Skip to main content

Lethal and Mutagenic Effects of Near-Ultraviolet Radiation

  • Chapter
Photochemical and Photobiological Reviews

Abstract

Ultraviolet (UV) radiation* of wavelengths longer than 295 nm from sunlight is a ubiquitous part of the natural environment of most organisms. Although beneficial and possibly beneficial aspects of sunlight have long been recognized and studied (Daniels, 1974; Wurtman, 1975), harmful effects, except for sunburn, have received relatively little attention until recently. Photochemical possibilities of natural components of the cell suggest that efficient mechanisms for the partial prevention or repair of resultant damage from exposure to solar radiation must exist for biological entities to survive regular exposure to natural sunlight. Recent work has identified DNA lesions induced by near-UV radiation (Section 2.4). Furthermore, mechanisms of protection and repair of near-UV-induced lesions have been reported (Sections 2.3 and 2.6).

Research supported by the U.S. Energy Research and Development Administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alper, T., 1963, Effects on irradiated micro-organisms of growth in the presence of acriflavine, Nature (London) 200:534–536.

    Google Scholar 

  • Alper, T., and Hodgkins, B., 1969, “Excision repair” and dose-modification: Questions raised by radiobiological experiments with acriflavine, Mutat. Res. 8:15–23.

    Google Scholar 

  • Alper, T., Forage, A. J., and Hodgkins, B., 1972, Protection of normal, lysogenic and pyocinogenic strains against ultraviolet radiation by bound acriflavine, J. Bacteriol. 110:823–830.

    Google Scholar 

  • Ananthaswamy, H. N., and Eisenstark, A., 1976, Near-UV-induced breaks in phage UNA sensitization by hydrogen peroxide (a tryptophan photoproduct), Photochem. Photobiol. 24:439–442.

    Google Scholar 

  • Ananthaswamy, H. N., and Eisenstark, A., 1977, Repair of hydrogen peroxide-induced single-strand breaks in Escherichia coli DNA, J. Bacteriol. 130:187–191.

    Google Scholar 

  • Anderson, T. F., 1948, The growth of T2 virus on ultra-violet killed host cells, J. Bacteriol. 56:403–410.

    Google Scholar 

  • Ashwood-Smith, M. J., Copeland, J., and Wilcockson, J., 1967, Sunlight and frozen bacteria, Nature (London) 214:33–35.

    Google Scholar 

  • Baptist, J. E., and Haynes, R. H., 1972, The UV-X-ray synergism in E. coli. I. Inhibition by the incorporation of 5-bromouracil and by purine starvation, Photochem. Photobiol. 16:459–464.

    Google Scholar 

  • Barran, L. R., Dooust, J. Y., Labelle, J. L., Martin, W. C., and Schneider, H., 1974, Differential effects of visible light on active transport in E. coli, Biochem. Biophys. Res. Commun. 56:522–528.

    Google Scholar 

  • Beukers, R., and Berends, W., 1960, Isolation and identification of the irradiation product of thymine, Biochim. Biophys. Acta 41:550–551.

    Google Scholar 

  • Birdsell, D. C., Bannon, P. J., and Webb, R. B., 1977, Harmful effects of near-ultraviolet radiation (365 nm) used for polymerizing a sealant and a composite resin, J. Am. Dent. Assoc. 94:311–314.

    Google Scholar 

  • Blanc, P. L., Tuveson, R. W., and Sargent, M. L., 1976, Inactivation of carotenoid-producing and albino strains of Neurospora crassa by visible light, blacklight, and ultraviolet radiation, J. Bacteriol. 125:616–625.

    Google Scholar 

  • Blum, H. F., 1941, Photodynamic Action and Diseases Caused by Light, Reinhold Publishing Co., New York.

    Google Scholar 

  • Blum, H. F., 1943, Wavelength dependence of tumor induction by ultraviolet radiation, J. Natl. Cancer Inst. 3:533–537.

    Google Scholar 

  • Blum, H. F., 1959, Carcinogenesis by Ultraviolet Light, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Bodmer, W. F., and Ganeson, A. T., 1964, Biochemical and genetic studies of integration and recombination in Bacillus subtilis transformation, Genetics 50:717–738.

    Google Scholar 

  • Boyce, R., and Setlow, R., 1963, The action spectra for ultraviolet-light inactivation of systems containing 5-bromouracil-substituted deoxyribonucleic acid, Biochim. Biophys. Acta 68:446–454.

    Google Scholar 

  • Bragg, P. D., 1971, Effect of near-ultraviolet light on the respiratory chain of Escherichia coli, Can. J. Biochem. 49:492–495.

    Google Scholar 

  • Brent, T. P., 1972, Repair enzymes suggested by mammalian endonuclease activity specific for ultraviolet-irradiated DNA, Nature (London) New Biol. 239:172–173.

    Google Scholar 

  • Bresler, S. E., Kalinin, V. L., and Perumov, D. A., 1964, Theory of inactivation and reactivation of transforming DNA, Biopolymers 2:135–146.

    Google Scholar 

  • Bresler, S. E., Kalinin, V. L., and Perumov, D. A., 1967, Inactivation and mutagenesis of DNA. I. Theory of inactivation of transforming DNA, Mutat. Res. 4:389–398.

    Google Scholar 

  • Brown, M. S., 1977, Biological evidence for the destruction of the photoreactivation enzyme by 365 nm radiation Mutant. Res. (submitted).

    Google Scholar 

  • Brown, M. S., and Webb, R. B., 1972, Photoreactivation of 365 nm inactivation of Escherichia coli, Mutat. Res. 15:348–352.

    Google Scholar 

  • Brown, M. S., and Webb, R. B., 1977, Comparison of photoreactivation after inactivation of E. coli K12 AB2480 by 254 and 365 nm radiations (in preparation).

    Google Scholar 

  • Bruce, A. K., 1958, Response of potassium retentivity and survival of yeast to far ultraviolet, near ultraviolet, visible, and X-radiation, J. Gen. Physiol. 41:693–702.

    Google Scholar 

  • Buchbinder, L., Solomey, M., and Phelps, E. B., 1941, Studies on microorganisms in simulated room environments. III. The survival rates of streptococci in the presence of natural daylight and sunlight, and artificial illumination, J. Bacteriol. 42:353–366.

    Google Scholar 

  • Burchard, R. P., and Dworkin, M., 1966, Light-induced lysis and carotenogenesis in Myxococcus xanthus, J. Bacteriol. 91:535–545.

    Google Scholar 

  • Burchard, R. P., Gordon, S. A., and Dworkin, M., 1966, Action spectrum for the photolysis of Myxococcus xanthus, J. Bacteriol. 91:896–897.

    Google Scholar 

  • Cabrera-Juarez, E., 1964, “Black light” inactivation of transforming deoxyribonucleic acid from Haemophilus influenzae, J. Bacteriol. 87:771–778.

    Google Scholar 

  • Cabrera-Juarez, E., and Espinosa-Lara, M., 1974, Lethal and mutagenic action of black light (325-400 nm) on Haemophilus influenzae in the presence of air, J. Bacteriol. 117:960–964.

    Google Scholar 

  • Cabrera-Juarez, E., and Swenson, P. A., 1975, Action spectrum for the oxygen independent inactivation of Haemophilus influenzae transforming DNA with near-UV light, Photochem. Photobiol. 21:193–196.

    Google Scholar 

  • Cabrera-Juarez, E., Setlow, J. K., Swenson, P. A., and Peak, M. J., 1976, Oxygen-independent inactivation of Haemophilus influenzae transforming DNA by monochromatic radiation: Action spectrum, effect of histidine and repair, Photochem. Photobiol. 23:309–314.

    Google Scholar 

  • Caldwell, M. M., 1971, Solar UV irradiation and growth and development of higher plants, in: Photophysiology, Vol. 6 (A. C. Giese, ed.), pp. 131–177, Academic Press, New York.

    Google Scholar 

  • Claes, H., 1960, Interaction between chlorophyll and carotenes with different chromophoric groups, Biochem. Biophys. Res. Commun. 3:585–590.

    Google Scholar 

  • Claes, H., 1961, Energieiibertrangung non angeretem Chlorophyll auf C40-Polyene mit verschiedenen Chromophoren Gruppen, Naturforsch. Teil 16B:445–454.

    Google Scholar 

  • Codd, G. A., 1972, The photoinhibition of malate dehydrogenase, FEBS Lett. 20:211–214.

    Google Scholar 

  • Coetzee, W. F., and Pollard, E. C., 1974, Near-UV effects on the induction of prophage, Radiat. Res. 57:319–331.

    Google Scholar 

  • Coetzee, W. F., and Pollard, E. C., 1975, Near ultraviolet inactivation studies on Escherichia coli tryptophanase and tryptophan synthetase, Photochem. Photobiol. 22:29–32.

    Google Scholar 

  • Cole, R. S., and Sinden, R. R., 1975, Psoralen cross-links in DNA: Biological consequences and cellular repair, in: Radiation Research: Biochemical, Chemical, and Physical Perspectives (O. F. Nygaard, H. I. Adler, and W. K. Sinclair, eds.), pp. 582–589, Academic Press, New York.

    Google Scholar 

  • Council on Dental Materials and Devices, 1976, Guidelines on the use of ultraviolet radiation in dentistry, Reports of Councils and Bureaus, J. Am. Dent. Assoc. 92:775–776.

    Google Scholar 

  • Crounse, J. B., Feldman, R. P., and Clayton, R. K., 1963, Accumulation of polyene precursors of neurosporene in mutant strains of Rhodopseudomonas spheroides, Nature (London) 198:1227–1228.

    Google Scholar 

  • Cutchis, P., 1974, Stratospheric ozone depletion and solar ultraviolet radiation on earth, Science 184:13–19.

    Google Scholar 

  • Daniels, F., 1964, Sun exposure and skin aging, N. Y. State J. Med. 64:2066–2069.

    Google Scholar 

  • Daniels, F., 1974, Physiological and pathological extracutaneous effects of light on man and mammals, not mediated by pineal or other neuroendocrine mechanisms, in: Sunlight and Man (T. B. Fitzpatrick, M. A. Pathak, L. C. Harber, M. Seiji, and A. Kukita, eds.), pp. 247–258, University of Tokyo Press, Tokyo.

    Google Scholar 

  • Danpure, H. J., and Tyrrell, R. M., 1975, The action of near UV (365 nm) radiation on two mammalian cell lines irradiated in inorganic buffer, Abst. Am. Soc. Photobiol., pp. 93-94.

    Google Scholar 

  • Danpure, H. J., and Tyrrell, R. M., 1976, Oxygen-dependence of near UV (365 nm) lethality and the interaction of near UV and X-rays in two mammalian cell lines, Photochem. Photobiol. 23:171–177.

    Google Scholar 

  • Davidoff-Abelson and Dubnau, D., 1973, Conditions affecting the isolation from transformed cells of Bacillus subtilis of high-molecular-weight single-stranded deoxyribonucleic acid of donor origin, J. Bacteriol. 116:146–153.

    Google Scholar 

  • Davies, D. R., Arlett, C. F., Munson, R. J., and Bridges, B. A., 1967, Interaction between ultraviolet light and γ-radiation damage in the induction of mutants of Escherichia coli: The response in strains with normal and reduced ability to repair ultraviolet damage, J. Gen. Microbiol. 46:329–338.

    Google Scholar 

  • Day, R. S., and Deering, R. A., 1968, Recovery of colony-forming ability and genetic marker activity by UV-damaged Hemophilus influenzae, Biophys. J. 8:1119–1130.

    Google Scholar 

  • Day, R. S., and Muel, B., 1974, Ultraviolet inactivation of the ability of E. coli to support the growth of phage T7: An action spectrum, Photochem. Photobiol. 20:95–102.

    Google Scholar 

  • Deering, R. A., and Setlow, R. B., 1963, Effects of ultraviolet light on thymidine dinucleotide and polynucleotide, Biochim. Biophys. Acta 63:526–534.

    Google Scholar 

  • Denniston, K. J., Webb, R. B., and Brown, M. S., 1972, Action spectrum for carotenoid protection against lethal photo-oxiaation of Sarcina lutea, Abst. Am. Soc. Microbiol., p. 184.

    Google Scholar 

  • Doyle, R. J., and Kubitschek, H. E., 1976, Near ultraviolet light inactivation of an energy-independent membrane transport system in Saccharomyces cerevisiae, Photochem. Photobiol, 24:291–293.

    Google Scholar 

  • Dubnau, D., and Cirigliano, C, 1972, Fate of transforming DNA following uptake by competent Bacillus subtilis. III. Formation and properties of products isolated from transformed cells which are derived entirely from donor DNA, J. Mol. Biol. 64:9–29.

    Google Scholar 

  • Duggar, B. M., 1936, Effects of radiation on bacteria, in: Biological Effects of Radiation (B. M. Duggar, ed.), pp. 1119–1149, McGraw-Hill Book Co., New York.

    Google Scholar 

  • Dulbecco, R., and Weigle, J. J., 1952, Inhibition of bacteriophage development in bacteria illuminated with visible light, Experientia 8:386–389.

    Google Scholar 

  • Durham, N. M., and Wyss, O., 1956, An example of non-inherited radiation resistance, J. Bacteriol. 72:95–100.

    Google Scholar 

  • Dworkin, M., 1958, Endogenous photosensitization in a carotenoidless mutant of Rhodopseudomonas speroides, J. Gen. Physiol. 41:1099–1112.

    Google Scholar 

  • Eisenstark, A., 1970, Sensitivity of Salmonella typhimurium recombinationless (rec) mutants to visible and near-visible light, Mutat. Res. 10:1–6.

    Google Scholar 

  • Eisenstark, A., 1971, Mutagenic and lethal effects of visible and near-ultraviolet light on bacterial cells, in: Advances in Genetics, Vol. 12 (E. W. Caspari, ed.), pp. 167–198, Academic Press, New York.

    Google Scholar 

  • Eisenstark, A., 1973, Tryptophan photoproduct as a genetic probe: Effects on bacteria, in: Fifth Stadler Genetics Symposium (G. Kimber and G. P. R. Redei, eds.), pp. 49–60, University of Missouri, Columbia.

    Google Scholar 

  • Eisenstark, A., and Ruff, D., 1970, Repair in phage and bacteria inactivated by light from fluorescent and photo lamps, Biochem. Biophys. Res. Commun. 38:244–248.

    Google Scholar 

  • Elkind, M. M., and Sutton, H., 1957a, Lethal effect of visible light on a mutant strain of haploid yeast. I. General dependencies, Arch. Biochem. Biophys. 72:84–95.

    Google Scholar 

  • Elkind, M. M., and Sutton, H., 1957b, Lethal effect of visible light on a mutant strain of haploid yeast. II. Absorption and action spectrum, Arch. Biochem. Biophys. 72:96–111.

    Google Scholar 

  • Epstein, J. H., 1970, Ultraviolet carcinogenesis, in: Photophysiology, Vol. 5 (A. C. Giese, ed.), pp. 235–273, Academic Press, New York.

    Google Scholar 

  • Epstein, J. H., 1974, Phototoxicity and photoallergy: Clinical syndromes, in: Sunlight and Man (T. B. Fitzpatrick, M. A. Pathak, L. C. Harber, M. Seiji, and A. Kukita, eds.), pp. 459–477, University of Tokyo Press, Tokyo.

    Google Scholar 

  • Felber, T. D., Smith, E. B., Knox, J. M., Wallis, C., and Melnick, J. L., 1973, Photodynamic inactivation of herpes simplex, J. Am. Med. Assoc. 223:289–292.

    Google Scholar 

  • Ferron, W. L., Eisenstark, A., and Mackay, D., 1972, Distinction between far-and near-ultraviolet light killing of recombinationless (recA) Salmonella typhimurium, Biochim. Biophys. Acta 277:651–658.

    Google Scholar 

  • Fong, F., Peters, J., Pauling, C., and Heath, R. L., 1975, Two mechanisms of near-ultraviolet lethality in Saccharomyces cerevisiae. Respiratory capacity-dependent and an irreversible inactivation, Biochim. Biophys. Acta 387:451–460.

    Google Scholar 

  • Foote, C. S., 1976, Photosensitized oxidation and singlet oxygen: Consequences in biological systems, in: Free Radicals in Biology Vol. 2 (W. A. Pryor, ed.), pp. 85–124, Academic Press, New York.

    Google Scholar 

  • Foote, C. S., and Denny, R. W., 1968, Chemistry of singlet oxygen. VII. Quenching by β-carotene, J. Am. Chem. Soc. 90:6233–6235.

    Google Scholar 

  • Foote, C. S., Chang, Y. C., and Denny, R. W., 1970, Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection, J. Am. Chem. Soc. 92:5216–5218.

    Google Scholar 

  • Forbes, P. D., 1973, Influence of long wave UV on photocarcinogenesis, Abst. Am. Soc. Photobiol., p. 136.

    Google Scholar 

  • Forbes, P. D., Davies, R. E., D’Aloisio, L. C., and Cole, C., 1976, Emission spectrum differences in fluorescent blacklight lamps. Photochem. Photobiol. 23:613–615.

    Google Scholar 

  • Freeman, R. G., 1975, Data on the action spectrum tor ultraviolet carcinogenesis, J. Natl. Cancer Inst. 55:1119–1121.

    Google Scholar 

  • Freeman, R. G., Owens, D. W., and Knox, J. M., 1966, Relative energy requirements for an erythemal response of skin to monochromatic wavelengths of ultraviolet present in the solar spectrum, J. Invest. Dermatol. 47:586–592.

    Google Scholar 

  • Freese, E. B., Gerson, J., Taber, H., Rhaese, H.-J., and Freese, E., 1967, Inactivating DNA alterations induced by peroxides and peroxide-producing agents, Mutat. Res. 4:517–531.

    Google Scholar 

  • Fuks, Z. and Smith, K. C., 1971, Effect of quinacrine on X-ray sensitivity and repair of uamaged DNA in Escherichia coli K-12, Radiat. Res. 48:63–73.

    Google Scholar 

  • Ganesan, A. K., and Smith, K. C., 1972, Requirement for protein synthesis in rec-dependent repair of deoxyribonucleic acid in Escherichia coli after ultraviolet or x irradiation, J. Bacteriol. 111:575–585.

    Google Scholar 

  • Gates, F. L., 1930, A study of the bactericidal action of ultraviolet light. III. The absorption of ultraviolet light by bacteria, J. Gen. Physiol. 14:31–42.

    Google Scholar 

  • Giese, A. C., 1946, An intracellular photodynamic sensitizer in Blepharisma, J. Cell. Comp. Physiol. 28:119–127.

    Google Scholar 

  • Giese, A. C., 1953, Some properties of a phytodynamic pigment from Blepharisma, J. Gen. Physiol. 37:259–269.

    Google Scholar 

  • Giese, A. C., 1968, Ultraviolet action spectra in perspective: With special reference to mutation, Photochem. Photobiol. 8:537–546.

    Google Scholar 

  • Giese, A. C., 1971, Photosensitization by natural pigments, in: Photophysiology, Vol. 6 (A. C. Giese, ed.), pp. 77–129, Academic Press, New York.

    Google Scholar 

  • Giese, A. C., 1976, Living with Our Sun’s Ultraviolet Rays, Plenum Press, New York.

    Google Scholar 

  • Ginsberg, D. M., and Jagger, J., 1965, Evidence that initial ultraviolet lethal damage in Escherichia coli is independent of growth phase, J. Gen. Microbiol. 40:171–184.

    Google Scholar 

  • Glatzer, L., 1977, Radioactive near-ultraviolet photoproducts of L-tryptophan solutions (in preparation).

    Google Scholar 

  • Grover, D., and Zigman, S., 1972, Coloration of human lenses by near-UV photooxidized tryptophan, Exp. Eye Res. 13:70–76.

    Google Scholar 

  • Grube, D. D., Ley, R. D., and Fry, R. J. M., 1977, Photosensitizing effects of 8-methoxypsoralen on the skin of hairless mice. II. Strain and spectral difference for tumorigenesis, Photochem. Photobiol. 25:271–278.

    Google Scholar 

  • Hakim, R. E., Griffin, A. C., and Knox, J. M., 1960, Erythema and tumor formation in methoxsalen treated mice exposed to fluorescent light, Arch. Dermatol. 82:572–577.

    Google Scholar 

  • Hanawalt, P. C., 1966, The UV sensitivity of bacteria: Its relationship to the replication cycle, Photochem. Photobiol. 5:1–12.

    Google Scholar 

  • Harber, L. C., and Baer, R. L., 1972, Pathogenic mechanisms of drug-induced photo-sensitivity, J. Invest. Dermatol. 58:327–342.

    Google Scholar 

  • Hariharan, P. V. and Cerutti, P. A., 1974, The incision and strand rejoining step in the excision repair of 5,6-dihydroxy-dihydrothymine by crude E. coli extracts, Biochem. Biophys. Res. Commun. 61:375–379.

    Google Scholar 

  • Hariharan, P. V., and Cerutti, P. A., 1976, Excision of ultraviolet and gamma ray products of the 5,6-dihydroxydihydrothymine-type by nuclear preparations of xeroderma pigmentosum cells, Biochem. Biophys. Acta 477:375–378.

    Google Scholar 

  • Hariharan, P. V., and Cerutti, P A., 1977, Formation of products of the 5,6-dihydroxy-dihydrothymine type by ultraviolet light in HeLa cells, Biochemistry 16:2791–2795.

    Google Scholar 

  • Hariharan, P. V., Achey, P. M., and Cerutti, P. A., 1977, Biological effect of thymine ring-saturation in coliphage φX174-DNA, Radiat. Res. 69:375–378.

    Google Scholar 

  • Harm, W., 1966, Repair effects in phage and bacteria exposed to sunlight, Radiat. Res. Suppl. 6:215–216.

    Google Scholar 

  • Harm, W., 1967, Differential effects of acriflavine and caffeine on various ultraviolet-irradiated Escherichia coli strains and T1 phage, Mutat. Res. 4:93–110.

    Google Scholar 

  • Harm, W., 1969, Biological determination of the germicidal activity of sunlight, Radiat. Res. 40:63–69.

    Google Scholar 

  • Harrison, A. P., 1967, Survival of bacteria; harmful effects of light, with some comparisons with other adverse physical agents, Annu. Rev. Microbiol. 21:143–156.

    Google Scholar 

  • Hausser, K. W., and Vahle, W., 1927, Sunburn and suntanning, Wiss. Veroeff. Siemens Konzern 6:101–120.

    Google Scholar 

  • Haynes, R. H., 1964, Molecular localization of radiation damage relevant to bacterial inactivation, in: Physical Processes in Radiation Biology (L. Augenstein, R. Mason, and B. Rosenberg, eds.), pp. 51–72, Academic Press, New York.

    Google Scholar 

  • Haynes, R. H., 1966, The interpretation of microbial inactivation and recovery phenomena, Radiat. Res. Suppl 6:1–29.

    Google Scholar 

  • Haynes, R. H., 1975, The influence of repair processes on radiobiological survival curves, in: Cell Survival after Low Doses of Radiation: Theoretical and Clinical Implications (T. Alper, ed.), pp. 197–208, Wiley, New York.

    Google Scholar 

  • Hill, R. F., 1956, Effects of illumination on plaque formation by Escherichia coli infected with T1 bacteriophage, J. Bacteriol. 71:231–235.

    Google Scholar 

  • Hollaender, A., 1943, Effect of long ultraviolet and short visible radiation (3500-4900 Å) on Escherichia coli, J. Bacteriol. 46:531–541.

    Google Scholar 

  • Hollaender, A., and Emmons, C. W., 1946, Induced mutations and speciation in fungi, Cold Spring Harbor Symp. Quant. Biol. 11:78–84.

    Google Scholar 

  • Howard-Flanders, P., and Boyce, R. P., 1966, DNA repair and genetic recombination: Studies on mutants of Escherichia coli defective in these processes, Radiat. Res. Suppl. 6:156–184.

    Google Scholar 

  • Hutchinson, F., and Hales, H. B., 1970, Mechanism of the sensitization of bacterial transforming DNA to ultraviolet light to the incorporation of 5-bromouracil, J. Mol. Biol. 50:59–69.

    Google Scholar 

  • Igali, S., Bridges, B. A., Ashwood-Smith, M. J., and Scott, B. R., 1970, Mutagenesis in Escherichia coli. IV. Photosensitization to near ultraviolet light by 8-methoxypsoralen, Mutat. Res. 9:21–30.

    Google Scholar 

  • Jagger, J., 1964, Photoprotection from far ultraviolet effects in cells, in: Advances in Chemical Physics, Vol. 7 (J. Duchesne, ed.), pp. 584–601, Interscience, New York.

    Google Scholar 

  • Jagger, J., 1967, Introduction to Research in Ultraviolet Photobiology, Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Jagger, J., 1972, Growth delay and photoprotection induced by near-ultraviolet light, in: Research Progress in Organic, Biological and Medicinal Chemistry, Vol. 3 (U. Gallo and L. Santamaria, eds.), Part 1, pp. 383–401, American Elsevier, New York.

    Google Scholar 

  • Jagger, J., 1973, Realm of the ultraviolet, Photochem. Photobiol. 18:353–354.

    Google Scholar 

  • Jagger, J., 1975, Inhibition by sunlight of the growth of Escherichia coli B/r, Photochem. Photobiol. 22:67–70.

    Google Scholar 

  • Jagger, J., and Stafford, R. S., 1962, Biological and physical ranges of photoprotection from ultraviolet damage in microorganisms. Photochem. Photobiol. 1:245–257.

    Google Scholar 

  • Jagger, J., Wise, W. C., and Stafford, R. S., 1964, Delay in growth and division induced by near ultraviolet radiation in Escherichia coli B and its role in photoprotection and liquid holding recovery, Photochem. Photobiol. 3:11–24.

    Google Scholar 

  • Jagger, J., Stafford, R. S., and Snow, J. M., 1969, Thymine-dimer and action-spectrum evidence for indirect photoreactivation in Escherichia coli, Photochem. Photobiol. 10:383–396.

    Google Scholar 

  • Kaplan, R. W., 1956, Dose-effect curves of S-mutation and killing in Serratia marcescens, Arch. Microbiol. 24:60–79.

    Google Scholar 

  • Kaplan, R. W., and Kaplan, C., 1956, Influence of water content on UV-induced S-mutation and killing in Serratia, Exp. Cell Res. 11:378–392.

    Google Scholar 

  • Kashket, E. R., and Brodie, A. F., 1962, Effects of near-ultraviolet irradiation on growth and oxidative metabolism of bacteria. J. Bacteriol. 83:1094–1100.

    Google Scholar 

  • Kelly, E. W., Jr., and Pinkus, H., 1955, Local application of 8-methoxypsoralen in vitiligo, J. Invest. Dermatol. 25:453–456.

    Google Scholar 

  • Keiner, A., and Halle, S., 1960, Mutagenesis by visible light in a mutable strain of Escherichia coli, Bacteriol. Proc. p. 67.

    Google Scholar 

  • Knowles, A., 1975, The effects of photodynamic action involving oxygen upon biological systems, in: Radiation Research: Biochemical, Chemical, and Physical Perspectives (O. F. Nygaard, H. I. Adler, and W. K. Sinclair, eds.), pp. 612–622, Academic Press, New York.

    Google Scholar 

  • Koch, A. L., Doyle, R. J., and Kubitschek, H. E., 1976, Inactivation of membrane transport in Escherichia coli by black light, J. Bacteriol. 126:140–146.

    Google Scholar 

  • Koller, L. R., 1939, Bactericidal effects of ultraviolet radiation produced by low pressure mercury vapour lamps, J. Appl. Phys. 10:621–630.

    Google Scholar 

  • Krinsky, N. I., 1976, Cellular damage initiated by visible light, in: The Survival of Vegetative Microbes (T. R. G. Gray and J. R. Postgate, eds.), pp. 209–230, Cambridge University Press, Cambridge.

    Google Scholar 

  • Kubitschek, H. E., 1967, Mutagenesis by near-visible light, Science 155:1545–1546.

    Google Scholar 

  • Kubitschek, H. E., 1970, Introduction to Research with Continuous Cultures (A. Hollaender, ed.), Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Kubitschek, H. E., and Bendigkeit, H. E., 1964a, Mutation in continuous cultures. I. Dependence of mutational response upon growth limiting factors, Mutat. Res. 1:113–120.

    Google Scholar 

  • Kubitschek, H. E., and Bendigkeit, H. E., 1964b, Mutation in continuous cultures. II. Mutations induced with ultraviolet and 2-aminopurine, Mutat. Res. 1:209–218.

    Google Scholar 

  • Kubitschek, H. E., and Doyle, R. J., 1977, Near-UV induced inhibition of succinate transport in E. coli B/r (in preparation).

    Google Scholar 

  • Kubitschek, H. E., Nance, S. L., and Doyle, R. J., 1975, Induction of growth delay by inactivation of membrane transport after exposure to near-UV, Abst. Am. Soc. Photobiol., p. 118.

    Google Scholar 

  • Leff, J., and Krinsky, N. I., 1967, A mutagenic effect of visible light mediated by endogenous pigments in Euglena gracilis, Science 158:1332–1334.

    Google Scholar 

  • Lerner, A. B., Denton, C. A., and Fitzpatrick, T. B., 1969, Clinical and experimental studies with 8-methoxypsoralen in vitiligo, Arch. Dermatol. 100:224–229.

    Google Scholar 

  • Ley, R. D., Grube, D. D., and Fry, R. J. M., 1977, Photosensitizing effects of 8-methoxypsoralen on the skin of hairless mice. I. Formation of interstrand cross-links in epidermal DNA, Photochem. Photobiol. 25:265–270.

    Google Scholar 

  • Lucey, J. F., Ferreiro, M., and Hewitt, J., 1968, Prevention of hyperbilirubinemia of prematurity by phototherapy, Pediatrics 41:1047–1056.

    Google Scholar 

  • Luckiesh, M., 1946, Applications of Germicidal, Erythemal, and Infrared Energy, Van Nostrand, New York.

    Google Scholar 

  • Luria, S. E., 1955, Radiation and viruses, in: Radiation Biology, Vol. 2 (A. Hollaender, ed.), pp. 333–364, McGraw-Hill, New York.

    Google Scholar 

  • Mackay, D., Eisenstark, A., Webb, R. B., and Brown, M. S., 1976, Action spectra for lethality in recombinationless strains of Salmonella typhimurium and Escherichia coli, Photochem. Photobiol. 24:337–344.

    Google Scholar 

  • Magnus, I. A., 1968, Photobiological aspects of porphyria, Proc. Roy. Soc. Med. 61:196–198.

    Google Scholar 

  • Maguire, B. H., 1960, Lethal effect of visible light on cavernicolous astracods, Science 132:226–227.

    Google Scholar 

  • Marmur, J., Anderson, W. F., Mathews, L., Berns, K., Gajewski, E., and Doty, P., 1961, The effects of ultraviolet light on the biological and physical chemical properties of deoxyribonucleic acids, J. Cell. Comp. Physiol. 58:33–55 (Suppl. 2).

    Google Scholar 

  • Martignoni, K. D., and Smith, K. C., 1972, The synergistic interaction of UV and X-radiation in mutants of E. coli K12, Radiat. Res. 51:487–488.

    Google Scholar 

  • Martignoni, K. D., and Smith, K. C., 1973, The synergistic action of ultraviolet and X-radiation on mutants of Escherichia coli K-12, Photochem. Photobiol. 18:1–8.

    Google Scholar 

  • Mathews, M. M., 1964a, The effect of low temperature on the protection by carotenoids against photosensitization in Sarcina lutea, Photochem. Photobiol. 3:75–77.

    Google Scholar 

  • Mathews, M. M., 1964b, Protective effect of β-carotene against lethal photosensitization by haematoporphyrin, Nature (London) 203:1092.

    Google Scholar 

  • Mathews, M. M., and Krinsky, N. I., 1965, The relationship between carotenoid pigments and resistance to radiation in non-photosynthetic bacteria, Photochem. Photobiol. 4:813–817.

    Google Scholar 

  • Mathews, M. M., and Sistrom, W. R., 1959a, Intracellular location of carotenoid pigments and some respiratory enzymes in Sarcina lutea, J. Bacteriol. 78:778–789.

    Google Scholar 

  • Mathews, M. M., and Sistrom, W. R., 1959b, Function of carotenoid pigments in non-photosynthetic bacteria, Nature (London) 184:1892–1893.

    Google Scholar 

  • Mathews, M. M., and Sistrom, W. R., 1960, The function of the carotenoid pigments of Sarcina lutea, Arch. Mikrobiol. 35:139–146.

    Google Scholar 

  • Mathews-Roth, M., 1967, The photosensitizing ability of prodigiosin, Photochem. Photobiol. 6:923–926.

    Google Scholar 

  • Mathews-Roth, M. M., and Krinsky, N. I., 1970, Studies on the protective function of the carotenoid pigments of Sarcina lutea, Photochem. Photobiol. 11:419–428.

    Google Scholar 

  • Mathews-Roth, M. M., and Pathak, M. A., 1975, Phytoene as a protective agent against sunburn (280 nm) radiation in guinea pigs, Photochem. Photobiol. 21:261–263.

    Google Scholar 

  • Mathews-Roth, M. M., Pathak, M. A., Fitzpatrick, T. B., Harber, L. C., and Kass, E. H., 1970, Beta-carotene as a photoprotective agent in erythropoietic protoporphyria, N. Engl. J. Med. 282:1231–1234.

    Google Scholar 

  • Mathews-Roth, M. M., Wilson, T., Fujimori, E., and Krinsky, N. I., 1974a, Carotenoid chromophore length and protection against photosensitization, Photochem. Photobiol. 19:217–222.

    Google Scholar 

  • Mathews-Roth, M. M., Pathak, M. A., Fitzpatrick, T. B., Harbor, L. C., and Kass, E. H., 1974b, Beta-carotene as an oral photoprotective agent in erythropoietic protoporphyria, in: Sunlight and Man (T. B. Fitzpatrick, M. A. Pathak, L. C. Harber, M. Seiji, and A. Kukita, eds.), pp. 659–668, University of Tokyo Press, Tokyo.

    Google Scholar 

  • Mathews-Roth, M. M., Pathak, M. A., Fitzpatrick, T. B., Harber, L. C., and Kass, E. H., 1974c, β-Carotene as an oral photoprotective agent in erythropoietic protoporphyria. J. Am. Med. Assoc. 228:1004–1008.

    Google Scholar 

  • McCormick, J. P., Fischer, J. R., Pochlatko, J. P., and Eisenstark, A., 1975, Characterization of a cell-lethal product from the photooxidation of tryptophan: Hydrogen peroxide, Science 191:468–469.

    Google Scholar 

  • McGrath, R. A., and Williams, R. W., 1966, Reconstruction in vivo of irradiated Escherichia coli deoxyribonucleic acid; the rejoining of broken pieces, Nature (London) 212:534–535.

    Google Scholar 

  • Moore, C., Wallis, C., Melnick, J. L., and Kuns, M. D., 1972, Photodynamic treatment of herpes keratitis, Inject. Immunol. 5:169–171.

    Google Scholar 

  • Moroson, H., and Alexander, P., 1961, Changes produced by ultraviolet light in the presence and in the absence of oxygen on the physical chemical properties of deoxyribonucleic acid, Radiat. Res. 14:29–49.

    Google Scholar 

  • Morton, R. A., and Haynes, R. B., 1969, Changes in the ultraviolet sensitivity of Escherichia coli during growth in batch cultures, J. Bacteriol. 97:1379–1385.

    Google Scholar 

  • Musajo, L., and Rodighiero, G., 1972, Mode of photosensitizing action of furocoumarins, in: Photophysiology, Vol. 7 (A. C. Giese, ed), pp. 115–147, Academic Press, New York.

    Google Scholar 

  • Notani, N., and Goodgal, S. H., 1966, On the nature of recombinants formed during transformation in Haemophilus influenzae, J. Gen. Physiol. 49:197–209.

    Google Scholar 

  • Parrish, J. A., Ying, C. Y., Pathak, M. A., and Fitzpatrick, T. B., 1974, Erythemogenic properties of long-wave ultraviolet light, in: Sunlight and Man (T. B. Fitzpatrick, M. A. Pathak, L. G. Harber, M. Seiji, and A. Kukita, eds.), pp. 131–141, University of Tokyo Press, Tokyo.

    Google Scholar 

  • Pathak, M. A., 1972, Biochemical changes in epidermal nucleic acids following UV irradiation, Abst. Int. Congr. Photobiol., p. 44.

    Google Scholar 

  • Pathak, M. A., and Stratton, K., 1969, Effects of ultraviolet and visible radiation and production of free radicals in skin, in: The Biologic Effects of Ultraviolet Radiation (F. Urbach, ed.), pp. 207–222, Pergamon Press, New York.

    Google Scholar 

  • Pathak, M. A., Riley, F. C., and Fitzpatrick, T. B., 1962, Melanogensis in human skin following exposure to long-wave ultraviolet light and visible light, J. Invest. Dermatol. 39:435–443.

    Google Scholar 

  • Pathak, M. A., Kramer, D. M., and Fitzpatrick, T. B., 1975, Photobiology and photochemistry of furocoumarins (psoralens), in: Sunlight and Man (T. B. Fitzpatrick, M. A.

    Google Scholar 

  • Pathak, L. C. Harber, M. Seiji, and A. Kukita, eds.), pp. 335–368, University of Tokyo Press, Tokyo.

    Google Scholar 

  • Patrick, M., and Rupert, C. S., 1967, The effect of host-cell reactivation on assay of UV-irradiated Haemophilus influenza transforming DNA, Photochem. Photobiol. 6:1–20.

    Google Scholar 

  • Peak, M. J., 1970, Some observations on the lethal effects of near-ultraviolet light on Escherichia coli, compared with the lethal effects of far-ultraviolet light, Photochem. Photobiol. 12:1–8.

    Google Scholar 

  • Peak, M. J., and Peak, J. G., 1973, Protection by histidine against the inactivation of DNA transforming activity by near-ultraviolet light, Photochem. Photobiol. 18:525–527.

    Google Scholar 

  • Peak, M. J., and Peak, J. G., 1974, Protection of transforming DNA against X-rays by histidine, glycerol, AET and the uvr - genotype, Radiat. Res. 59:288.

    Google Scholar 

  • Peak, M. J., and Peak, J. G., 1975, Protection by AET against inactivation of transforming DNA by near-ultraviolet light, action spectrum. Photochem. Photobiol. 22:147–148.

    Google Scholar 

  • Peak, M. J., Peak, J. G., and Webb, R. B., 1973a, Inactivation of transforming DNA by ultraviolet light. I. Near-UV action spectrum for marker inactivation, Mutat. Res. 20:129–135.

    Google Scholar 

  • Peak, M. J., Peak, J. G., and Webb, R. B., 1973b, Inactivation of transforming DNA by ultraviolet light. II. Protection by histidine against near-UV irradiation: Action spectrum. Mutat. Res. 20:137–141.

    Google Scholar 

  • Peak, M. J., Peak, J. G., and Webb, R. B., 1973c, Inactivation of transforming DNA by ultraviolet light. III. Further observations on the effects of 365 nm radiation, Mutat. Res. 20:143–148

    Google Scholar 

  • Peak, M. J., Peak, J. G., and Webb, R. B., 1975, Synergism between different near-ultraviolet wavelengths in the inactivation of transforming DNA, Photochem. Photobiol. 21:129–131.

    Google Scholar 

  • Piechowska, M., and Fox, M. S., 1971, Fate of transforming deoxyribonucleate in Bacillus subtilis, J. Bacteriol. 108:680–689.

    Google Scholar 

  • Pollard, E. C., 1974, Cellular and molecular effects of solar ultraviolet radiation, Photochem. Photobiol. 20:301–308.

    Google Scholar 

  • Rahn, R. O., 1973, Denaturation in ultraviolet-irradiated DNA, in: Photophysiology, Vol. 8 (A. C. Giese, ed.), pp. 231–255, Academic Press, New York.

    Google Scholar 

  • Rahn, R. O., Landry, L. C., and Carrier, W. L., 1974, Formation of chain breaks and thymine dimers in DNA upon photosensitization at 313 nm with acetophenone, acetone, or benzophenone, Photochem. Photobiol. 19:75–78.

    Google Scholar 

  • Ramabhadran, T. V., 1975, Effects of near-ultraviolet and violet radiations (313-405 nm) on DNA, RNA, and protein synthesis in E. coli B/r: Implications for growth delay, Photochem. Photobiol. 22:117–123.

    Google Scholar 

  • Ramabhadran, T. V., and Jagger, J., 1975, Evidence against DNA as the target for 334 nm-induced growth delay in Escherichia coli, Photochem. Photobiol. 21:227–233.

    Google Scholar 

  • Ramabhadran, T. V., and Jagger, J., 1976, Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation, Proc. Natl. Acad. Sci. USA 73:59–63.

    Google Scholar 

  • Ramabhadran, T. V., Fossum, T., and Jagger, J., 1976, In vivo induction of 4-thiouridine-cytidine adducts in tRNA of E. coli B/r by near-ultraviolet radiation, Photochem. Photobiol. 23:315–321.

    Google Scholar 

  • Randolph, M. L., and Setlow, J. K., 1971, Mechanism of inactivation of transforming deoxyribonucleic acid by X rays, J. Bacteriol. 106:221–226.

    Google Scholar 

  • Rapp, F., Lui-Lien, H. L., and Jerkofsky, M., 1973, Transformation of mammalian cells by DNA containing viruses following photodynamic inactivation, Virology 55:339–346.

    Google Scholar 

  • Resnick, M. A., 1970, Sunlight-induced killing in Saccharomyces cerevisiae, Nature (London) 226:377–378.

    Google Scholar 

  • Ritchie, D. A., 1964, Mutagenesis with light and proflavine in phage T4, Genet. Res. Camb. 5:168–169.

    Google Scholar 

  • Robb, F. T., Hauman, J. H., and Peak, M. J., 1977, Similar spectra for the inactivation by monochromatic light of two distinct leucine transport systems in Escherichia coli, Photochem. Photobiol. (in press).

    Google Scholar 

  • Roberts, M. W., and Moffa, J. P., 1973, Repair of fractured incisai angles with an ultraviolet light-activated fissure sealant and a composite resin: Two-year report of 60 cases, J. Am. Dent. Assoc. 75:121–128.

    Google Scholar 

  • Rupert, C. S., 1968, Shapes of the UV inactivation curves for single and double linked markers of Haemophilus influenzae transforming DNA, Photochem. Photobiol. 7:437–449.

    Google Scholar 

  • Rupert, C. S., and Goodgal, S. H., 1960, Shape of ultraviolet inactivation curves of transforming deoxyribonucleic acid, Nature (London) 185:556–557.

    Google Scholar 

  • Rupert, C. S., and Harm, W., 1966, Reactivation after photobiological damage, in: Advances in Radiation Biology, Vol. 2 (L. G. Augenstein, R. Mason, and M. Zelle, eds.), pp. 1–81, Academic Press, New York.

    Google Scholar 

  • Rupp, W. D., and Howard-Flanders, P., 1968, Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation, J. Mol. Biol. 31:291–304.

    Google Scholar 

  • Scotto, J., Kopf, A. W., and Urbach, F., 1974, Non-melanoma skin cancer among Caucasians in four areas of the United States, Cancer 34:1333–1338.

    Google Scholar 

  • Setlow, J. K., 1967, The effects of ultraviolet radiation and photoreactivation, in: Comprehensive Biochemistry, Photobiology, Ionizing Radiations (M. Florkin and E. H. Stotz, eds.), pp. 157–203, Elsevier, New York.

    Google Scholar 

  • Setlow, J. K., and Boling, M. E., 1965, The resistance of Micrococcus radiodurans to ultraviolet radiation. II. Action spectra for killing, delay in DNA synthesis, and thymine dimerization, Biochim. Biophys. Acta 108:259–265.

    Google Scholar 

  • Setlow, R. B., 1964, Physical changes and mutagenesis, J. Cell Comp. Physiol. 64:51–68 (Suppl. 1).

    Google Scholar 

  • Setlow, R. B., 1966, Cyclubutane-type pyrimidine dimers in polynucleotides, Science 153:379–386.

    Google Scholar 

  • Setlow, R. B., 1968, Photoproducts in DNA irradiated in vivo, Photochem. Photobiol. 7:643–649.

    Google Scholar 

  • Setlow, R. B., 1974, Wavelengths in sunlight effective in producing skin cancer: A theoretical analysis, Proc. Natl. Acad. Sci. USA 71:3363–3366.

    Google Scholar 

  • Setlow, R. B., and Carrier, W. L., 1966, Pyrimidine dimers in ultraviolet-irradiated DNA’s, J. Mol. Biol. 17:237–254.

    Google Scholar 

  • Setlow, R. B., and Hart, R. W., 1975, Direct evidence that damaged DNA results in neoplastic transformation—a fish story, in: Radiation Research, Biochemical, Chemical, and Physical Perspectives (O. F. Nygaard, H. I. Adler, and W. K. Sinclair, eds.), pp. 879–884, Academic Press, New York.

    Google Scholar 

  • Setlow, R. B., and Setlow, J. K., 1972, Effects of radiation on polynucleotides, Ann. Rev. Biophys. Bioeng. 1:293–346.

    Google Scholar 

  • Sisson, T. R. C., 1976, Visible light therapy of neonatal hyperbilirubinemia, in: Photochemical and Photobiological Reviews, Vol. 1 (K. C. Smith, ed.), pp. 241–268, Plenum Publishing Co., New York.

    Google Scholar 

  • Sisson, T. R. C., Glauser, S. C., Glauser, E. M., and Kumabara, T., 1970, Retinal changes produced by phototherapy, J. Pediatr. 77:221–227.

    Google Scholar 

  • Sistrom, W. R., Griffiths, M., and Stanier, R. Y., 1956, The biology of photosynthetic bacterium which lacks colored carotenoids, J. Cell. Comp. Physiol. 48:473–515.

    Google Scholar 

  • Smith, K. C., 1971, Roles of genetic recombination and DNA polymerase in repair of damaged DNA, in: Photophysiology, Vol. 6 (A. C. Giese, ed.), pp. 209–278, Academic Press, New York.

    Google Scholar 

  • Smith, K. C., 1974a, Molecular changes in nucleic acids produced by ultraviolet and visible radiation in: Sunlight and Man (T. B. Fitzpatrick, M. A. Pathak, L. C. Harber, M. Seiji, and A. Kukita, eds.), pp. 57–66, University of Tokyo Press, Tokyo.

    Google Scholar 

  • Smith, K. C., 1974b, Cellular repair and radiation damage, in: Sunlight and Man (T. B. Fitzpatrick, M. A. Pathak, L. C. Harber, M. Seiji, and A. Kukita, eds.), pp. 67–77, University of Tokyo Press, Tokyo.

    Google Scholar 

  • Smith, K. C., and Hanawalt, P. C., 1969, Molecular Photobiology: Inactivation and Recovery, Academic Press, New York.

    Google Scholar 

  • Speck, W. T., and Rosenkranz, H. S., 1975, Base substitution mutations induced in Salmonella strains by visible light, Photochem. Photobiol. 21:369–371.

    Google Scholar 

  • Spikes, J. D., 1968, Photodymatic action, in: Photophysiology, Vol. 3 (A. C. Giese, ed.), pp. 33–64, Academic Press, New York.

    Google Scholar 

  • Spikes, J. D., and Livingston, R., 1969, The molecular biology of photodynamic action, in: Advances in Radiation Biology, Vol. 3 (L. G. Augenstein, R. Mason, and M. Zelle, eds.), pp. 29–121, Academic Press, New York.

    Google Scholar 

  • Sprott, G. D., Dimock, K., Martin, W. G., and Schneider, H., 1975, Coupling of glycine and alanine transport to respiration in cells of Escherichia coli, Can. J. Biochem. 53:262–268.

    Google Scholar 

  • Stanier, R. Y., 1959, Formation and function of photosynthetic pigment system in purple bacteria, Brookhaven Symp. Biol. 11:43–53.

    Google Scholar 

  • Stanier, R. Y., and Cohen-Bazire, G., 1957, The role of light in the microbial world: Some facts and speculation, Symp. Soc. Gen. Microbiol. 7:56–89.

    Google Scholar 

  • Stanier, R. Y., and Straight, R., 1967, Sensitized photochemical processes in biological systems, Annu. Rev. Phys. Chem. 18:405–436.

    Google Scholar 

  • Stoien, J. D., and Wang, R. J., 1974, Effect of near-ultraviolet and visible light on mammalian cells in culture. II. Formation of toxic photoproducts in tissue culture medium by blacklight, Proc. Natl. Acad. Sci. USA 71:3961–3965.

    Google Scholar 

  • Stuy, J. H., 1965, Fate of transforming DNA in Haemophilus influenzae transforming system, J. Mol. Biol. 13:554–570.

    Google Scholar 

  • Stuy, J. H., 1974, Acid-soluble breakdown of homologous DNA absorbed by Haemophilus influenzae: Its biological significance, J. Bacteriol. 120:917–922.

    Google Scholar 

  • Swenson, P. A., 1976, Physiological responses of Escherichia coli to far-ultraviolet radiation, in: Photochemical and Photobiological Reviews, Vol. 1 (K. C. Smith, ed.), pp 269–387, Plenum Publishing Co., New York.

    Google Scholar 

  • Swenson, P. A., and Schenley, R. L., 1970, Role of pyridine nucleotides in the control of respiration in ultraviolet-irradiated Escherichia coli B/r cells, J. Bacteriol. 104:1230–1235.

    Google Scholar 

  • Swenson, P. A., and Schenley, R. L., 1974, Evidence relating cessation of respiration, cell envelope changes, and death in ultraviolet-irradiated Escherichia coli B/r cells, J. Bacteriol. 117:551–559.

    Google Scholar 

  • Swenson, P. A., and Setlow, R. B., 1970, Inhibition of the induced formation of tryptophanase in Escherichia coli by near-ultraviolet radiation, J. Bacteriol. 102:815–819.

    Google Scholar 

  • Szybalski, W., and Opara-Kubinska, L., 1965, Radiobiological and physiochemical properties of 5-bromodeoxyuridine-labelled transforming DNA as related to the nature of the critical radiosensitive structures, in: Cellular Radiation Biology, pp. 223–240, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Town, C. D., Smith, K. C., and Kaplan, H. S., 1973, Repair of X-ray damage to bacterial DNA, Curr. Top. Radiat. Res. Q. 8:351–399.

    Google Scholar 

  • Tuveson, R. W., and Satterthwaite, M. A., 1976, Comparison of ultraviolet and blacklight for the induction of nutritional independence at two loci in Neurospora crassa, Mutat. Res. 36:165–170.

    Google Scholar 

  • Tyrrell, R. M., 1973, Induction of pyrimidine dimers in bacterial DNA by 365 nm radiation Photochem. Photobiol. 17:69–73.

    Google Scholar 

  • Tyrrell, R. M., 1974, The interaction of near-UV (365 nm) and X-radiations on wild-type and repair-deficient strains of Escherichia coli K12: Physical and biological measurements, Int. J. Radiat. Biol. 25:373–390.

    Google Scholar 

  • Tyrrell, R. M., 1976a, RecA +-dependent synergism between 365 nm and ionizing radiation in log-phage Escherichia coli: A model for oxygen-dependent near-UV inactivation by disruption of DNA repair, Photochem. Photobiol. 23:13–20.

    Google Scholar 

  • Tyrrell, R. M., 1976b, Synergistic lethal action of ultraviolet-violet radiations and mild heat in Escherichia coli, Photochem. Photobiol. 24:345–352.

    Google Scholar 

  • Tyrrell, R. M., and Davies, D. J. G., 1974, The kinetics of photoreactivation in the ultraviolet sensitive mutant Escherichia coli K12 AB2480, Mutat. Res. 23:151–161.

    Google Scholar 

  • Tyrrell, R. M., and Webb, R. B., 1973, Reduced dimer excision following near ultraviolet (365 nm) radiation, Mutat. Res. 19:361–364.

    Google Scholar 

  • Tyrrell, R. M., Moss, S. H., and Davies, D. J. G., 1972a, The variation in UV sensitivity of four K12 strains of Escherichia coli as a function of their stage of growth, Mutat. Res. 16:1–12.

    Google Scholar 

  • Tyrrell, R. M., Moss, S. H., and Davies, D. J. G., 1972b, The variation in photoreactivating enzyme activity as a function of stage of growth of three K12 strains of Escherichia coli, Mutat. Res. 16:345–352.

    Google Scholar 

  • Tyrrell, R. M., Webb, R. B., and Brown, M. S., 1973, Destruction of photoreactivating enzyme by 365 nm radiation, Photochem. Photobiol. 18:249–254.

    Google Scholar 

  • Tyrrell, R. M., Ley, R. D., and Webb, R. B., 1974, Induction of single-strand breaks (alkalilabile bonds) in bacterial and phage DNA by near-UV (365 nm) radiation, Photochem. Photobiol. 20:395–398.

    Google Scholar 

  • Urbach, F., Epstein, J. H., and Forbes, P. D., 1974, Ultraviolet carcinogenesis: Experimental, global, and genetic aspects, in: Sunlight and Man (T. B. Fitzpatrick, M. A. Pathak, L. C. Harber, M. Seiji, and A. Kukita, eds.), pp. 260–283, University of Tokyo Press, Tokyo.

    Google Scholar 

  • Van der Schueren, E., and Smith, K. C., 1974, Inhibition of the exrA gene-dependent branch of the DNA excision repair system in Escherichia coli K-12 by 2,4-dinitrophenol, Photochem. Photobiol. 19:95–102.

    Google Scholar 

  • Van der Schueren, E., Smith, K. C., and Kaplan, H. S., 1973, Modification of DNA repair and survival of X-irradiated pol, rec, and exr mutants of Escherichia coli K-12 by 2,4-dinitrophenol, Radiat. Res. 55:346–355.

    Google Scholar 

  • Venema, G., Pritchard, R. H., and Venema-Schröder, T., 1965, Fate of transforming deoxyribonucleic acid in Bacillus subtilis, J. Bacteriol. 89:1250–1255.

    Google Scholar 

  • Wahl, R., 1946, Quelques précisions au sujet de l’action de la lumière sur les bactériophages, Ann. Inst. Pasteur 72:284–286.

    Google Scholar 

  • Wahl, R., and Latarjet, R., 1947, Near-UV inactivation of several bacteriophages maximum in the near UV and violet regions, Ann. Inst. Pasteur 73:957–971.

    Google Scholar 

  • Walter, J. F., and Voorhees, J. J., 1973, Psoriasis improved by psoralen plus black light, Acta Derm. Venereol. (Stockholm) 53:469–472.

    Google Scholar 

  • Wang, R. J., Stoien, J. D., and Landa, F., 1974, Lethal effect of near-ultraviolet irradiation on mammalian cells in culture, Nature (London) 247:43–45.

    Google Scholar 

  • Webb, R. B., 1972, Photodynamic lethality and mutagenesis in the absence of added sensitizers, in: Organic, Biological and Medicinal Chemistry, Vol. 3 (U. Galo and L. Santamaria, eds.), Part 2, pp. 511–530, American Elsevier, New York.

    Google Scholar 

  • Webb, R. B., 1977a, Near-ultraviolet mutagenesis. I. Photoreactivation of mutational lesions induced by 365 nm radiation in Escherichia coli WP2B, J. Bacteriol. (submitted).

    Google Scholar 

  • Webb, R. B., 1977b, Near-ultraviolet mutagenesis, II. Mutation induction by 365 nm radiation in strains of Escherichia coli that differ in repair capability, Mutat. Res. (submitted).

    Google Scholar 

  • Webb, R. B., and Brown, M. S., 1976, Sensitivity of strains of Escherichia coli differing in repair capability to far UV, near UV and visible radiations, Photochem. Photobiol. 24:425–432.

    Google Scholar 

  • Webb, R. B., and Brown, M. S., 1977a, Strong synergism between 365 nm and longer wavelength radiation in repair-proficient strains of E. coli (in preparation).

    Google Scholar 

  • Webb, R. B., and Brown, M. S., 1977b, Oxygen dependence of sensitization to 254 nm radiation by prior exposures to 365 nm radiation (in preparation).

    Google Scholar 

  • Webb, R. B., and Kubitschek, H. E., 1963, Mutagenic and antimutagenic effects of acridine orange in Escherichia coli, Biochem. Biophys. Res. Commun. 13:90–94.

    Google Scholar 

  • Webb, R. B., and Kubitschek, H. E., 1965, Photodynamic mutation in continuous cultures, in: Argonne National Laboratory Biology and Medicine AEC Research and Development Report, ANL-7136, pp. 145-148.

    Google Scholar 

  • Webb, R. B., and Lorenz, J. R., 1970, Oxygen dependence and repair of lethal effects of near ultraviolet and visible light, Photochem. Photobiol. 12:283–289.

    Google Scholar 

  • Webb, R. B., and Malina, M. M., 1967, Mutagenesis in Escherichia coli by visible light, Science 156:1104–1105.

    Google Scholar 

  • Webb, R. B., and Malina, M. M., 1970, Mutagenic effects of near ultraviolet and visible radiant energy on continuous cultures of Escherichia coli, Photochem. Photobiol. 12:457–468.

    Google Scholar 

  • Webb, R. B., Brown, M. S., and Tyrrell, R. M., 1976, Lethal effects of pyrimidine dimers induced at 365 nm in strains of E. coli differing in repair capability, Mutat. Res. 37:163–172.

    Google Scholar 

  • Webb, R. B., Brown, M. S., and Hass, B. S., 1977a, Action spectrum for carotenoid protection in Sarcina lutea, Radiat. Res. (submitted).

    Google Scholar 

  • Webb, R. B., Tyrrell, R. M., and Brown, M. S., 1977b, Synergism between 365 and 254 nm radiation (in preparation).

    Google Scholar 

  • Webb, R. B., Ley, R. D., and Hass, B. S., 1977c, The role of oxygen-dependent lesions and damage to repair processes in the oxygen-dependent inactivation of E. coli by 365 nm radiation, in preparation.

    Google Scholar 

  • Webb, S. J., 1963, The effect of relative humidity and light on air-dried organisms, J. Appl. Bacteriol. 26:307–313.

    Google Scholar 

  • Webb, S. J., 1972, Semi-dehydration and the action of ultraviolet light, in: Research Progress in Organic, Biological and Medicinal Chemistry, Vol. 3 (U. Gallo and L. Santamaria, eds.), Part 2, pp. 737–753, American Elsevier, New York.

    Google Scholar 

  • Webb, S. J., and Bhorjee, J. S., 1967, The effect of 3000-4000 Å light on the synthesis of B. galactosidase and bacteriophages by Escherichia coli B, Can. J. Microbiol. 13:69–79.

    Google Scholar 

  • Webb, S. J., and Tai, C. C., 1968, Lethal and mutagenic action of 3200-4000 Å light, Can. J. Microbiol. 14:727–735.

    Google Scholar 

  • Webb, S. J., and Tai, C. C., 1969, Physiological and genetic implications of selective mutation by light at 320-400 nm, Nature (London) 224:1123–1125.

    Google Scholar 

  • Webb, S. J., and Tai, C. C., 1970, Differential, lethal and mutagenic action of 254 nm and 320-400 nm radiation on semi-dried bacteria, Photochem. Photobiol. 12:119–143.

    Google Scholar 

  • Weber, G., 1974, Combined 8-methoxypsoralen and black light therapy of psoriasis: Technique and results, Br. J. Dermatol. 90:317–323.

    Google Scholar 

  • Wells, W. F., 1955, Air Hygiene and Air Contagion, Harvard University Press, Boston.

    Google Scholar 

  • Wells, W. F., and Wells, N. W., 1936, Air-borne infection, J. Am. Med. Assoc. 107:1698–1703.

    Google Scholar 

  • Willis, I., Kligman, A., and Epstein, J., 1973, Effects of long ultraviolet rays on human skin: Photoprotective or photoaugmentative, J. Invest. Dermatol. 59:416–420.

    Google Scholar 

  • Witkin, E. M., 1963, The effect of acriflavine on photoreversal of lethal and mutagenic damage produced in bacteria by ultraviolet light, Proc. Natl. Acad. Sci. USA 50:425–430.

    Google Scholar 

  • Witkin, E. M., 1975, Elevated mutability of polA and uvrA polA derivatives of Escherichia coli B/r at sublethal doses of ultraviolet light: Evidence for an inducible error-prone repair system (“SOS repair”) and its anomalous expression in these strains, Genetics 79:199–213.

    Google Scholar 

  • Witkin, E. M., and Parisi, E. C., 1974, Bromouracil mutagenesis: Mispairing or misrepair? Mutat. Res. 25:407–409.

    Google Scholar 

  • Wright, L. J., and Rilling, H. C., 1963, The function of carotenoids in a photochromogenic bacterium, Photochem. Photobiol. 2:339–342.

    Google Scholar 

  • Wulff, D. L., and Fraenkel, G., 1961, On the nature of thymine photoproduct, Biochim. Biophys. Acta 51:332–339.

    Google Scholar 

  • Wurtman, R. J., 1975, The effects of light on man and other animals, Annu. Rev. Physiol. 37:467–483.

    Google Scholar 

  • Yoakum, G. H., 1975, Tryptophan photoproduct(s): Sensitized induction of strand breaks (or alkali-labile bonds) in bacterial deoxyribonucleic acid during near-ultraviolet irradiation, J. Bacteriol. 122:199–205.

    Google Scholar 

  • Yoakum, G., and Eisenstark, A., 1972, Toxicity of L-tryptophan photoproduct on recombinationless (rec) mutants of Salmonella typhimurium, J. Bacteriol. 112:653–655.

    Google Scholar 

  • Yoakum, G., Ferron, W., Eisenstark, A., and Webb, R. B., 1974, Inhibition of replication gap closure in Escherichia coli by near-ultraviolet light photoproducts of L-tryptophan, J. Bacteriol. 119:62–69.

    Google Scholar 

  • Yoakum, G., Eisenstark, A., and Webb, R. B., 1975, Near-UV photoproduct(s) of L-tryptophan: An inhibitor of medium-dependent repair of X-ray-induced single-strand breaks in DNA which also inhibits replication-gap closure in Escherichia coli DNA; molecular mechanisms for repair of DNA, in: Molecular Mechanism for Repair of DNA (P. C. Hanawalt and R. B. Setlow, eds.), Part B, pp. 453–458, Plenum Press, New York.

    Google Scholar 

  • Yoakum, G., Webb, R. B., and Eisenstark, A., 1977, Toxic photoproducts of L-tryptophan: A role in near-UV sensitivity of Salmonella typhimurium recA strains, Photochem. Photobiol. (submitted).

    Google Scholar 

  • Youngs, D. A., Van der Schueren, E., and Smith, K. C., 1974, Separate branches of the uvr gene-dependent excision repair process in ultraviolet-irradiated Escherichia coli K-12 cells; their dependence upon growth medium and the polA, recA, recB and exrA genes, J. Bacteriol. 117:717–725.

    Google Scholar 

  • Zelle, M. R., and Hollaender, A., 1955, Effects of radiation on bacteria, in: Radiation Biology. Vol. 2 (A. Hollaender, ed.), pp. 365–430, McGraw-Hill, New York.

    Google Scholar 

  • Zetterberg, G., 1964, Mutagenic effects of ultraviolet and visible light, in: Photophysiology, Vol. 3 (A. C. Giese, ed.), pp. 247–281, Academic Press, New York.

    Google Scholar 

  • Zigman, S., 1971, Eye lens color: Formation and function, Science 171:807–809.

    Google Scholar 

  • Zigman, S., and Hare, J. D., 1976, Inhibition of cell growth by near ultraviolet light photoproducts of tryptophan, Mol. Cell. Biochem. 10:131–135.

    Google Scholar 

  • Zigman, S., Schultz, J., Yulo, T., and Griess, G., 1973, The binding of photo-oxidized tryptophan to a lens gamma-crystallin, Exp. Eye Res. 17:209–217.

    Google Scholar 

  • Zigman, S., Yulo, T., and Schultz, J., 1974, Cataract induction in mice exposed to near UV light, Ophthalmic Res. 6:259–270.

    Google Scholar 

  • Zirenberg, B. E., Kramer, D. M., Geisert, M. G., and Kirste, R. G., 1971, Effects of sensitized and unsensitized longwave UV-irradiation on the solution properties of DNA, Photochem. Photobiol. 14:515–520.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Webb, R.B. (1977). Lethal and Mutagenic Effects of Near-Ultraviolet Radiation. In: Smith, K.C. (eds) Photochemical and Photobiological Reviews. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2577-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2577-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2579-6

  • Online ISBN: 978-1-4684-2577-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics