photons by an immediate component of the enzyme system (e.g., substrate), or indirect effects of light on enzymes such as the enhancement of protein synthesis, and enzyme activation which requires an additional protein acting as a light activation factor. The light activation of enzymes represents a topic that is developing rapidly, with particular emphasis in the areas of vision, photochromic enzyme inhibitors, photoreactivation, and enzyme activation in photosynthetic organisms. A few years ago there were not many reports on the activation of enzymes by light, whereas the photomactivation of enzymes has received widespread attention for years. Light activates specific enzymes, whereas inactivation by exposure to far-UV* radiation or by photodynamic action is not enzyme specific. Some inactivations by visible or near-UV light are selective, but are usually not reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acton, G. J., and Schöpfer, P., 1974, Phytochrome-induced synthesis of ribonuclease de novo in lupin hypocotyl sections, Biochem. J. 142:449–455.

    Google Scholar 

  • Altschule, M. D., (ed.), 1975, Frontiers of Pineal Physiology, Massachusetts Institute of Technology, Cambridge.

    Google Scholar 

  • Anderson, L. E., 1974, Activation of pea leaf chloroplast sedoheptulose-l,7-diphosphate phosphatase by light and dithiothreitol, Biochem. Biophys. Res. Commun. 59:907–913.

    Google Scholar 

  • Anderson, L. E., and Avron, M., 1976, Light modulation of enzyme activity in chloroplasts. Generation of membrane-bound vicinal-dithiol groups by photosynthetic electron transport, Plant Physiol. 57:209–213.

    Google Scholar 

  • Anderson, L. E., and Duggan, J. X., 1976, Light modulation of glucose-6-phosphate dehydrogenase. Partial characterization of the light inactivation system and its effects on the properties of the chloroplastic and cytoplasmic forms of the enzyme, Plant Physiol. 58:135–139.

    Google Scholar 

  • Anderson, L. E., and Lim, T., 1972, Chloroplast glyceraldehyde 3-phosphate dehydrogenase: Light-dependent change in the enzyme, FEBS Lett. 27:189–191.

    Google Scholar 

  • Aparicio, P. J., Roldán, J. M., and Calero, F., 1976, Blue light photoreactivation of nitrate reductase from green algae and higher plants, Biochem. Biophys. Res. Commun. 70:1071–1077.

    Google Scholar 

  • Apel, K., and Bogorad, L., 1976, Light-induced increase in the activity of maize plastid DNA-dependent RNA polymerase, Eur. J. Biochem. 67:615–620.

    Google Scholar 

  • Balasubramanian, D., Subramani, S., and Kumar, C., 1975, Modification of a model membrane structure by embedded photochrome, Nature (London) 254:252–254.

    Google Scholar 

  • Barrett, T. W., 1976, On the Comorosan effect, Physiol. Chem. Phys. 8:259–264.

    Google Scholar 

  • Bass, G. E., 1975, The Comorosan effect: Toward a perspective, Int. J. Quantum Chem., Quantum Biol. Symp. 2:321–324.

    Google Scholar 

  • Bass, G. E., and Chenevey, J. E., 1976, Irradiation induced rate enhancements for the LDH-pyruvate reaction, Int. J. Quantum Chem., Quantum Biol. Symp. 3:247–250.

    Google Scholar 

  • Bass, G. E., and Crisan, D., 1973, Concerning irradiation-induced biological activity alterations of tetracycline, Physiol. Chem. Phys. 5:331–335.

    Google Scholar 

  • Bass, G. E., Sandru, D., Chenevey, J. E., and Bucovaz, E. T., 1976, The Comorosan effect: Single- and double-blind studies on the urea/urease system, Physiol. Chem. Phys. 8:253–258.

    Google Scholar 

  • Baugher, J. F., and Grossweiner, L. I., 1975, Ultraviolet inactivation of papain, Photochem. Photobiol. 22:163–167.

    Google Scholar 

  • Berezin, I. V., Varfolomeyev, S. D., Klibanov, A. M., and Martinek, K., 1974, Light and ultrasonic regulation of α-chymotrypsin catalytic activity; proflavin as a light- and sound-sensitive competitive inhibitor, FEBS Lett. 39:329–331.

    Google Scholar 

  • Berger, T. J., and Orlando, J. A., 1973, Purification and some properties of a protein factor required for light-dependent transhydrogenase in Rhodopseudomonas spheroides, Arch. Biochem. Biophys. 159:25–31.

    Google Scholar 

  • Bersin, T., 1933, Uber die Einwirkung von Oxydations- und Reduktionsmitteln auf Papain. II. Die Aktivitätsbeeinflussung durch Licht, Organoarsenverbindungen und Ascorbinsäure, Hoppe-Seyler’s Z. Physiol. Chem. 222:177–186.

    Google Scholar 

  • Bieth, J., Vratsanos, S. M., Wassermann, N., and Erlanger, B. F., 1969, Photoregulation of biological activity by photochromic reagents, II. Inhibitors of acetylcholinesterase, Proc. Natl. Acad. Sci. USA 64:1103–1106.

    Google Scholar 

  • Bieth, J., Vratsanos, S. M., Wassermann, N. H., Cooper, A. G., and Erlanger, B. F., 1973, Photoregulation of biological activity by photochromic reagents. Inactivators of acetylcholinesterase, Biochemistry 12:3023–3027.

    Google Scholar 

  • Biscar, J. P., 1976, Photon enzyme activation, Bull. Math. Biol. 38:29–38.

    Google Scholar 

  • Bitensky, M. W., Miki, N., Keirns, J. J., Keirns, M., Baraban, J. M., Freeman, J., Wheeler, M. A., Lacy, J., and Marcus, F. R., 1975, Activation of photoreceptor disk membrane phosphodiesterase by light and ATP, Adv. Cyclic Nucleotide Res. 5:213–240.

    Google Scholar 

  • Bonting, S. L., Caravaggio, L. L., and Canady, M. R., 1964, Studies on sodium-potassium-activated adenosine triphosphatase X. Occurrence in retinal rods and relation to rhodopsin, Exp. Eye Res. 3:47–56.

    Google Scholar 

  • Bose, S. K., Gest, H., and Ormerod, J. G., 1961, Light-activated hydrogenase activity in a photosynthetic bacterium: A permeability phenomenon, J. Biol. Chem. 236:PC13–PC14.

    Google Scholar 

  • Bownds, D., Dawes, J., Miller, J., and Stahlman, M., 1972, Phosphorylation of frog photoreceptor membranes induced by light, Nature (London), New Biol. 237:125–127.

    Google Scholar 

  • Brodie, A. E., and Bownds, D., 1976, Biochemical correlates of adaptation processes in isolated frog photoreceptor membranes, J. Gen. Physiol. 68:1–11.

    Google Scholar 

  • Buchanan, B. B., and Wolosiuk, R. A., 1976, Photosynthetic regulatory protein found in animal and bacterial cells, Nature (London) 264:669–670.

    Google Scholar 

  • Buchanan, B. B., Schürmann, P., and Kalberer, P. P., 1971, Ferredoxin-activated fructose diphosphatase of spinach chloroplasts, J. Biol. Chem. 246:5952–5959.

    Google Scholar 

  • Carell, E. F., Egan, J. M. and Pratt, E. A., 1970, Studies on chloroplast development and replication in Euglena, II. Identification of two different deoxyribonucleases. Arch. Biochem. Biophys. 138:26–31.

    Google Scholar 

  • Castle, E. S., 1966, A kinetic model for adaptation and the light responses of Phycomyces, J. Gen. Physiol. 49:925–935.

    Google Scholar 

  • Chader, G. J., Herz, L. R., and Fletcher, R. T., 1974, Light activation of phosphodiesterase activity in retinal rod outer segments, Biochim. Biophys. Acta 347:491–493.

    Google Scholar 

  • Chader, G. J., Fletcher, R. T., O’Brien, P. J., and Krishna, G., 1976, Differential phosphorylation by GTP and ATP in isolated rod outer segments of the retina, Biochemistry 15:1615–1620.

    Google Scholar 

  • Champigny, M., and Bismuth, E., 1976, Role of photosynthetic electron transfer in light activation of Calvin cycle enzymes, Physiol. Plant. 36:95–100.

    Google Scholar 

  • Chollet, R., and Anderson, L. L., 1976, Regulation of ribulose 1,5-bisphosphate carboxylase-oxygenase activities by temperature pretreatment and chloroplast metabolites, Arch. Biochem. Biophys. 176:344–351.

    Google Scholar 

  • Cohen, R. J., 1974, Cyclic AMP levels in Phycomyces during a response to light, Nature (London) 251:144–146.

    Google Scholar 

  • Comorosan, S., 1975, The measurement process in biological systems: A new phenomenology, J. Theor. Biol. 51:35–49.

    Google Scholar 

  • Comorosan, S., Cru, M., and Vieru, S., 1972, The interaction between enzymic systems and irradiated substrates, Enzymologia 42:31–43.

    Google Scholar 

  • Cook, J. S., 1970, Photoreactivation in animal cells, in: Photophysiology, Vol. 5 (A. C. Giese, ed.), pp. 191–233, Academic Press, New York.

    Google Scholar 

  • Cummings, F. W., 1975, A biochemical model of the circadian clock, J. Theor. Biol. 55:455–470.

    Google Scholar 

  • Dever, D. F., and Grunwald, E., 1976, Megawatt infrared laser chemistry of CCIF3 and CCI3F. 1. Photochemistry, photophysics, and effect of H2,J. Am. Chem. Soc. 98:5055–5062.

    Google Scholar 

  • Diamond, J., Schiff, J. A., and Kelner, A., 1975, Photoreactivating enzyme from Euglena and the control of its intracellular level, Arch. Biochem. Biophys. 167:603–614.

    Google Scholar 

  • Dose, K., and Risi, S., 1972, The action of U.V. light of various wavelengths on papain, Photochem. Photobiol. 15:43–50.

    Google Scholar 

  • Ebrey, T. G., and Honig, B., 1975, Molecular aspects of photoreceptor function, Q. Rev. Biophys. 8:129–184.

    Google Scholar 

  • Egan, J. M., and Carell, E. F., 1972, Studies on chloroplast development and replication in Euglena. III. A study of the site of synthesis of alkaline deoxyribonuclease induced during chloroplast development in Euglena gracilis, Plant Physiol. 50:391–395.

    Google Scholar 

  • Engelsma, G., 1974, On the mechanism of the changes in phenylalanine ammonia-lyase activity induced by ultraviolet and blue light in gherkin hypocotyls, Plant Physiol. 54:702–705.

    Google Scholar 

  • Erlanger, B. F., 1976, Photoregulation of biologically active macromolecules, Ann. Rev. Biochem. 45:267–283.

    Google Scholar 

  • Errera, M., 1953, Mechanisms of biological action of ultraviolet and visible radiations, Prog. Biophys. Biophys. Chem. 3:88–130.

    Google Scholar 

  • Evans, A., and Smith, H., 1976, Spectrophotometric evidence for the presence of phytochrome in the envelope membranes of barley etioplasts, Nature (London) 259:323–325.

    Google Scholar 

  • Feldman, J. F., 1975, Circadian periodicity in Neurospora: Alteration by inhibitors of cyclic AMP phosphodiesterase, Science 190:789–790.

    Google Scholar 

  • Fletcher, R. T., and Chader, G. J., 1976, Cyclic GMP: Control of concentration by light in retinal photoreceptors, Biochem. Biophys. Res. Commun. 70:1297–1302.

    Google Scholar 

  • Frank, R. N., and Buzney, S. M., 1975, Mechanism and specificity of rhodopsin phosphorylation, Biochemistry 14:5110–5117.

    Google Scholar 

  • Frank, R. N., and Goldsmith, T. H., 1965, Adenosine triphosphatase activity in the rod outer segments of the pig’s retina, Arch. Biochem. Biophys. 110:517–525.

    Google Scholar 

  • Galston, A. W., 1974, Plant photobiology in the last half century, Plant Physiol. 54:427–436.

    Google Scholar 

  • Goodwin, B. C., and Vieru, S., 1975, Low energy electromagnetic perturbation of an enzyme substrate, Physiol. Chem. Phys. 7:89–90.

    Google Scholar 

  • Hahlbrock, K., 1976, Regulation of phenylalanine ammonia-lyase activity in cell-suspension cultures of Petroselinum hortense, Eur. J. Biochem. 63:137–145.

    Google Scholar 

  • Hahlbrock, K., Knobloch, K., Kreuzaler, F., Potts, J. R. M., and Wellman, E., 1976, Coordinated induction and subsequent activity changes of two groups of metabolically interrelated enzymes, Eur. J. Biochem. 61:199–206.

    Google Scholar 

  • Halberstam, M. A., and Gordin, M. B., 1973, Kinetics of reversible photochrome reactions in the series of 1,5-disubstituted 3,3-dimethyl-6′-nitro-8′-bromospiro-[(2′H, 1′-benzopyran)-2,2′-indolines], Photochem. Photobiol. 17:103–113.

    Google Scholar 

  • Halldal, P., and Taube, O., 1972, Ultraviolet action and photoreactivation in algae, in: Photophysiology, Vol. 7 (A. C. Giese, ed.), pp. 163–188, Academic Press, New York.

    Google Scholar 

  • Hanawalt, P. C., and Setlow, R. B., (eds.), 1975, Molecular Mechanisms for the Repair of DNA, Plenum Press, New York.

    Google Scholar 

  • Hanson, R. S., 1964, Light-activated hydrogenase in Rhodospirillum rubrum, Biochim. Biophys. Acta 79:433–445.

    Google Scholar 

  • Harm, H., 1976, Repair of UV-irradiated biological systems: Photoreactivation, in: Photochemistry and Photobiology of Nucleic Acids, Vol. 2, Biology (S. Y. Wang, ed.), pp. 219–263, Academic Press, New York.

    Google Scholar 

  • Harm, H., and Rupert, C. S., 1976, Analysis of photoenzymatic repair of UV lesions in DNA by single light flashes. XI. Light-induced activation of the yeast photoreactivating enzyme, Mutation Res. 34:75–92;

    Google Scholar 

  • Harm, W., Rupert, C. S., and Harm, H., 1971, The study of photoenzymatic repair of UV lesions in DNA by flash photolysis, in: Photophysiology, Vol. 6 (A. C. Giese, ed.), pp. 279–324, Academic Press, New York.

    Google Scholar 

  • Hatch, M. D., and Slack, C. R., 1969, Studies on the mechanism of activation and inactivation of pyruvate, phosphate dikinase, Biochem. J. 112:549–558.

    Google Scholar 

  • Heinrich, M. R., and Lanyi, J. K., 1977, Light energy transduction by the purple membrane of halophilic bacteria, Fed. Proc. 36:1797–1839.

    Google Scholar 

  • Hendricks, S. B., 1964, Photochemical aspects of plant photoperiodicity, in: Photophysiology Vol. 1 (A. C. Giese, ed.), pp. 305–331, Academic Press, New York.

    Google Scholar 

  • Hendricks, S. B., and Borthwick, H. A., 1967, The function of phytochrome in regulation of plant growth, Proc. Natl. Acad. Sci. USA 58:2125–2130.

    Google Scholar 

  • Hillman, W. S., 1967, The physiology of phytochrome, Plant Physiol. 18:301–324.

    Google Scholar 

  • Hug, D. H., and Hunter, J. K., 1970, Photoactivation of urocanase in Pseudomonas putida: Possible role in photoregulation of histidine metabolism, J. Bacteriol. 102:874–876.

    Google Scholar 

  • Hug, D. H., and Roth, D., 1971, Photoactivation of urocanase in Pseudomonas putida. Purification of inactive enzyme, Biochemistry 10:1397–1402.

    Google Scholar 

  • Hug, D. H., Hunter, J. K., and Roth, D. E., 1971, Photoactivation of urocanase in Pseudomonas putida: factors influencing activation, Photochem. Photobiol. 13:171–177.

    Google Scholar 

  • Hug, D. H., O’Donnell, P. S., and Hunter, J. K., 1976, Activation of urocanase by ultraviolet light, Abstr. Amer. Soc. Photobiol., p. 42.

    Google Scholar 

  • Jaffe, M. J., 1970, Evidence for the regulation of phytochrome-mediated processes in bean roots by the neurohumor, acetylcholine, Plant Physiol. 46:768–777.

    Google Scholar 

  • Jagger, J., and Stafford, R. S., 1965, Evidence for two mechanisms of photoreactivation in Escherichia coli B, Biophys. J. 5:75–88.

    Google Scholar 

  • Johnson, H. S., 1971, NADP-malate dehydrogenase: Photoactivation in leaves of plants with Calvin cycle photosynthesis, Biochem. Biophys. Res. Commun. 43:703–709.

    Google Scholar 

  • Johnson, H. S., and Hatch, M. D., 1970, Properties and regulation of leaf nicotinamide adenine dinucleotide phosphate-malate dehydrogenase and ‘malic’ enzyme in plants with the d-dicarboxylic acid pathway of photosynthesis, Biochem. J. 119:273–280.

    Google Scholar 

  • Johnson, J. H., Reed, B. C., and Rilling, H. C., 1974, Early photoinduced enzymes of photoinduced carotenogenesis in a Mycobacterium species, J. Biol. Chem. 249:402–406.

    Google Scholar 

  • Jones-Lecointe, A., Rose, S. P. R., and Sinha, A. K., 1976, Sub-cellular localization of enhanced lysine incorporation into cerebral cortex proteins in dark-reared and light-exposed rats,J. Neurochem. 26:929–933.

    Google Scholar 

  • Karube, I., Nakamoto, Y., Namba, K., and Suzuki, S., 1976, Photocontrol of urease-collagen membrane activity, Biochim. Biophys. Acta 429:975–981.

    Google Scholar 

  • Kaufman, H., Vratsanos, S. M., and Erlanger, B. F., 1968, Photoregulation of an enzymic process by means of a light-sensitive ligand, Science 162:1487–1488.

    Google Scholar 

  • Keilin, D., and Hartree, E. F., 1955, Cyanide compounds of ferroperoxidase and myoglobin and their reversible photodissociation, Biochem. J. 61:153–171.

    Google Scholar 

  • Keirns, J. J., Miki, N., Bitensky, M. W., and Keirns, M., 1975, A link between rhodopsin and disc membrane cyclic nucleotide phosphodiesterase. Action spectrum and sensitivity to illumination, Biochemistry 14:2760–2766.

    Google Scholar 

  • Keister, D. L., and Yike, N. J., 1966, Studies on an energy-linked pyridine nucleotide transhy-drogenase in photosynthetic bacteria. I. Demonstration of the reaction in Rhodospirillum rubrum, Biochem. Biophys. Res. Commun. 24:519–525.

    Google Scholar 

  • Kelly, G. J., Zimmermann, G., and Latzko, E., 1976, Light induced activation of fructose-1,6-biphosphatase in isolated intact chloroplasts, Biochem. Biophys. Res. Commun. 70:193–199.

    Google Scholar 

  • Kelner, A., 1969, Biological aspects of ultraviolet damage, photoreactivation and other repair systems in microorganisms, in: The Biologic Effects of Ultraviolet Radiation (F. Urbach, ed.), pp. 77–82,

    Google Scholar 

  • Pergamon, Oxford, Kimmel, J. R., and Smith, E. L., 1954, Crystalline papain. I. Preparation, specificity and activation,J. Biol. Chem. 207:515–531.

    Google Scholar 

  • Kowallik, W., and Ruyter, G., 1976, Ãœber Aktivitätssteigerungen der Pyruvatkinase durch Blaulicht oder Glucose bei einer Chlorophyllfreien Chlorella-Mutante, Planta 128:11–14.

    Google Scholar 

  • Kühn, H., and Dreyer, W. J., 1972, Light dependent phosphorylation of rhodopsin by ATP, FEBS Lett. 20:1–6.

    Google Scholar 

  • Kühn, H., Cook, J. H., and Dreyer, W. J., 1973, Phosphorylation of rhodopsin in bovine photoreceptor membranes. A dark reaction after illumination, Biochemistry 12:2495–2502.

    Google Scholar 

  • Lorimer, G. H., Badger, M. R., and Andrews, T. J., 1976, The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications, Biochemistry 15:529–536.

    Google Scholar 

  • Martinek, K., Varfolomeyev, S. D., and Berezin, I. V., 1971, Interaction of α-chymotrypsin with N-cinnamoylimidazole; substrate sensitive to light, Eur. J. Biochem. 19:242–249.

    Google Scholar 

  • McConnell, D. G., and Scarpelli, D. G., 1963, Rhodopsin: An enzyme, Science 139:848.

    Google Scholar 

  • Menaker, M. (ed.), 1976, Extraretinal photoreception. Symposium on extraretinal photoreception in circadian rhythms and related phenomena, Photochem. Photobiol. 23:213–306.

    Google Scholar 

  • Menger, E. L. (ed.), 1975, Special issue on the chemistry of vision, Accounts Chem. Res. 8:81–112.

    Google Scholar 

  • Miki, N., Keirns, J. J., Marcus, F. R., Freeman, J., and Bitensky, M. W., 1973, Regulation of cyclic nucleotide concentrations in photoreceptors: An ATP-dependent stimulation of cyclic nucleotide phosphodiesterase by light, Proc. Natl. Acad. Sci. USA 70:3820–3824.

    Google Scholar 

  • Miki, N., Keirns, J. J., Marcus, F. R., and Bitensky, M. W., 1974, Light regulation of adenosine 3′,5′ cyclic monophosphate levels in vertebrate photoreceptors, Exp. Eye Res. 18:281–297.

    Google Scholar 

  • Miller, W. H., Gorman, R. E., and Bitensky, M. W., 1971, Cyclic adenosine monophosphate: function in photoreceptors, Science 174:295–297.

    Google Scholar 

  • Mitrakos, K., and Shropshire, W., Jr. (eds.), 1972, Phytochrome, Academic Press, New York.

    Google Scholar 

  • Montagnoli, G., 1974, Azoaldolase. Photochrome enzyme, Acta Vitaminol. Enzymol. 28:268–285.

    Google Scholar 

  • Montagnoli, G., Monti, S., Nannicini, L., and Felicioli, R., 1976, Azoaldolase photosensitivity, Photochem. Photobiol. 23:29–32.

    Google Scholar 

  • Namba, K., and Suzuki, S., 1975, Photo-control of enzyme activity with a photochromic spiropyran compound, modification of α-amylase with spiropyran compound, Chem. Lett. 1975:947–950.

    Google Scholar 

  • Oishi, T., and Lauber, J. K., 1973, Effect of light and darkness on pineal hydroxymethyl-O-methyl transferase (HIOMT) in Japanese quail, Life Sciences 13:1105–1116.

    Google Scholar 

  • Orlando, J. A., 1970, Involvement of sulfhydryl groups in light-dependent transhydrogenase of Rhodopseudomonas spheroides, Arch. Biochem. Biophys. 141:111–120.

    Google Scholar 

  • Page, R. M., 1968, Phototropism in fungi, in: Photophysiology, Vol. 3 (A. C. Giese, ed.), pp. 65–90, Academic Press, New York.

    Google Scholar 

  • Paine, A. J., 1976, Induction of benzo[a]pyrene mono-oxygenase in liver cell culture by the photochemical generation of active oxygen species, Biochem. J. 158:109–117.

    Google Scholar 

  • Pavlidis, T., and Kauzmann, W., 1969, Toward a quantitative biochemical model for circadian oscillators, Arch. Biochem. Biophys. 132:338–348.

    Google Scholar 

  • Purec, L., and Krasna, A. I., 1967, The activation of the hydrogenase of Proteus vulgaris by visible light, Proc. Natl. Acad. Sci. USA 57:1416–1421.

    Google Scholar 

  • Puree, L., and Krasna, A. I., 1968, The effect of ultraviolet light on the hydrogenase of Proteus vulgaris, Biochemistry 7:51–55.

    Google Scholar 

  • Puree, L., Krasna, A. I., and Rittenberg, D., 1962, The inhibition of hydrogenase by carbonmonoxide and the reversal of this inhibition by light, Biochemistry 1:270–275.

    Google Scholar 

  • Robb, R. M., 1974, Histochemical evidence of cyclic nucleotide phosphodiesterase in photoreceptor outer segments, Invest. Opthalmol. 13:740–747.

    Google Scholar 

  • Roth, D., and Hug, D. H., 1972, Photoactivation of urocanase in Pseudomonas putida: Action spectrum, Radiat. Res. 50:94–104.

    Google Scholar 

  • Rupert, C. S., 1964, Photoreactivation of ultraviolet damage, in: Photophysiology, Vol. 2 (A. C. Giese, ed.), pp. 283–327, Academic Press, New York.

    Google Scholar 

  • Rupert, C. S., and To, K., 1976, Substrate dependence of the action spectrum for photoenzy-matic repair of DNA, Photochem. Photobiol. 24:229–235.

    Google Scholar 

  • Sadana, J. C., and Rittenberg, D., 1963, Some observations on the enzyme hydrogenase of Desulfovibrio desulfuricans, Proc. Natl. Acad. Sci. USA 50:900–904.

    Google Scholar 

  • Schengrund, C., and Krasna, A. I., 1969, Purification and properties of the light-activated hydrogenase of Proteus vulgaris, Biochim. Biophys. Acta 185:332–337.

    Google Scholar 

  • Schrauzer, G. N., Katz, R. N., Grate, J. H., and Vickrey, T. M., 1976, Photochemical induction of enzymatic activity of a carbocyclic analog of coenzyme B12: A contribution to the elucidation of the mechanism of action of coenzyme B12, Angew. Chem. (Int. Ed. Engl.) 15:170–171.

    Google Scholar 

  • Schröder, J., Betz, B., and Hahlbrock, K., 1976, Light-induced enzyme synthesis in cell suspension cultures of Petroselinum hortense, Eur. J. Biochem. 67:527–541.

    Google Scholar 

  • Schürmann, P., Wolosiuk, R. A., Breazeale, V. D., and Buchanan, B. B., 1976, Two proteins function in the regulation of photosynthetic CO2 assimilation in chloroplasts, Nature (London) 263:257–258.

    Google Scholar 

  • Semler, B. L., Hodson, R. C., Williams, S. K., II, and Howell, S. H., 1975, The induction of allophanate lyase during the vegetative cell cycle in light-synchronized cultures of Chlamy-domonas reinhardi, Biochim. Biophys. Acta 399:71–78.

    Google Scholar 

  • Setlow, J. K., 1966, The molecular basis of biological effects of ultraviolet radiation and photoréactivation, in: Current Topics in Radiation Research, Vol. 3 (M. Ebert and A. Howard, eds.), pp. 197–248, North-Holland, Amsterdam.

    Google Scholar 

  • Sherman, R. L., Siebert, S. T., and Yee, W. H., 1973, A note on the effect of electromagnetic field on enzymic substrates, Physiol. Chem. Phys. 5:49–56.

    Google Scholar 

  • Shugar, D., 1951, Ultra-violet irradiation of triosephosphate dehydrogenase, Biochim. Biophys. Acta 6:548–561.

    Google Scholar 

  • Sisson, T. R. C., 1976, Visible light therapy of neonatal hyperbilirubinemia, in: Photochemical and Photobiological Reviews, Vol. 1 (K. C. Smith, ed.), pp. 241–268, Plenum Press, New York.

    Google Scholar 

  • Small, G. D., and Sturgen, R. S., 1976, Purification and properties of a light-inducible nuclease from Euglena gracilis, Nucleic Acids Res. 3:1277–1293.

    Google Scholar 

  • Smith, H., 1975, Phytochrome and Photomorphogenesis, McGraw-Hill, New York.

    Google Scholar 

  • Smith, H., Attridge, T. H., and Johnson, C. B., 1976, Photocontrol of enzyme activity, in: Perspectives in Experimental Biology, Vol. 2 (N. Sunderland, ed.), pp. 325–336, Pergamon, New York.

    Google Scholar 

  • Sutherland, J. C., and Sutherland, B. M., 1975, Human photoreactivating enzyme, Action spectrum and safelight conditions, Biophys. J. 15:435–440.

    Google Scholar 

  • Tezuka, T., and Yamamoto, Y., 1972, Photoregulation of nicotinamide adenine dinucleotide kinase activity in cell-free extracts, Plant Physiol. 50:458–462.

    Google Scholar 

  • Tezuka, T., and Yamamoto, Y., 1974, Kinetics of activation of nicotinamide adenine dinucleotide kinase by phytochrome—far red-absorbing form, Plant Physiol. 53:717–722.

    Google Scholar 

  • Tezuka, T., and Yamamoto, Y., 1975, Photoactivation of NAD kinase through phytochrome. Phosphate donors and cofactors, Plant Physiol. 56:728–730.

    Google Scholar 

  • Turek, F. W., McMillan, J. P., and Menaker, M., 1976, Melatonin: Effects on circadian locomotor rhythm of sparrows, Science 194:1441–1443.

    Google Scholar 

  • Varfolomeyev, S. D., Klibanov, A. M., Martinek, K., and Berezin, I. V., 1971, Light-initiated enzymic activity caused by photostereoisomerization of cis-4-nitrocinnamoyl-α-chymotrypsin, FEBS Lett. 15:118–120.

    Google Scholar 

  • Vince-Prue, D., 1975, Photoperiodism in Plants, McGraw-Hill, London.

    Google Scholar 

  • Volotovskii, I. D., Voskresenskaya, L. G., and Konev, S. V., 1972, Possibility of conformational activation of the enzyme-substrate complex of aldolase by ultraviolet radiation, Biofizika 17:971–977;

    Google Scholar 

  • Volotovskii, I. D., Voskresenskaya, L. G., and Konev, S. V., 1972, Possibility of conformational activation of the enzyme-substrate complex of aldolase by ultraviolet radiation, Biophysics 17:1018–1024.

    Google Scholar 

  • Wainberg, M. A., and Erlanger, B. F., 1971, Investigation of the active center of trypsin using photochromic substrates, Biochemistry 10:3816–3819.

    Google Scholar 

  • Wainwright, S. D., 1975, Effects of changes in environmental lighting upon levels of hydroxyindole-O-methyltransferase activity in the developing-chick pineal gland. Can. J. Biochem. 53:438–443.

    Google Scholar 

  • Wald, G., 1956, The biochemistry of visual excitation, in: Enzymes: Units of Biological Structure and Function (O. H. Gaebler, ed.), pp. 355–367, Academic Press, New York.

    Google Scholar 

  • Wald, G., 1965, Visual excitation and blood clotting, Science 150:1028–1030.

    Google Scholar 

  • Wald, G., 1968, Molecular basis of visual excitation, Science 162:230–239.

    Google Scholar 

  • Wang, S. Y., (ed.), 1976, Photochemistry and Photobiology of Nucleic Acids, Vol. 2, Biology, Academic Press, New York.

    Google Scholar 

  • Warburg, O., and Negelein, E., 1928, Ãœber die photochemische Dissoziation bei intermittierender Belichtung und das absolute Absorptionsspektrum des Atmungsferments, Biochem. Z. 202:202–228.

    Google Scholar 

  • Weeks, O. B., Saleh, F. K., Wirahadikusumah, M., and Berry, R. A., 1973, Photoregulated carotenoid biosynthesis in non-photosynthetic microorganisms, Pure Appl. Chem. 35:63–80.

    Google Scholar 

  • Weller, M., Goridis, C., Virmaux, N., and Mandel, P., 1975a, A hypothetical model for the possible involvement of rhodopsin phosphorylation in light and dark adaptation in the retina, Exp. Eye Res. 21:405–408.

    Google Scholar 

  • Weiler, M., Virmaux, N., and Mandel, P., 1975b, Light-stimulated phosphorylation of rhodopsin in the retina: the presence of a protein kinase that is specific for photobleached rhodopsin, Proc. Natl. Acad. Sci. USA 72:381–385.

    Google Scholar 

  • Weiler, M., Virmaux, N., and Mandel, P., 1975c, Role of light and rhodopsin phosphorylation in control of permeability of retinal rod outer segment disk to Ca2+, Nature (London) 256:68–70.

    Google Scholar 

  • Weiler, M., Virmaux, N., and Mandel, P., 1976, The relative specificity of opsin kinase towards ATP and GTP and the lack of effect of cyclic nucleotides on the activity of the enzyme, Exp. Eye Res. 23:65–67.

    Google Scholar 

  • White, E. H., Miano, J. D., Watkins, C. J., and Breaux, E. J., 1974, Chemically produced excited states, Angew. Chem. (Int. Ed. Engl.) 13:229–243.

    Google Scholar 

  • Wildner, G. F., and Criddle, R. S., 1969, Ribulose diphosphate carboxylase I. A factor involved in light activation of the enzyme, Biochem. Biophys. Res. Commun. 37:952–960.

    Google Scholar 

  • Windorfer, A., Jr., Faxelius, G., and Boréus, L. O., 1975, Studies on phototherapy in newborn infants, Acta Paediatr. Scand. 64:293–298.

    Google Scholar 

  • Wun, K. L., Gih, A., and Sutherland, J. C., 1977, Photoreactivating enzyme from Escherichia coli: Appearance of new absorption on binding to ultraviolet irradiated DNA, Biochemistry 16:921–924.

    Google Scholar 

  • Wurtman, R. J., Axelrod, J., and Kelly, D. E., 1968, The Pineal, Academic Press, New York.

    Google Scholar 

  • Yeary, R. A., Wise, K. J., and Davis, D. R., 1975, Activation of hepatic microsomal glu-curonyltransferase from Gunn rats by exposure to light, Life Sciences 17:1887–1890.

    Google Scholar 

  • Zimmermann, W. F., Daemen, F. J. M., and Bonting, S. L., 1976, Distribution of enzyme activities in subcellular fractions of bovine retina,J. Biol. Chem. 251:4700–4705.

    Google Scholar 

  • Zöllner, E. J., Weinblum, D., Obermeier, J., and Zahn, R. K., 1976, Influence of UV irradiation, 4-nitroquinoline-l-oxide, methylmethanesulfonate, and bleomycin on the activity of an alkaline deoxyribonuclease from human lymphocytes, Exp. Cell Res. 99:185–189.

    Google Scholar 

  • Zucker, M., 1972, Light and enzymes, Ann. Rev. Plant Physiol. 23:133–156.

    Google Scholar 

  • Zurzycki, J., 1972, Primary reactions in the chloroplast rearrangements, Acta Protozool. 11:189–199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Hug, D.H. (1978). The Activation of Enzymes with Light. In: Smith, K.C. (eds) Photochemical and Photobiological Reviews. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2580-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2580-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2582-6

  • Online ISBN: 978-1-4684-2580-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics