Photochemistry of the Nucleic Acids

  • Leonhard Kittler
  • Günter Löber


Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) contain four major bases—adenine, guanine, cytosine, and thymine (uracil instead of thymine in RNA)—each of which strongly absorbs ultraviolet (UV) radiation with a maximum at about 260 nm. Therefore, UV irradiation of nucleic acids and related model compounds produces electronically excited bases that are able to undergo various photochemical reactions involving neighboring bases, sugar residues, surrounding water molecules, proteins, and bound organic ligands. The photochemical properties of minor bases and base analogues usually differ from those of the major normal bases. In view of this, the study of photochemical processes may well lead to important advances in the recognition of their biochemical functions.


Methylene Blue Triplet State Singlet Oxygen Acridine Orange Orotic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adman, E., and Jensen, L. H., 1970, The crystal and molecular structure of the cis-syn photodimer of uracil, Acta Crystallogr. Sect. B 26:1326–1334.Google Scholar
  2. Alcantara, R., and Wang, S. Y., 1965a, Photochemistry of 1,3-dimethylthymine in aqueous solution, Photochem. Photobiol. 4:465–472.Google Scholar
  3. Alcantara, R., and Wang, S. Y., 1965b, Photochemistry of thymine in aqueous solution, Photochem. Photobiol. 4:473–476.Google Scholar
  4. Alexander, P., and Moroson, H., 1962, Cross-linking of deoxyribonucleic acid to protein following ultraviolet irradiation of different cells, Nature (London) 194:882–883.Google Scholar
  5. Alper, T., and Hodgins, B., 1969, “Excision repair” and dose-modification: Questions raised by radiobiological experiments with acriflavine, Mutat. Res. 8:15–23.Google Scholar
  6. Baden, H. P., Parrington, J. M., Delhanty, J. D. A., and Pathak, M. A., 1972, DNA synthesis in normal and XP-fibroblasts following treatment with 8-methoxypsoralen and long wave ultraviolet light, Biochim. Biophys. Acta 262:247–255.Google Scholar
  7. Bagchi, B., Basu, S., Misra, D. N., and Das Gupta, N. N., 1969, Conformation of UV-irradiated DNA, Int. J. Radiat. Biol. 16:301–310.Google Scholar
  8. Balcarová, Z., Janovská, E., Kleinwächter, V., Koudelka, J., and Löber, G., 1971, Comparison of biological activity and some physico-chemical properties of TV-derivatives of acridine orange, Stud. Biophys. 27:205–212.Google Scholar
  9. Barr, H. J., and Ellison, J. R., 1971, Quinacrine staining of chromosomes and evolutionary studies in Drosophila, Nature (London) 223:190–191.Google Scholar
  10. Basu, S., and Greist, J., 1963, Resonance transfer of excitation energy between nucleosides and acridine orange. J. Phys. Chem. 67:1394–1395.Google Scholar
  11. Beardsley, K., Tao, T., and Cantor, C. R., 1970, Studies on the conformation of the anticodon loop of phenylalanine transfer ribonucleic acid. Effect of environment on the fluorescence of the Y base, Biochemistry 9:3524–3532.Google Scholar
  12. Becarevic, A., Djordjevic, B., and Sutic, D., 1963, Effect of ultra-violet light on Tobacco Mosaic Virus containing 5-fluorouracil, Nature (London) 198:612–613.Google Scholar
  13. Becker, J., Le Blanc, J. C., and Johns, H. E., 1967, The UV photochemistry of cytidylic acid. Photochem. Photobiol. 6:733–743.Google Scholar
  14. Bellin, J. S., 1965, Properties of pigments in the bound state: A review, Photochem. Photobiol. 4:33–44.Google Scholar
  15. Bellin, J. S., and Grossman, L. J., 1965, Photodynamic degradation of nucleic acids, Photochem. Photobiol. 4:45–53.Google Scholar
  16. Bellin, J. S., and Yankus, C. A., 1966, Effects of photodynamic degradation on the viscosity of deoxyribonucleic acid, Biochim. Biophys. Acta 112:363–371.Google Scholar
  17. Ben-Hur, E., and Ben-Ishai, R., 1968, Trans-syn thymine dimers in ultraviolet irradiated denatured DNA: Identification and photoreactivability, Biochim. Biophys. Acta 166:9–15.Google Scholar
  18. Ben-Hur, E., and Elkind, M. M., 1973, Psoralen plus near ultraviolet light inactivation of cultured Chinese hamster cells and its relation to DNA cross-links, Mutat. Res. 18:315–324.Google Scholar
  19. Ben-Hur, E., and Rosenthal, J., 1970, Photosensitized splitting of pyrimidine dimers, Photochem. Photobiol. 11:163–168.Google Scholar
  20. Ben-Hur, E., Elad, D., and Ben-Ishai, R., 1967, The photosensitized dimerization of thymine in solution, Biochim. Biophys. Acta 149:355–360.Google Scholar
  21. Ben-Ishai, R., Ben-Hur, E., and Hornfeld, Y., 1968, Photosensitized dimerization of thymine and cytosine in DNA, Isr. J. Chem. 6:769–775.Google Scholar
  22. Ben-Ishai, R., Green, M., Graff, E., Elad, D., Steinmaus, H., and Salomon, J., 1973, Photoalkylation of purines in DNA, Photochem. Photobiol. 17:155–167.Google Scholar
  23. Benzer, S., and Freese, E., 1958, Induction of specific mutations with 5-bromouracil, Proc. Natl Acad. Sci. USA 44:112–119.Google Scholar
  24. Berg, H., 1975, Photopolarographie und Photodynamie, in: Sitzungsberichte der Sächsischen Akademie der Wissenschaften zu Leipzig, pp. 5–19, Akademic Verlag, Berlin.Google Scholar
  25. Berg, H., and Bär, H., 1967, Photodynamische Destabilisierung der DNS-Doppelhelix, in: Molekulare Mechanismen photodynamischer Effekte, Stud. Biophys. 3:133–138.Google Scholar
  26. Berg, H., and Gollmick, F. A., 1974, Photodynamic mechanisms and redoxpotentials of excited sensitizers, in: Progress in Photobiology (G. O. Schenck, ed.), No. 006, Deutsche Gesellschaft für Lichtforschung, Frankfurt/M.Google Scholar
  27. Berg, H., and Jungstand, W., 1966, Photodynamische Wirkung auf das solide Ehrlich Karzinom, Naturwissenschaften 53:481–482.Google Scholar
  28. Berg, H., Gollmick, F. A., Jacob, H.-E., and Triebel, H., 1972, Sensibilisierte Photooxidation durch Methylenblau, Thiopyronin und Pyronin. II. Physikochemische Grundlagen der photodynamischen Wirkung von Thiopyronin, Photochem. Photobiol. 16:125–138.Google Scholar
  29. Bergstrom, D. E., and Leonard, N. J., 1972, Photoreaction of 4-thiouracil with cytosine. Relation to photoreactions in E. coli transfer ribonucleic acids, Biochemistry 11:1–9.Google Scholar
  30. Bersohn, R., and Isenberg, I., 1964, Phosphorescence in nucleotides and nucleic acids, J. Chem. Phys. 40:3175–3180.Google Scholar
  31. Beukers, R., 1965, The effect of proflavine on U.V.-induced dimerization of thymine in DNA, Photochem. Photobiol. 4:935–937.Google Scholar
  32. Beukers, R., and Berends, W., 1961, The effect of UV irradiation on nucleic acids and their components, Biochim. Biophys. Acta 49:181–189.Google Scholar
  33. Beukers, R., Ijlstra, J., and Berends, W., 1958, The effect of ultraviolet light on some components of the nucleic acid. II. In rapidly frozen solutions, Rec. Trav. Chim. Pays-Bas 77:729–732.Google Scholar
  34. Beukers, R., Ijlstra, J., and Berends, W., 1959, The effect of ultraviolet light on some components of the nucleic acid. III. Apurinic acid, Rec. Trav. Chim. Pays-Bas 78:247–251.Google Scholar
  35. Bevilacqua, R., and Bordin, F., 1973, Photo-C4-cycloaddition of psoralen and pyrimidine bases: Effect of oxygen and paramagnetic ions, Photochem. Photobiol. 17:191–194.Google Scholar
  36. Bidet, R., Chambron, J., and Weill, G., 1970, Analyse quantitative des courbes de fusion des complexes DNA-proflavine obtenues par fluorescence, Ann. Phys. Biol. Med. 1:1–30.Google Scholar
  37. Bishop, J. M., Quintrell, N., and Koch, G., 1967, Poliovirus double-stranded RNA: Inactivation by ultraviolet light, J. Mol. Biol. 24:125–128.Google Scholar
  38. Bittmann, R., 1969, Studies of the binding of ethidium bromide to transfer ribonucleic acid: Absorption, fluorescence, ultracentrifugation and kinetic investigations. J. Mol. Biol. 46:251–268.Google Scholar
  39. Blackburn, G. M., and Davies, R. J. H., 1966a, The structure of uracil photo-dimer, Tetrahedron Lett. 37:4471–4474.Google Scholar
  40. Blackburn, G. M., and Davies, R. J. H., 1966b, The structure of thymine photo-dimer, J. Chem. Soc. (C) Sect. A, 2239-224.Google Scholar
  41. Blum, H. F., 1941, Photodynamic Action and Diseases Caused by Light, Reinhard, New York.Google Scholar
  42. Böhme, H., 1968, Absence of repair of photodynamically induced damage in two mutants of Proteus mirabilis with increased sensitivity to monofunctional alkylating agents. Mutat. Res. 6:166–168.Google Scholar
  43. Böhme, H., and Adler, B., 1972, Reparatur von DNA-Schäden, in: Desoxyribonucleinsäure— Schlüssel des Lebens (E. Geissler, ed.), pp. 134–150, Akademie Verlag, Berlin.Google Scholar
  44. Böhme, H., and Wacker, A., 1963, Mutagenic activity of thiopyronine and methylene blue in combination with visible light, Biochem. Biophys. Res. Commun. 12:137–139.Google Scholar
  45. Bollum, F. J., and Setlow, R. B., 1963, Ultraviolet inactivation of DNA primer activity. I. Effects of different wavelengths and doses, Biochim. Biophys. Acta 68:599–607.Google Scholar
  46. Bonneau, R., Faure, J., and Joussot-Dubiene, J., 1967, Study of the kinetics and acid base properties of semireduced species in the photoreduction of thiazine dyes in aqueous solution, Ber. Bunsenges. Phys. Chem. 72:263–266.Google Scholar
  47. Bonneau, R., Pottier, R., Bagno, O., and Joussot-Dubien, J., 1975, pH dependence of singlet oxygen production in aqueous solutions using thiazine dyes as photosensitizers, Photochem. Photobiol. 21:159–163.Google Scholar
  48. Bordin, F., and Baccichetti, 1974, The furocoumarin photosensitizing effect on the virus-producing Graffi leukaema cells, Z. Naturforsch. 29c:630–632.Google Scholar
  49. Bordin, F., Baccichetti, F., and Musajo, L., 1973, Inhibition of nucleic acids synthesis in Ehrlich ascites tumor cells by irradiation in vitro in the presence of skin-photosensitizing furocoumarins, Experientia 29:272–273.Google Scholar
  50. Borisova, O. F., and Minyat, E. E., 1969, Complexes of deoxyribonucleoprotein with acridine orange dye, Mol. Biol. (USSR) 3:758–767.Google Scholar
  51. Borisova, O. F., and Tumerman, L. A., 1964, The luminescence of acridine orange and nucleic acid complexes, Biophysika (USSR) 9:537–544.Google Scholar
  52. Borisova, O. F., Potapov, A. P., Surovaya, A. N., Trubitsyn, S. N., and Volkenstein, M. V., 1973, Dependence of the fluorescence quantum yield of tRNA-acriflavine complexes on the structure of tRNA, Mol. Biol. (USSR) 4:509–516.Google Scholar
  53. Borisova, O. F., Razjivin, A. P., and Zaregorodzev, V. I., 1974, Evidence for the quinacrine fluorescence on three AT pairs of DNA, FEBS Lett. 46:239–242.Google Scholar
  54. Boyland, E., and Green, B., 1964, On the reported sedimentation of polycyclic hydrocarbons from aqueous solutions of DNA, J. Mol. Biol. 9:589–597.Google Scholar
  55. Boyle, R. E., Nelson, S. S., Dollish, F. R., and Olsen, M. J., 1962, The interaction of deoxyribonucleic acid and acridine orange Arch. Biochem. Biophys. 96:47–50.Google Scholar
  56. Brand, L., and Gohlke, J. R., 1972, Fluorescence probes for structure, Annu. Rev. Biochem. 41:843–868.Google Scholar
  57. Brendel, M., 1970, Different photodynamic action of proflavine and methylene blue on bacteriophage. Mol. Gen. Genet. 108:303–311.Google Scholar
  58. Brendel, M., and Kaplan, R. W., 1967, Photodynamische Mutations auslösung und Inaktivierung beim Serratia phagen K durch Methylenblau and Licht, Mol. Gen. Genet. 99:181–190.Google Scholar
  59. Brendel, M., and Winkler, U., 1966, Photodynamische Inaktivierung des E. coli phagen T4: Untersuchung der Kreuzungsreaktivierung und des Schutzeffektes von Spermin, Z. Vererbungsl. 98:41–48.Google Scholar
  60. Bridges, B. A., 1971, Genetic damage induced by 254 nm ultraviolet light in Escherichia coli: 8-Methoxypsoralen as protective agent and repair inhibitor, Photochem. Photobiol. 14:659–662.Google Scholar
  61. Bridges, B. A., and Munson, R. J., 1970, UV-mutagenesis, Stud. Biophys. 19:49–57.Google Scholar
  62. Brown, I. H., and Johns, H. E., 1967, Mathematical aspects of the ultraviolet photochemistry of pyrimidine dinucleoside phosphates, Photochem. Photobiol. 6:469–483.Google Scholar
  63. Brown, I. H., and Johns, H. E., 1968, Photochemistry of uracil. Intersystem crossing and dimerization in aqueous solution, Photochem. Photobiol. 8:273–286.Google Scholar
  64. Brown, I. H., Freeman, K. B., and Johns, H. E., 1966, Photochemistry of uridylyl-(3’ → 5’)-uridine, J. Mol. Biol. 15:640–662.Google Scholar
  65. Brunk, C. F., 1973, Distribution of dimers in ultraviolet-irradiated DNA, Nature (London) New Biol. 241:74–76.Google Scholar
  66. Bruton, C. J., and Harley, B. S., 1970, Chemical studies on methionyl-tRNA synthetase from E. coli, J. Mol. Biol. 52:165–178.Google Scholar
  67. Buc, M.-H., and Scott, J. F., 1966, Effects of ultraviolet light on the biological functions of transfer RNA, Biochem. Biophys. Res. Commun. 22:459–465.Google Scholar
  68. Burns, V. W. F., 1969, Fluorescence decay time characteristics of the complex between ethidium bromide and nucleic acid. Arch. Biochem. Biophys. 133:420–424.Google Scholar
  69. Burr, J. G., 1968, Advances in the photochemistry of nucleic acid derivatives, in: Advances in Photochemistry, Vol. 6 (W. A. Noyes, Jr., G. S. Hammond, and J. N. Pitts, Jr., eds.), pp. 193–299, Interscience, New York.Google Scholar
  70. Burr, J. G., and Park, E. H., 1968a, Photochemical genetics. I. The ionic nature of uracil photohydration, Adv. Chem. Ser. 81:418–434.Google Scholar
  71. Burr, J. G., and Park, E. H., 1968b, Photochemical genetics. II. The kinetic role of water in the photohydration of uracil and 1,3-dimethyluracil, Adv. Chem. Ser. 81:435–444.Google Scholar
  72. Burr, J. G., Gordon, B. R., and Park, E. H., 1968, The mechanism of photohydration of uracil and N-substituted uracils, Photochem. Photobiol. 8:73–78.Google Scholar
  73. Burr, J. G., Park, E. H., and Chan, A., 1972, Nature of the reactive species in the photohydration of uracil and cytosine derivatives, J. Am. Chem. Soc. 94:5866–5872.Google Scholar
  74. Calberg-Bacq, C. M., and Van de Vorst, A., 1974, Induction of free radicals in DNA by proflavine and visible light: Influence of oxygen and ionic strength, Photochem. Photobiol. 20:433–439.Google Scholar
  75. Calberg-Bacq, C.M., Delmelle, M., and Duchesne, J., 1968, Inactivation and mutagenesis due to the photodynamic action of acridines and related dyes on extracellular bacteriophage T4B, Mutat. Res. 6:15–24.Google Scholar
  76. Calendi, E., Di Marco, A., Reggiani, M., Scarpinato, B., and Valentini, L., 1965, On physicochemical interactions between daunomycin and nucleic acids, Biochim. Biophys. Acta 103:25–49.Google Scholar
  77. Camerman, N., and Camerman, A., 1968, Photodimer of thymine in ultraviolet-irradiated DNA: Proof of structure by X-ray diffraction, Science (Washington) 160:1451–1452.Google Scholar
  78. Camerman, N., Weinblum, D., and Nyburg, S. C., 1969, The structure of dl photodimer C of l,3-dimethylthymine, J. Am. Chem. Soc. 91:982–986.Google Scholar
  79. Campbell, J. M., Schulte-Frohlinde, D., and Sonntag, C., 1974, Quantum yields in the UV photolysis of 5-bromo-uracil in the presence of hydrogen donors, Photochem. Photobiol. 20:465–467.Google Scholar
  80. Caporale, G., Musajo, L., Rodighiero, G., and Baccichetti, F., 1967, Skin-photosensitizing activity of some methylpsoralens, Experientia 23:985–986.Google Scholar
  81. Carpenter, J. M., and Kleczkowski, A., 1969, The absence of photoreversible pyrimidine dimers in the RNA of UV-irradiated TMV, Virology 39:542–548.Google Scholar
  82. Carré, D. S., Thomas, G., and Favre, A., 1974, Conformation and functioning of tRNAs: Cross-linked tRNAs as substrate for tRNA nucleotidyl-transferase and aminoacyl synthetases, Biochimie 56:1089–1101.Google Scholar
  83. Caspersson, T., Farber, S., Foley, G. E., Kudynowski, J., Modest, E. J., Simonsson, E., Wagh, O., and Zech, L., 1968, Chemical differentiation along metaphase chromosomes, Exp. Cell Res. 49:219–222.Google Scholar
  84. Caspersson, T., Zech, L., and Lindsten, J., 1972, Die Identifikation menschlicher Chromosomen mit Hilfe der Fluoroeszenzmethode, Triangel 11:73–80.Google Scholar
  85. Cerutti, P. A., 1975, Excision repair of DNA base damage, Life Sci. 15:1567–1575.Google Scholar
  86. Cerutti, P., Miles, H. T., and Frazier, J., 1966, Interaction of partially reduced polyuridylic acid with polyadenylic acid, Biochem. Biophys. Res. Commun. 22:466–472.Google Scholar
  87. Chambers, R. W., Waits, H. P., and Freude, A., 1969, Photosensitized inactivation of alanine transfer RNA, J. Am. Chem. Soc. 91:7203–7204.Google Scholar
  88. Chan, L. M., and Van Winkle, Q., 1969, Interaction of acriflavine with DNA and RNA, J. Mol. Biol. 40:491–495.Google Scholar
  89. Chandra, P., 1972, Photodynamic action: A valuable tool in molecular biology, in: Research Progress in Organic, Biological and Medicinal Chemistry (U. Gallo and L. Santamaria, eds.), pp. 232–258, North-Holland, Amsterdam.Google Scholar
  90. Chandra, P., and Wacker, A., 1968, Photodynamic effects on the template activity of nucleic acids, Z. Naturforsch. 211:663–666.Google Scholar
  91. Chandra, P., and Wacker, A., 1970, Structure and function of nucleic acids treated with dyes, furocoumarins and ketones in the presence of light, in: Interaktionen bei Biopolymeren, Stud. Biophys. 24/25:437–446.Google Scholar
  92. Chandra, P., Kraft, S., and Wacker, A., 1971a, Studies on the reactivation of bacteria photodamaged by psoralen, Biophysik 7:251–258.Google Scholar
  93. Chandra, P., Rodighiero, G., Dall’Acqua, F., Marciani, S., Kraft, S., and Wacker, A., 1971b, Studies on the reactivation of bacteria photodamaged by furocoumarins, Stud. Biophys. 29:53–61.Google Scholar
  94. Chandra, P., Wacker, A., Lisy, V., and Škoda, J., 1971c, Acetone-sensitized inactivation of guanylyl-uridylyl-uridine (GUU) in the binding of valyl-tRNA to ribosomes, Biophysik 7:245–246.Google Scholar
  95. Chandra, P., Biwas, R. K., Dall’Acqua, F., Marciani, S., Baccichetti, F., Vedaldi, D., and Rodighiero, C., 1973, Postirradiated dark recovery of photodamage to DNA induced by furocourmarins, Biophysik 9:113–119.Google Scholar
  96. Chandra, P., Dall’Acqua, F., Marciani, S., and Rodighiero, G., 1974, Studies on the repair of DNA photodamaged by furocoumarins, in: Sunlight and Man. Normal and Abnormal Photobiologic Responses (M. A. Pathak, L. C. Harber, M. Seiji, and A. Kukita, eds.), pp. 411-417, University of Tokyo Press.Google Scholar
  97. Charlier, M., and Helénè, C., 1967, Photosensitized dimerization of orotic acid in aqueous solution, Photochem. Photobiol. 6:501–504.Google Scholar
  98. Charlier, M., and Helénè, C., 1975, Photosensitized splitting of pyrimidine dimers in DNA by indole derivatives and tryptophan-containing peptides, Photochem. Photobiol. 21:31–37.Google Scholar
  99. Chessin, M., 1960, Photodynamic inactivation of infectious nucleic acid, Science (Washington) 132:1840–1841.Google Scholar
  100. Cleaver, J. E., 1967, The relationship between the rate of DNA synthesis and its inhibition by ultraviolet light in mammalian cells. Radiat. Res. 30:795–810.Google Scholar
  101. Cleaver, J. E., 1971, Repair of damaged DNA in human and other eukaryotic cells, in: Nucleic Acid-Protein Interactions-Nucleic Acid Synthesis in Viral Injection (D W Ribbons, J. F. Woessner, and J. Schultz, eds.), pp. 87–112, North-Holland, Amsterdam.Google Scholar
  102. Cleaver, J. E., 1973, DNA repair with purines and pyrimidines in radiation-and carcinogen-damaged normal and xeroderma pigmentosum human cells, Cancer Res. 33:362–369.Google Scholar
  103. Cleaver, J. E., and Trosko, J. E., 1970. Absence of excision of ultraviolet-induced cyclobutane dimers in xeroderma pigmentosum, Photochem. Photobiol. 11:547–550.Google Scholar
  104. Cohn, W. E., Leonard, N. J., and Wang, S. Y., 1974, Abbreviations for pyrimidine photoproducts, Photochem. Photobiol. 19:89–94.Google Scholar
  105. Cole, R. S., 1970, Psoralen monoadducts and interstrand cross-links in DNA, Biochim. Biophys. Acta 254:30–39.Google Scholar
  106. Cole, R. S., 1973, Repair of DNA containing interstrand cross-links in Escherichia coli: Sequential excision and recombination, Proc. Natl. Acad. Sci. USA 70:1064–1068.Google Scholar
  107. Colombo, G., 1967, Phosensitization of sea-urchin sperm to long-wave ultraviolet light by psoralen, Exp. Cell Res. 48:167–169.Google Scholar
  108. Colombo, G., Levis, A. G., and Torlone, V., 1965, Photosensitization of mammalian cells and of animal viruses by furocoumarins, Prog. Biochem. Pharmacol. 1:392–399.Google Scholar
  109. Comings, D. E., Avelino, E., Okada, T. A., and Wyandt, H. E., 1973, The mechanism of C-and G-banding of chromosomes, Exp. Cell Res. 77:469–493.Google Scholar
  110. Conolly, J. S., and Linschitz, H., 1968, Photoaddition of alcohols to purine, Photochem. Photobiol. 7:791–806.Google Scholar
  111. Cramer, W. A., and Uretz, R. B., 1966a, Acridine orange sensitized photoinactivation of T4 bacteriophage. I. Parameter affecting phage sensitivity to visible light, Virology 29:462–468.Google Scholar
  112. Cramer, W. A., and Uretz, R. B., 1966b, Acridine orange sensitized photoinactivation of T4 bacteriophage. II. Genetic studies with photoinactivated phage, Virology 29:469–479.Google Scholar
  113. Cusachs, L. C., and Steele, R. H., 1967, Singlet oxygen molecules and carcinogenic aromatic hydrocarbons, Int. J. Quantum Chem. Symp. 1:175–183.Google Scholar
  114. Dall’Acqua, F., Terbojevich, M., and Benvenuto, F., 1968, Light-scattering and viscosimetric studies on DNA after the photoreaction with some furocoumarins, Z. Naturforsch. 24b:667–671.Google Scholar
  115. Dall’Acqua, F., Marciani, S., and Rodighiero, G., 1969, The action of xanthotoxin and bergapten for the photoreaction with native DNA, Z. Naturforsch. 24b:667–671.Google Scholar
  116. Dall’Acqua, F., Marciani, S., and Rodighiero, G., 1970, Interstrand cross-linkage occuring in the photoreaction between psoralen and DNA, FEBS Lett. 9:121–123.Google Scholar
  117. Dall’Acqua, F., Marciani, S., Ciavatta, L., and Rodighiero, G., 1971, Formation of interstrand cross-linkings in the photoreactions between furocoumarins and DNA, Z. Naturjorsch. 26b:561–569.Google Scholar
  118. Dall’Acqua, F., Marciani, S., Vedaldi, D., and Rodighiero, G., 1972, Formation of interstrand cross-linkings on DNA of guinea pig skin after application of psoralen and irradiation of 365 nm, FEBS Lett. 27:192–194.Google Scholar
  119. Dall’Acqua, F., Marciani, S., Vedaldi, D., and Rodighiero, G., 1974a, Skin photosensitization and cross-linkings formation in native DNA by furocoumarins, Z. Naturforsch. 29c:635–636.Google Scholar
  120. Dall’Acqua, F., Marciani, S., Vedaldi, D., and Rodighiero, G., 1974b, Studies on the photoreactions (365 nm) between DNA and some methylpsoralens, Biochim. Biophys. Acta 353:267–273.Google Scholar
  121. Danilov, V. J., Kruglyak, Y. A., Kuprievich, V. A., and Ogloblin, V. V., 1969, Electronic aspects of photodimerization of the pyrimidine bases and of their derivatives, Theor. Chim. Acta (Berlin) 14:242–249.Google Scholar
  122. Danziger, R. M., Hayon, E., and Langmuir, M. E., 1968, Pulse-radiolysis and flash-photolysis study of aqueous solutions of simple pyrimidines. Uracil and bromouracil, J. Phys. Chem. 72:3842–3849.Google Scholar
  123. Davis, S. L., and Tinoco, I., Jr., 1966, Ultra-violet absorption spectrum of thymine in ice, Nature (London) 210:1286–1286.Google Scholar
  124. Debey, P., and Douzon, P., 1970, Photodynamic action and singlet oxygen, Isr. J. Chem. 8:115–123.Google Scholar
  125. De Boer, G., and Johns, H. E., 1970, Hydrogen exchange in photohydrates of cytosine derivatives, Biochim. Biophys. Acta 204:18–30.Google Scholar
  126. De Boer, G., Pearson, M., and Johns, H. E., 1967, Ultraviolet photoproducts in ordered structures of poly U and their effects on secondary structure, J. Mol. Biol. 27:131–144.Google Scholar
  127. De la Chapelle, A., Schröder, J., and Selander, R. K., 1973, In situ localization and characterization of different classes of chromosomal DNA: Acridine orange and quinacrine mustard fluorescence, Chromosoma (Berlin) 40:347–360.Google Scholar
  128. Dellweg, H., and Wacker, A., 1962, Strahlenchemische Veränderungen von Thymin und Cytosin in der DNA durch UV-Licht, Z. Naturforsch. 17b:827–834.Google Scholar
  129. Dellweg, H., and Wacker, A., 1964, Strahlenchemische Veränderungen der 5-Halogen-Uracile in der DNS durch UV-Strahlen, Z. Naturforsch. 19b:305–311.Google Scholar
  130. Dellweg, H., and Wacker, A., 1965, Über die UV-Bestrahlung von Desoxyribonucleinsäure in Glykol, Z. Naturforsch. 20b:141–143.Google Scholar
  131. Dellweg, H., Jacherts, D., Weinblum, D., and Wacker, A., 1964, Die UV-strahlensensibilisierte Wirkung der 5-Halogenuracile, Biophysik 1:391–395.Google Scholar
  132. Delmelle, M., and Duchesne, J., 1967, Electron spin resonance study of photosensitization of deoxyribonucleic acid and its constituents by acridine dyes, in: Molekulare Mechanismen photodynamischer Effekte, Stud. Biophys. 3:121–126.Google Scholar
  133. Delmelle, M., and Duchesne, J., 1968, Effect of light on dyes and photodynamic action on biomolecules, in: Molecular Associations in Biology (B. Pullman, ed.), pp. 299–308, Academic Press, New York.Google Scholar
  134. Delmelle, M., Depireux, J., and Duchesne, J., 1966, Aspects quantitatifs de la production de radicaux libers induits par le rayonnement visible dans quelques substances photomutagenes, C. R. Acad. Sci. (Paris) Ser. D 263:1625–1627.Google Scholar
  135. Distèche, C., and Bontemps, J., 1974, Chromosome regions containing DNAs of known base composition, specifically evidenced by 2,7-di-t-butyl-proflavine, Chromosoma (Berlin) 47:263–281.Google Scholar
  136. Dönges, K. H., and Fahr, E., 1966, Die Struktur des bei der UV-Bestrahlung von Uracil entstehenden dimeren Uracils, Z. Naturforsch. 21b:87–87.Google Scholar
  137. Dörhöfer, G., and Fahr, E., 1966, Die Synthese von trans-Dimeren Uracilen, Tetrahedron Lett. 37:4511–4516.Google Scholar
  138. Doskočil, J., 1968, Pusobeni 5-azacytidinu pri bakteriofagovych infekcich, Biol. Listy 33:289–303.Google Scholar
  139. Doskočil, J., and Šorm, F., 1970, The effect of 5-azacytidine and 5-azauridine on protein synthesis, Biochem. Biophys. Res. Commun. 38:569–574.Google Scholar
  140. Doskočil, J., and Šorm, F., 1971a, The effects of 5-azacytidine and 5-azauridine on protein synthesis in Escherichia coli, Biochem. Biophys. Res. Commun. 38:569–574.Google Scholar
  141. Doskočil, J., and Šorm, F., 1971b, Differential incorporation of 5-azapyrimidines into the RNA of phage f2 and of bacterial host. Eur. J. Biochem. 23:253–261.Google Scholar
  142. Drake, J. W., and McGuire, J., 1967, Properties of r mutants of bacteriophage T4 photodynamically induced in the presence of thiopyronin and psoralen, J. Virol. 1:260–267.Google Scholar
  143. Eisinger, J., and Lamola, A. A., 1967, The excited state precursor of the thymine dimer, Biochem. Biophys. Res. Commun. 28:558–565.Google Scholar
  144. Eisinger, J., and Shulman, R. G., 1967, The precursor of the thymine dimer in ice, Proc. Natl. Acad. Sci. USA 58:895–900.Google Scholar
  145. Elad, D., and Rosenthal, J., 1969, Photochemical alkylation of caffeine with amino-acids, Chem. Commun., 905-908.Google Scholar
  146. Elad, D., and Salomon, J., 1971, Ultraviolet-and radiation-induced reactions of caffeine with amines, Tetrahedron Lett. 50:4783–4784.Google Scholar
  147. Ellerton, N. F., and Isenberg, I., 1969, Fluorescence polarization study of DNA-proflavine complexes, Biopolymers 8:767–786.Google Scholar
  148. Elpiner, I. E., and Shebaldina, A. D., 1967, Action of ultrasonic waves on photodynamic effect, in: Molekulare Mechanismen photodynamischer Effekte, Stud. Biophys. 3:197–203.Google Scholar
  149. Erikson, R. L., and Szybalski, W., 1963, Molecular radiobiology of human cell lines. IV. Variation in ultraviolet light and X-ray sensitivity during the division cycle, Radiat. Res. 18:200–212.Google Scholar
  150. Evans, B., and Wolfenden, R., 1970, A potential transition state analog for adenosine deaminase, J. Am. Chem. Soc. 92:4751–4752.Google Scholar
  151. Faddejeva, M. D., 1969, The correlation between the increase of melting temperature of DNA through the interaction of DNA with basic dyes and their inhibitory action on the reaction of enzymatic hydrolysis of DNA by DNAse I, Zytologija (USSR) 11:225–233.Google Scholar
  152. Fahr, E., 1969, Chemische Untersuchungen über die molekularen Ursachen biologischer Strahlenschäden, Angew. Chem. 81:581–597.Google Scholar
  153. Fahr, E., 1970, Die molekularen Ursachen biologischer Strahlenschäden, Stud. Biophys. 19:1–20.Google Scholar
  154. Fahr, E., Kleber, R., and Boebinger, E., 1966, Untersuchung über die photochemische Addition von Wasser an Cytosin, Cytidin, Cytidylsäure und Thymin, Z. Naturforsch. 21b:214–223.Google Scholar
  155. Fahr, E., Fürst, G., Maul, P., and Wieser, H., 1972a, Die UV-Dimerisation von 1,3-Dimethyluracil in der Eismatrix, Z. Naturforsch. 27b: 1475–1480.Google Scholar
  156. Fahr, E., Maul, P., Lehner, K.-A., and Scheutzow, D., 1972b, Die 1H-NMR-spektroskopische Untersuchung der Struktur der dimeren 1,3-Dimethyluracile, Z. Naturforsch. 27b: 1481–1484.Google Scholar
  157. Fahr, E., Pastille, R., Pelz, N., and Scheutzow, D., 1974, Die NMR-spektroskopische Strukturaufklärung des bei der UV-Bestrahlung von Thymin/Uracil-Gemischen in der Eismatrix entstehenden Thymin/Uracil-Mischdimeren, Z. Naturforsch. 29b:410–413.Google Scholar
  158. Favre, A., 1974, Luminescence and photochemistry of 4-thiouridine in aqueous solution, Photochem. Photobiol. 19:15–19.Google Scholar
  159. Favre, A., and Fourrey, J.-L., 1974, Intramolecular cross-linking of single-stranded copolymers of 4-thiouridine and cytidine, Biochim. Biophys. Res. Commun. 58:507–515.Google Scholar
  160. Favre, A., and Yaniv, M., 1971, Introduction of an intramolecular fluorescent probe in E. coli tRNAVal I, FEBS Lett. 17:236–240.Google Scholar
  161. Favre, A., Yaniv, M., and Michelson, A. M., 1969, The photochemistry of 4-thiouridine in E. coli tRNAVal I, Biochem. Biophys. Res. Commun. 37:266–271.Google Scholar
  162. Favre, A., Michelson, A.M., and Yaniv, M., 1971, Photochemistry of 4-thiouridine in E. coli transfer RNAVal I, J. Mol. Biol. 58:367–379.Google Scholar
  163. Favre, A., Roques, B., and Fourrey, J.-L., 1972, Chemical structures of the TU-C and TU-Cred products derived from E. coli tRNA, FEBS Lett. 24:209–214.Google Scholar
  164. Fenselau, C., and Wang, S. Y., 1969, Mass spectra of some dimeric photoproducts of pyrimidines, Tetrahedron 25:2853–2863.Google Scholar
  165. Fenster, A., and Johns, H. E., 1973, Temperature studies for quenching of pyrimidine triplet states, J. Phys. Chem. 77:2246–2249.Google Scholar
  166. Festy, B., and Daune, M., 1973, Hydroxystilbamidine. A nonintercalating drug as a probe of nucleic acid conformation, Biochemistry 12:4827–4834.Google Scholar
  167. Fikus, M., and Shugar, D., 1966, Alkaline transformations of the photohydrates of some 2,4-diketopyrimidines and their glycosides, Acta Biochim. Pol. 13:39–56.Google Scholar
  168. Fikus, M., Wierzchowski, K. L., and Shugar, D., 1965, Photochemistry of 5-fluorouracil analogues, glycosides and poly FU, Photochem. Photobiol. 4:521–536.Google Scholar
  169. Fisher, G. J., and Johns, H. E., 1973, Thymine hydrate formed by ultraviolet and gamma irradiation of aqueous solutions, Photochem. Photobiol. 18:23–27.Google Scholar
  170. Fisher, G. J., Varghese, A. J., and Johns, H. E., 1974, Ultraviolet induced reactions of thymine and uracil in the presence of cysteine, Photochem. Photobiol. 20:109–120.Google Scholar
  171. Flippen, J. L., Gilardi, R. D., Karle, I. L., Rhoades, D. F., and Wang, S. Y., 1971, Crystal and molecular structure of a pyrimidine phototetramer, J. Am. Chem. Soc. 93:2556–2557.Google Scholar
  172. Foote, C. S., 1968, Mechanisms of photosensitized oxidation, Science (Washington) 162:963–976.Google Scholar
  173. Foote, C. S., and Denny, R. W., 1968, Chemistry of singlet oxygen. VII. Quenching by β-carotene, J. Am. Chem. Soc. 90:6233–6237.Google Scholar
  174. Foote, C. S., Chang, Y. C., and Denny, R. W., 1970, Chemistry of singlet oxygen. VI. cis-trans Isomerization of carotenoids by singlet oxygen and a probable quenching mechanism, J. Am. Chem. Soc. 92:5218–5226.Google Scholar
  175. Fowlks, W. L., Griffith, D. G., and Oginsky, E. L., 1958, Photosensitization of bacteria by furocourmarins and related compounds, Nature (London) 181:571–572.Google Scholar
  176. Fraser, D., and Mahler, H. R., 1961, Studies in partially resolved bacteriophage-host systems. VII. Diamines, dyes, empty phage heads, and protoplast infecting agent, Biochim. Biophys. Acta 53:199–213.Google Scholar
  177. Fredericq, E., and Houssier, C., 1972, Study of the interaction of DNA and acridine orange by various optical methods, Biopolymers 11:2281–2308.Google Scholar
  178. Freeman, K. B., Hariharan, P. V., and Johns, H. E., 1965, The ultraviolet photochemistry of cytidylyl-(3’-5’)-cytidine. J. Mol. Biol. 13:833–848.Google Scholar
  179. Freifelder, D., and Uretz, R. B., 1966, Mechanism of photoinactivation of coliphage T7 sensitized by acridine orange, Virology 30:97–103.Google Scholar
  180. Freifelder, D., Davison, P. F., and Geiduschek, E. P., 1961, Damage by visible light to the acridine orange-DNA complex, Biophys. J. 1:389–400.Google Scholar
  181. Friedberg, E. C., 1975, DNA repair of ultraviolet-irradiated bacteriophage T4, Photochem. Photobiol. 21:277–289.Google Scholar
  182. Fritzsche, H., Lang, H., and Pohle, W., 1976. Evidence for B-C transition in ultraviolet-irradiated DNA. An infrared linear dichroism study, Biochim. Biophys. Acta 432:409–412.Google Scholar
  183. Füchtbauer, W., and Mazur, P., 1966, Kinetics of the ultraviolet-induced dimerization of thymine in frozen solutions, Photochem. Photobiol. 5:323–335.Google Scholar
  184. Fujita, H., and Yamazaki, H., 1970, The photosensitized reaction of deoxyguanosine in the presence of methylene blue, Bull. Chem. Soc. Jpn. 43:1177–1181.Google Scholar
  185. Galley, W. C., 1968, On the triplet state of polynucleotide-acridine orange-complexes. 1. Triplet energy delocalization in the complex 9-aminoacridine DNA-complex, Biopolymers 6:1279–1296.Google Scholar
  186. Gattner, H., and Fahr, E., 1963, Darstellung des bei der UV-Bestrahlung wässriger Uracil-Lösungen eststehenden 4-hydroxy-dihydrouracils, Liebigs Ann. Chem. 670:84–87.Google Scholar
  187. Gauri, K. K., Pflughaupt, K. W., and Müller, R., 1969, Synthese und photochemische Eigenschaften von 1’-(2’-Desoxy-β-D-ribofuranosyl)-(4-3H)-5-äthyluracil, Z. Naturforsch. 24b:833–836.Google Scholar
  188. Gauri, K. K., Rüger, W., and Wacker, A., 1971, Photochemistry and photobiology of 5-ethyl-and 5-propyldeoxyuridine, Z. Naturforsch. 26b:167–168.Google Scholar
  189. Geissler, E., 1967, Untersuchungen über die Irreparabilität photodynamischer Schäden, Stud. Biophys. 2:95–102.Google Scholar
  190. Geissler, E., 1968, Reactivation of photodynamically inactivated lambda phages, Mol. Gen. Genet. 103:233–237.Google Scholar
  191. Geissler, E., 1970, Wirtszellenreaktivierung photodynamisch und U.V. geschädigter Bakteriophagen, Stud. Biophys. 19:163–170.Google Scholar
  192. Geissler, E., and Wacker, A., 1963, Untersuchungen über den Mechanismus der Induktion, VI. Die Induktion lyosgener Bakterien durch Belichtung in Gegenwart von Thiopyronin, Acta Biol. Med. Ger. 11:937–942.Google Scholar
  193. Giese, A. C., 1968, Ultraviolet action spectra in perspective: With special reference to mutation, Photochem. Photobiol. 8:527–546.Google Scholar
  194. Gilbert, E., and Cristallini, C., 1973, UV-Photolyse von 5-Bromuracil in wäβriger Lösung, Z. Naturforsch. 28b:615–619.Google Scholar
  195. Gilbert, E., Wagner, G., and Schulte-Frohlinde, D., 1971, Photolyse von 5-Joduracil in wäβriger, sauerstoffgesättigter Lösung in Gegenwart von Methanol, Z. Naturforsch. 26b:209–213.Google Scholar
  196. Gill, J. E., 1970, Fluorescence of 5-methylcytosine, Photochem. Photobiol. 11:259–269.Google Scholar
  197. Gill, J. E., 1971, Fluorescence of synthetic DNAs at room temperature and neutral pH, Biochem. Biophys. Res. Commun. 44:779–785.Google Scholar
  198. Gill, J. E., Marzimas, J. A., and Bishop, C., 1974, Physical studies on synthetic DNAs containing 5-methylcytosine, Biochim. Biophys. Acta 335:330–348.Google Scholar
  199. Glisin, V. R., and Doty, P., 1967, The cross-linking of DNA by ultraviolet radiation, Biochim. Biophys. Acta 142:314–322.Google Scholar
  200. Gollmick, F. A., and Berg, H., 1968, Photosensibilisierte Photooxydation durch Methylenblau, Thiopyronin und Pyronin. I. Mitteilung: Flash-Photooxidation von p-Diaminotoluol, Photochem. Photobiol. 7:471–475.Google Scholar
  201. Gollmick, F. A., and Berg, H., 1972, Sensibilisierte Photooxydation durch Methylenblau, Thiopyronin und Pyronin, III. Mitteilung: Uber den Mechanismus der photosensibilisierten Oxydation des Guanine durch Thiopyronin, Photochem. Photobiol. 16:447–453.Google Scholar
  202. Gollnick, K., 1968, Type II photooxygenation reactions in solution, Adv. Photochem. 6:1–39.Google Scholar
  203. Gollnick, K., and Schenck, G. O., 1964, Mechanism and stereoselectivity of photosensitized oxygen transfer reactions, Pure Appl. Chem. 9:507–525.Google Scholar
  204. Gorelic, L. S., Lisagor, P., and Yang, N. C., 1972, The photochemical reactions of 1,3-dimethyluracil with 1-aminopropane and poly-1-lysine, Photochem. Photobiol. 16:465–480.Google Scholar
  205. Grahn, D., 1972, Genetic effects of low level irradiation, Biol. Sci., 535-540.Google Scholar
  206. Gräslund, A., Rigler, R., and Ehrenberg, A., 1969, Light-induced free radicals in DNA-acridine complexes studied by ESR, FEBS Lett. 4:227–230.Google Scholar
  207. Gräslund, A., Rupprecht, A., and Ström, G., 1975, Light-induced free radicals in oriented DNA-proflavine complexes, Photochem. Photobiol. 21:153–157.Google Scholar
  208. Greenstock, C. L., and Johns, H. E., 1968, Photosensitized dimerization of pyrimidines, Biochem. Biophys. Res. Commun. 30:21–27.Google Scholar
  209. Greenstock, C. L., Brown, J. H., Hunt, J. W., and Johns, H. E., 1967, Photodimerization of pyrimidine nucleic acid derivatives in aqueous solution and the effect of oxygen, Biochem. Biophys. Res. Commun. 27:431–436.Google Scholar
  210. Grossman, L., 1963, The effects of UV-irradiated poly U in cell-free protein synthesis in E. coli II, Proc. Natl. Acad. Sci. USA 50:657–664.Google Scholar
  211. Grossweiner, L. J., 1969, Molecular mechanisms in photodynamic action, Photochem. Photobiol. 10:183–191.Google Scholar
  212. Grossweiner, L. J., and Kepka, A. C., 1972, Photosensitization in biopolymers, Photochem. Photobiol. 16:305–314.Google Scholar
  213. Grünberger, D., and Sorm, F., 1963, Relationship between 8-azaguanine-containing ribonucleic acid and protein synthesis in B. cereus, Collect. Czech. Chem. Commun. 28:1044–1051.Google Scholar
  214. Günther, H., and Prusoff, W. H., 1962, Decrease of sensitivity to ultraviolet radiation of Streptococcus jaecalis grown in media supplemented with 6-azathymine, an analog of thymine, Biochim. Biophys. Acta 55:778–780.Google Scholar
  215. Günther, H. L., and Prusoff, W. H., 1967, Protective effect of 6-azathymine and 6-azauracil against ultraviolet irradiation, Biochim. Biophys. Acta 142:304–312.Google Scholar
  216. Guschelbauer, W., Favre, A., and Michelson, A. M., 1965, Photochemistry of polynucleotides. I. Ultraviolet photolysis of substituted pyrimidines, Z. Naturforsch. 20b:1141–1145.Google Scholar
  217. Hackett, A. J., 1962, The photodynamic effects of acridine orange on a RNA virus (vesicular exanthema), Photochem. Photobiol. 1:147–154.Google Scholar
  218. Hahn, F. E., and Krey, A. K., 1971, Interactions of alkaloids with DNA, in: Progress in Molecular and Subcellular Biology, Vol. 2 (F. E. Hahn, ed.), pp. 134–151, Springer Verlag, Berlin.Google Scholar
  219. Hanawalt, P. C., 1972, Repair of genetic material in living cells, Endeavour 31:83–87.Google Scholar
  220. Hariharan, P. V., and Johns, H. E., 1967, Photochemical cross sections in cytidylyl-(3’-5’)-cytidine, Can J. Biochem. 46:911–918.Google Scholar
  221. Hariharan, P. V., and Johns, H. E., 1968a, Rate constants for the dehydration of single and double hydrates of cytidylyl-(3’-5’)-cytidine, Photochem. Photobiol. 7:239–252.Google Scholar
  222. Hariharan, P. V., and Johns, H. E., 1968b, Dimer photoproducts in cytidylyl-(3’-5’)-cytidine, Photochem. Photobiol. 8:11–22.Google Scholar
  223. Harm, W., 1970, Reparatur von Ultraviolett-Schäden in der Erbsubstanz, Umsch. Wiss. Tech. 70:469–472.Google Scholar
  224. Harriman, P. D., and Zachau, H. G., 1966, Ultraviolet inactivation of transfer ribonucleic acid functions, J. Mol. Biol. 16:387–403.Google Scholar
  225. Haug, A., 1964, Photochemical decomposition of TpBU, Z. Naturforsch. 19b:143–147.Google Scholar
  226. Haug, A., and Douzou, P., 1965, Electron paramagnetic resonance and phosphorescence measurements of the triplet state of orotic acid and related pyrimidines, Z. Naturforsch. 20b:509–512.Google Scholar
  227. Hauswirth, W., and Wang, S. Y., 1973, Pyrimidine adduct fluorescence in UV-irradiated nucleic acids, Biochem. Biophys. Res. Commun. 51:819–826.Google Scholar
  228. Hauswirth, W., Hahn, B. S., and Wang, S. Y., 1972, Spontaneous and light induced hydration of pyrimidines, Biochem. Biophys. Res. Commun. 48:1614–1621.Google Scholar
  229. Hayes, F. N., Williams, D. L., Ratliff, R. L., Varghese, A. J., and Rupert, C. S., 1971, Effect of a single thymine photodimer on the oligodeoxythymidylate-polydeoxyadenylate interaction, J. Am. Chem. Soc. 93:4940–4942.Google Scholar
  230. Helénè, C., and Charlier, M., 1971a, Photosensitized splitting of pyrimidine dimers by indole derivatives, Biochem. Biophys. Res. Commun. 43:252–257.Google Scholar
  231. Helénè, C., and Charlier, M., 1971b, Photosensitized reactions in nucleic acids. Photosensitized formation and splitting of pyrimidine dimers, Biochimie 53:1175–1180.Google Scholar
  232. Helénè, C., Santus, R., and Douzou, P., 1966a, Photoionisation and biphotonic processes of nucleic acids derivatives in frozen solutions, Photochem. Photobiol. 5:127–133.Google Scholar
  233. Helénè, C., Santus, R., and Michelson, A. M., 1966 b, Energy transfer in dinucleotides, Proc. Natl. Acad. Sci. USA 55:376–381.Google Scholar
  234. Helénè, C., Brun, F., and Yaniv, M., 1969, Fluorescence study of interactions between valyl-tRNA synthetase and valine-specific tRNAs from E. coli, Biochim. Biophys. Res. Commun. 37:393–398.Google Scholar
  235. Helénè, C., Montenay-Garestier, T., and Dimicoli, J. L., 1971, Interactions of tyrosine and tyramine with nucleic acids and their components. Fluorescence, nuclear magnetic resonance and circular dichroism studies, Biochim. Biophys. Acta 254:349–365.Google Scholar
  236. Helleiner, C. W., Pearson, M. L., and Johns, H. E., 1963, The ultraviolet photochemistry of deoxyuridylyl-(3’ → 5’) deoxyuridine, Proc. Natl. Acad. Sci. USA 50:761–767.Google Scholar
  237. Henry, B. R., and Hunt, R. V., 1971, Triplet-triplet absorption studies on coumarin and related molecules, J. Mol. Spectros. 39:466–470.Google Scholar
  238. Herbert, M. A., and Johns, H. E., 1971, Flash photolysis studies of orotic acid, Photochem. Photobiol. 14:693–704.Google Scholar
  239. Herbert, M. A., Hunt, J. W., and Johns, H. E., 1968, Detection of the triplet state in orotic acid by flash photolysis, Biochem. Biophys. Res. Commun. 33:643–648.Google Scholar
  240. Herbert, M. A., Le Blanc, J. C., Weinblum, D., and Johns, H. E., 1969, Properties of thymine dimers, Photochem. Photobiol. 9:33–43.Google Scholar
  241. Hessler, A. Y., 1965, Acridine resistance in bacteriophage T2H as a function of dye penetration measured by mutagenesis and photoinactivation, Genetics 52:711–722.Google Scholar
  242. Hewitt, R., Billen, D., and Jorgensen, G., 1967, Radiation-induced reorientation of chromosome replication sequence: Generality in E. coli. Independence of prophage or 5-bromouracil toxity, Radiat. Res. 32:214–226.Google Scholar
  243. Hiatt, C. W., 1967a, Inactivation of viruses by photodynamic action, in: Molekulare Mechanismen photodynamischer Effekte, Stud. Biophys. 3:157–164.Google Scholar
  244. Hiatt, C. W., 1967b, Kinetics of virus inactivation by photodynamic action, in: Radiation Research (G. Silini, ed.), pp. 857–868, North-Holland, Amsterdam.Google Scholar
  245. Hill, R. F., 1965, Ultraviolet-induced lethality and reversion to prototrophy in E. coli strains with normal and reduced dark repair ability, Photochem. Photobiol. 4:563–568.Google Scholar
  246. Hilwig, I., and Gropp, A., 1972, Staining of constitutive heterochromatin in mammalian chromosomes with a new fluorochrome, Exp. Cell Res. 75:122–126.Google Scholar
  247. Hollander, D. H., and Borgaonkar, D. S., 1971, The quinacrine fluorescence method of Y-chromosome identification, Acta Cytol. 15:452–454.Google Scholar
  248. Horrii, Z. I., and Suzuki, K., 1968, Degradation of the DNA of E. coli K 12 rec - (JC 1569b) after irradiation with ultraviolet light, Photochem. Photobiol. 8:93–105.Google Scholar
  249. Horii, Z. I., and Suzuki, K., 1970, Degradation of the DNA of rec A mutants of E. coli K 12 after irradiation with ultraviolet light. II. Further studies including a rec A UVr A double mutant, Photochem. Photobiol. 11:99–107.Google Scholar
  250. Horvath, L., Matolcsy, G., and Pozsar, B. J., 1969, Incorporation of radiocarbon labelled uracil-and thymine-analogues into the DNA of bean leaf tissues, Acta Bot. Acad. Sci. Hung. 15:79–80.Google Scholar
  251. Hosszu, J. L., and Rahn, R. O., 1967, Thymine dimer formation in DNA between 25° and 100°C, Biochim. Biophys. Res. Commun. 29:327–330.Google Scholar
  252. Howard, B. D., and Tessman, I., 1964, Identification of the altered bases in mutated single-stranded DNA. III. Mutagenesis by ultraviolet light, J. Mol. Biol. 9:372–375.Google Scholar
  253. Howard-Flanders, P., and Boyce, R. B., 1966, DNA repair and genetic recombination: Studies on mutants of Escherichia coli defective in these processes, Radiat. Res. Suppl. 6:156–184.Google Scholar
  254. Hunter, J., Burk, D., and Woods, M., 1967, Effects of light with acridine and thiazine dyes on aerobic and anaerobic glucose metabolism of Ehrlich cells, in: Molekulare Mechanismen photodynamischer Effekte, Stud. Biophys. 3:211–224.Google Scholar
  255. Hutchison, F., 1973, The lesions produced by ultraviolet light in DNA containing 5-bromouracil, Q. Rev. Biophys. 6:201–246.Google Scholar
  256. Ichimura, S., Zama, M., and Fujita, H., 1971, Quantitative determination of single-stranded sections in DNA using the fluorescent probe acridine orange, Biochim. Biophys. Acta 240:485–495.Google Scholar
  257. Igali, S., Bridges, B. A., Ashwood-Smith, M. J., and Scott, B. R., 1970, Mutagenesis in Escherichia coli. Photosensitization to near ultraviolet light by 8-methoxypsoralen, Mutat. Res. 9:21–30.Google Scholar
  258. Isenberg, I., Leslie, R. B., Baird, S. L., Jr., Rosenbluth, R., and Bersohn, R., 1964, Delayed fluorescence in DNA-acridine dye-complexes, Proc. Natl. Acad. Sci. USA 52:379–387.Google Scholar
  259. Ishihara, H., and Wang, S. Y., 1966a, Photochemistry of 5-bromouracil in aqueous solution, Biochemistry 5:2307–2313.Google Scholar
  260. Ishihara, H., and Wang, S. Y., 1966b, Photochemistry of 5-bromouracil: Isolation of 5,5’-diuracil, Nature (London) 210:1222–1225.Google Scholar
  261. Ito, T., and Kobayashi, K., 1974, In vivo evidence for the participation of singlet excited oxygen molecules in the photodynamic inactivation, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 24:33–36.Google Scholar
  262. Ito, T., Yamasaki, T., and Ischizaka, S., 1967, Photoinactivation of acridine-sensitized yeast cells, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 17:35–42.Google Scholar
  263. Jacob, H.-E., 1971, In vivo production of DNA single-strand breaks by photodynamic action, Photochem. Photobiol. 14:743–745.Google Scholar
  264. Jacob, H.-E., and Kittler, L., 1970, Kultivierung von Bakterien mit 8-Azaadenine und sein Einfluβ auf die UV-Empfindlichkeit, Stud. Biophys. 19:123–129.Google Scholar
  265. Jacob, H.-E., Berg, H., and Fliess, F.-R., 1967, Die Wirkung von Photodynamika-Mischungen auf Mikroorganismen, in: Molekulare Mechanismen photodynamischer Effekte, Stud. Biophys. 3:189–196.Google Scholar
  266. Jagger, J., and Stafford, R. S., 1965, Evidence for two mechanisms of photoreactivation in E. coli B., Biophys. J. 5:75–88.Google Scholar
  267. Jagger, J., Takebe, H., and Snow, J. M., 1970, Photoreactivation of killing in streptomyces: Action spectra and kinetic studies, Photochem. Photobiol. 12:185–196.Google Scholar
  268. Jakubetz, W., Lischka, H., and Polansky, O. E., 1973, personal communication.Google Scholar
  269. Janovská, E., and Pillich, J., 1968, Inactivation of the phage of Staphylococcus aureus with acridine orange, Int. J. Radiat. Biol. 14:59–65.Google Scholar
  270. Jellinek, T., and Johns, R. B., 1970, The mechanism of photochemical addition of cysteine to uracil and formation of dihydrouracil, Photochem. Photobiol. 11:349–359.Google Scholar
  271. Jennings, B. H., Pastra, S.-C., and Wellington, J. L., 1970, Photosensitized dimerization of thymine, Photochem. Photobiol 11:215–226.Google Scholar
  272. Jennings, B. H., Pastra-Landis, L., and Lerman, J. W., 1972, Photosensitized dimerization of uracil, Photochem. Photobiol. 15:479–491.Google Scholar
  273. Johns, H. E., 1966, Photoproducts produced in nucleic acids by ultraviolet light, Radiat. Res. 733-755.Google Scholar
  274. Johns, H. E., 1968, Intersystem crossing and dimerization in aqueous solutions of uracil and orotic acid, Photochem. Photobiol. 7:633–636.Google Scholar
  275. Johns, H. E., 1971, in: Creation and Detection of Excited State, Vol. I (A. Lamola, ed.), pp. 123–172, Marcel Dekker, New York.Google Scholar
  276. Johns, H. E., Pearson, M. L., Le Blanc, J. C., and Helleiner, C. W., 1964, The ultraviolet photochemistry of thymidylyl-(3’-5’) thymidine, J. Mol. Biol. 9:503–524.Google Scholar
  277. Johns, H. E., Le Blanc, J. C., and Freeman, D. K., 1965, Reversal and deamination rates of the main ultraviolet photoproduct of cytidylic acid, J. Mol. Biol. 13:849–861.Google Scholar
  278. Johns, H. E., Pearson, M., and Brown, I. H., 1966, Mathematical aspects of the ultraviolet photochemistry of poly U, J. Mol. Biol. 20:231–243.Google Scholar
  279. Jones, T. C., and Dove, W. F., 1972, Photosensitization of transcription by bromodeoxyuridine substitution, J. Mol. Biol. 64:409–416.Google Scholar
  280. Jungstand, W., and Berg, H., 1967, In-vivo-Versuche sur Cytostase durch photodynamische Effekte von Redoxfarbstoffen, in: Molekulare Mechanismen photodynamischer Effekte, Stud. Biophys. 3:225–231.Google Scholar
  281. Kahn, M., 1974, The effect of thymine dimers on DNA: DNA hybridization, Biopolymers 13:669–675.Google Scholar
  282. Kalab, D., 1967, Photodynamic effect on Bacillus subtilis bacteriophage, in: Molekulare Mechanismen photodynamischer Effekte, Stud. Biophys. 3:181–186.Google Scholar
  283. Kalousek, F., Raška, K., Jurovčik, M., and Šorm, F., 1966, Effect of 5-azacytidine on the acceptor activity of sRNA, Collect. Czech. Chem. Commun. 31:1421–1424.Google Scholar
  284. Kaplan, R. W., 1950, Auslösung von Phagenresistenzmutationen bei B. coli durch Erythrosyn mit und ohne Belichtung, Naturwissenschaften 37:308–308.Google Scholar
  285. Karle, I. L., Wang, S. Y., and Varghese, A. J., 1969, Crystal and molecular structure of a thymine-thymine adduct, Science (Washington) 164:183–184.Google Scholar
  286. Kearns, D. R., 1971, Physical and chemical properties of singlet molecular oxygen, Chem. Rev. 71:395–427.Google Scholar
  287. Kepka, A. C., and Grossweiner, L. J., 1971, Photodynamic oxidation of iodide ion and aromatic amino acids by eosin, Photochem. Photobiol. 14:621–639.Google Scholar
  288. Khan, A. V., and Kasha, M., 1970, An optical-residue singlet-oxygen theory of photocarcinogenicity, Ann. N.Y. Acad. Sci. 171:24–32.Google Scholar
  289. Khattak, M. N., and Wang, S. Y., 1969, Uracil photoproducts from uracil irradiated in ice, Science (Washington) 163:1341–1342.Google Scholar
  290. Khattak, M. N., and Wang, S. Y., 1972, The photochemical mechanism of pyrimidine cyclobutyl dimerization, Tetrahedron 28:945–957.Google Scholar
  291. Khattak, M. N., Hauswirth, W., and Wang, S. Y., 1972, Photohydration of pyrimidines in “acid puddles,” Biochem. Biophys. Res. Commun. 48:1622–1629.Google Scholar
  292. Killander, D., and Rigler, R., 1969, Activation of deoxyribonucleoprotein in human leucocytes stimulated by phytohemagglutinin. I. Kinetics of the binding of acridine orange to deoxyribonucleoprotein, Exp. Cell Res. 54:163–170.Google Scholar
  293. Kittler, L., 1968, Photochemisches und polarographisches Verhalten molekularbiologisch wichtiger Azapyrimidine und Azapurine, Thesis, Friedrich-Schiller-Universität Jena.Google Scholar
  294. Kittler, L., 1969, Photochemie anomaler Nucleinsäurebausteine. V. Photoreaktionen der 5-Halogenderivate des 6-Azauracils, Biophysik 5:310–314.Google Scholar
  295. Kittler, L., 1970, Photochemie anomaler Nucleinsäurebausteine. VII. UV-Photoreaktion des 6-Azacytosins und 6-Azacytidins, Stud. Biophys. 19:21–29.Google Scholar
  296. Kittler, L., 1972, Photochemie anomaler Nucleinsäurebausteine. VIII. Zur Photochemie des 6-Azacytosins und 6-Azacytidins, Photochem. Photobiol. 16:39–49.Google Scholar
  297. Kittler, L., and Berg, H., 1967, Photodegradation von Azapyrimidinen und Azapurinen, Photochem. Photobiol. 6:199–204.Google Scholar
  298. Kittler, L., and Berg, H., 1968, Photochemie anomaler Nucleinsäurebausteine. II. Elektro-nenakzeptor—Eigenschaften von Azaanalogen der Pyrimidin-und Purinreihe aus polarographischen Messungen, J. Electroanal. Chem. 16:251–260.Google Scholar
  299. Kittler, L., and Löber, G., 1968, Photochemie anomaler Nucleinsäurebausteine. IV. Der Einfluβ paramagnetischer Metallionen auf die Photoreaktion des 6-Azauracils, Stud. Biophys. 6:41–48.Google Scholar
  300. Kittler, L., and Löber, G., 1969, Zum photochemischen Reaktions mechanismus des 6-Azauracils, Photochem. Photobiol 10:35–44.Google Scholar
  301. Kittler, L., and Löber, G., 1971, Photochemie anomaler Nucleinsäurebausteine. IX. Zur photochemischen Hydratation des 6-Azauracils, Monatsber. Dtsch. Akad. Wiss. Berlin 13:216–221.Google Scholar
  302. Kittler, L., and Löber, G., 1973, Photochemistry of some anomalous nucleic bases. Deviations from the photochemical behaviour of the normal constituents, Stud. Biophys. 36/37:5–19.Google Scholar
  303. Kittler, L., and Löber, G., 1974, On relationship between polarographic oxidation potentials and photodynamic activity of dyes, Stud. Biophys. 45:175–182.Google Scholar
  304. Kittler, L., and Zimmer, C., 1976, Conformational changes of nucleic acids and poly d(A-T) d(A-T) caused by photoreaction with furocoumarins, Nucleic Acids Res. 3:191–203.Google Scholar
  305. Kittler, L., Hradečna, Z., Jacob, H.-E., and Löber, G., 1975, Photobiological behaviour of bacteria and phages supplemented with aza-analogues of nucleic acid bases, Z. Allg. Mikrobiol. 15:323–331.Google Scholar
  306. Kleber, R., Fahr, E., and Boebinger, E., 1965, Die Struktur der bei der UV-Bestrahlung von Cytosin, Cytidin und Cytidylsäure entstehenden reversiblen Bestrahlungsprodukte, Naturwissenschaften 52:513–514.Google Scholar
  307. Kleinwächter, V., 1972, Luminescence spectra of polynucleotides, Stud. Biophys. 33:1–50.Google Scholar
  308. Kleinwächter, V., and Koudelka, J., 1964, Thermal denaturation of deoxyribonucleic acid-acridine orange complexes, Biochim. Biophys. Acta 91:539–540.Google Scholar
  309. Kleinwächter, V., Balcarová, Z., and Bohaček, J., 1969, Thermal stability of complexes of amino acridines with deoxyribonucleic acids of varying base content, Biochim. Biophys. Acta 174:188–201.Google Scholar
  310. Kleopfer, R., and Morrison, H., 1972, Organic photochemistry. XVII. The solution-phase photodimerization of dimethylthymine, J. Am. Chem. Soc. 94:255–264.Google Scholar
  311. Klimek, M., 1966, Thymine dimerization in l-strain mammalian cells after irradiation with ultraviolet light and the search for repair mechanisms, Photochem. Photobiol. 5:603–607.Google Scholar
  312. Klimek, M., and Sevčikova, P., 1973, Comparison of the effect of acridine derivatives and similar substances on the dimerization of thymine in mammalian DNA in situ and isolated (Russ.), Stud. Biophys. 36/37:205–210.Google Scholar
  313. Klimek, M., and Vasuček, J., 1970, The role of pyrimidine dimers in the inhibition of DNA synthesis in mammalian cells after ultraviolet irradiation in the mathematical interpretation of results, Math. Biosci. 9:165–177.Google Scholar
  314. Knowles, A., 1967, Dye sensitization of nucleotides, in: Molekulare Mechanismen photodynamischer Effekte, Stud. Biophys. 3:97–104.Google Scholar
  315. Knowles, A., 1971, A mechanism for the methylene blue sensitized oxidation of nucleotides, Photochem. Photobiol. 13:473–487.Google Scholar
  316. Knowles, A., and Gurnani, S., 1972, A study of the methylene blue sensitized oxidation of aminoacids, Photochem. Photobiol. 16:95–108.Google Scholar
  317. Kochetkov, N. K., Budowski, E. J., Swerdlov, E. D., Simukova, N. A., Turtschinski, M. F., and Schibaev, B. N., 1970, in: Organic Chemistry of Nucleic Acids (N. K. Kochetkov and E. J. Budowski, eds.), pp. 615-697, Chemistry (Moscow) (in Russian).Google Scholar
  318. Köhnlein, W., and Hutchinson, F., 1969, ESR-studies of normal and 5-bromouracil-substituted DNA of B. subtilis after irradiation with ultraviolet light, Radiat. Res. 39:745–757.Google Scholar
  319. Koizumi, M., Obata, H., and Hayashi, S., 1964, Studies of the photoreduction of thiazine dyes in aqueous solutions, Bull. Chem. Soc. Jpn. 37:108–117.Google Scholar
  320. Kondo, S., and Kato, T., 1966, Action spectra for photoreactivation of killing and mutation to phototrophy in UV sensitive strains of E. coli possessing and lacking photoreactivating enzyme, Photochem. Photobiol. 5:827–837.Google Scholar
  321. Kondo, Y., and Witkop, B., 1969, Selective photoreductions of nucleic acids and their building stones. VIII. Photoreduction and dimerization of 1,3-dimethyluracil, J. Am. Chem. Soc. 91:5264–5270.Google Scholar
  322. Kornhauser, A., Krinsky, N. J., Huang, P.-K. C., and Clagett, D. C., 1973, A comparative study of photodynamic oxidation and radiofrequency-discharge-generated 1O2 oxidation of guanosine, Photochem. Photobiol. 18:63–69.Google Scholar
  323. Krajewska, E., and Shugar, D., 1971, Photochemical transformation of 5-alkyluracils and their nucleosides, Science (Washington) 173:435–437.Google Scholar
  324. Krämer, D. M., and Pathak, M. A., 1970, Photoaddition of psoralen and of 4,5’,8-trimethylpsoralen to DNA, Photochem. Photobiol. 12:333–337.Google Scholar
  325. Kramer, H. E. A., and Maute, A., 1972a, Sensitized photooxygenation according to type I mechanism (radical mechanism). I. Flash photolysis experiments, Photochem. Photobiol. 15:7–24.Google Scholar
  326. Kramer, H. E. A., and Maute, A., 1972 b, Sensitized photooxygenation according to type I mechanism (radical mechanism). II. Flash photolysis experiments, Photochem. Photobiol. 15:25–32.Google Scholar
  327. Kramer, H. E. A., and Maute, A., 1973, Sensitized photooxygenation: Change from type I (radical) to type II (singlet oxygen) mechanism, Photochem. Photobiol. 17:413–423.Google Scholar
  328. Krauch, C. H., Krämer, D. M., and Wacker, A., 1967a, Zum Wirkungsmechanismus photodynamischer Furocoumarine. Photoreaktion von Psoralen (4-14C) mit DNS, RNS, Homopolynucleotiden und Nucleosiden, Photochem. Photobiol. 6:341–354.Google Scholar
  329. Krauch, C. H., Krämer, D. M., Chandra, P., Mildner, P., Feller, H., and Wacker, A., 1967b, Durch Aceton sensibilisierte Photodimerisation von Urazil, Angew. Chem. 79:944–945.Google Scholar
  330. Kubota, Y., 1970a, Luminescence in DNA-acridine dye complexes. I. Phosphorescence and delayed fluorescence due to triplet-triplet annihilation of acridine dyes in the complexes, Bull. Chem. Soc. Jpn. 43:3121–3125.Google Scholar
  331. Kubota, Y., 1970b, Luminescence in DNA-acridine dye complexes. II. Sensitized delayed fluorescence, Bull. Chem. Soc. Jpn. 43:3126–3130.Google Scholar
  332. Kubota, Y., 1973, Fluorescence lifetimes and quantum yields of acridine dyes bound to DNA, Chem. Lett. (Jpn.), 299-304.Google Scholar
  333. Kubota, Y., Fujisaki, Y., and Miura, M., 1969, Delayed fluorescence of the DNA-acridine dye complexes in a frozen aqueous solution, Bull. Chem. Soc. Jpn. 42:853–853.Google Scholar
  334. Lamola, A. A., 1966, Solution photochemistry of thymine and uracil, Science (Washington) 154:1560–1561.Google Scholar
  335. Lamola, A. A., 1968, Excited state precursors of thymine photodimers, Photochem. Photobiol. 7:619–632.Google Scholar
  336. Lamola, A. A., 1969, Electronic energy transfer in solution: Theory and Application, in: Technique of Organic Chemistry, Vol. XIV (P. A. Leermakers and A. Weissberger, eds.), pp. 17–132, Interscience, New York.Google Scholar
  337. Lamola, A. A., 1970, Triplet photosensitization and the photobiology of thymine dimers in DNA, Pure Appl. Chem. 24:599–610.Google Scholar
  338. Lamola, A. A., 1972, Photosensitization in biological systems and the mechanism of photo-reactivation, Mol. Photochem. 4:107–133.Google Scholar
  339. Lamola, A. A., and Eisinger, J., 1968, On the mechanism of thymine photodimerization, Proc. Natl. Acad. Sci. USA 59:46–51.Google Scholar
  340. Lamola, A. A., and Mittal, J. P., 1966, Solution photochemistry of thymine and uracil, Science (Washington) 154:1560–1561.Google Scholar
  341. Lamola, A. A., and Yamane, T., 1967, Sensitized photodimerization of thymine in DNA, Proc. Natl. Acad. Sci. USA 58:44–446.Google Scholar
  342. Lang, H., 1974a, CD studies of conformational changes of DNA upon photosensitized UV-irradiation at 313 nm, Nucleic Acid Res. 2:179–183.Google Scholar
  343. Lang, H., 1974b, On the structure of UV-irradiated DNA, Stud. Biophys. 42:157–159.Google Scholar
  344. Lang, H., and Luck, G., 1973, Ultraviolet-light-induced conformational changes in DNA, Photochem. Photobiol. 17:387–393.Google Scholar
  345. Langmuir, M. E., and Hayon, E., 1969, Transient species produced in the photochemistry of 5-bromouracil and its TV-methyl derivatives, J. Chem. Phys. 51:4893–4899.Google Scholar
  346. Lawley, P. D., 1966, in: Progress in Nucleic Acid Research and Molecular Biology, Vol. 5 (Davidson and Cohn, eds.), pp. 89–131, Academic Press, New York.Google Scholar
  347. Lawrence, J. J., and Louis, M., 1972, Étude du role des histones dans l’interaction de la proflavine avec le DNA de la chromatine, Biochim. Biophys. Acta 272:231–237.Google Scholar
  348. Leonard, N. J., Bergstrom, D. E., and Tolman, G. L., 1971, Photoproducts from 4-thiouracil and cytosine and from 4-thiouridine and cytidine: Refinement of tertiary tRNA structure, Biochem. Biophys. Res. Commun. 44:1524–1530.Google Scholar
  349. Leonov, D., Salomon, J., Sasson, S., and Elad, D., 1973, Ultraviolet-and x-ray-induced reactions of nucleic acid constituents with alcohols. On the selectivity of these reactions for purines, Photochem. Photobiol. 17:465–468.Google Scholar
  350. Le Pecq, J. B., and Paoletti, C., 1967, A fluorescent complex between ethidium bromide and nucleic acids, J. Mol. Biol. 27:87–106.Google Scholar
  351. Le Pecq, J. B., Yot, P., and Paoletti, C., 1964, Interaction du bromhydrate d’ethidium (BET) avec les acides nucleiques (A.N.). Etude spectrofluorimetrique, C. R. Acad. Sci. 259:1786–1789.Google Scholar
  352. Lerman, L. S., 1961, Structural considerations in the interaction of DNA and acridines, J. Mol. Biol. 3:18–30.Google Scholar
  353. Leutzen, D., and Walker, J. R., 1970, Bromodeoxyuridine sensitization of the ultraviolet-sensitive E. coli ras-mutant to ultraviolet irradiation, Mol. Gen. Genet. 108:218–224.Google Scholar
  354. Linschitz, H., and Conolly, J. S., 1968, The photochemical addition of alcohols to purine, J. Am. Chem. Soc. 90:2979–2980.Google Scholar
  355. Lion, M. B., and Köhnlein, W., 1974, Effect of DNA conformation on the UV damage in 5-bromouracil substituted DNA of T3 coliphage, in: Progress in Photobiology (G. O. Schenck, ed.), Abst. 107, Deutsche Gesellschaft für Lichtforschung, Frankfurt.Google Scholar
  356. Liquori, A. M., De Lerma, B., Ascoli, F., Botre, C., and Frasciatti, M., 1962, Interaction between DNA and polycyclic aromatic hydrocarbons, J. Mol. Biol. 5:521–526.Google Scholar
  357. Lisewski, R., and Wierzchowski, K. L., 1969, Photodimerization and van der Waals stacking of dimethylthymine in water, Chem. Commun., 348-349.Google Scholar
  358. Lisewski, R., and Wierzchowski, K. L., 1970, Solid state photochemistry of thymine, its n-methylated derivatives and orotic acids in KBr matrices, Photochem. Photobiol. 11:327–347.Google Scholar
  359. Litwin, J., and Riesterer, Z., 1973, The effect of photosensitizing dyes on the 3H-thymidine incorporation of cells grown in vitro, Exp. Cell Res. 79:191–198.Google Scholar
  360. Löber, G., 1965, On the fluorescence of acridine derivatives in the presence of DNA, Photochem. Photobiol. 4:607–612.Google Scholar
  361. Löber, G., 1968, On the complex formation of acridine dyes with DNA. IV. The equilibrium constants of substituted proflavine and acridine orange derivatives, Photochem. Photobiol. 8:23–30.Google Scholar
  362. Löber, G., 1971, Acridine, ihre physikochemische und biochemische Bedeutung: Eine Betrachtung anlässlich der Entdeckung des Acridins vor 100 Jahren, Z. Chem. 11:135–145.Google Scholar
  363. Löber, G., 1975, On the spectroscopic basis of acridine-induced fluoresence banding patterns in chromosomes, Stud. Biophys. 48:109–123.Google Scholar
  364. Löber, G., and Achtert, G., 1969, On the complex formation of acridine dyes with DNA. VII. Dependence of the binding on the dye structure, Biopolymers 8:595–608.Google Scholar
  365. Löber, G., and Kittler, L., 1973, Photochemie und Photobiologie von Nucleinsäuren und Nucleinsäurebausteinen, Stud. Biophys. 41:81–153.Google Scholar
  366. Löber, G., and Kittler, L., 1977, Selected topics in photochemistry of nucleic acids. Recent results and perspectives, Photochem. Photobiol. 25:215–233.Google Scholar
  367. Löber, G., Fleck, W., Jacob, H.-E., and Rost, K., 1970, Beziehungen zwischen der Komplexbindung mit DNS und einigen biologischen Wirkungen von Acridinfarbstoffen, in: Wirkungsmechanismen von Fungiziden, Antibiotika und Cytostatika (H. Lyr and W. Rawald, eds.), pp. 39–49, Akademie-Verlag, Berlin.Google Scholar
  368. Löber, G., Schütz, H., and Kleinwächter, V., 1972, Effect of organic solvents on the properties of the complexes of DNA with proflavine and similar compounds, Biopolymers 11:2439–2459.Google Scholar
  369. Löber, G., Koudelka, J., and Smékal, E., 1974a, Stacking interactions of ethidium bromide bound to a polyphosphate and phage DNA in situ, Biophys. Chem. 2:158–163.Google Scholar
  370. Löber, G., Kleinwächter, V., Koudelka, J., and Smékal, E., 1974b, On spectral properties of type-I complexes of dyes with deoxyribonucleic acid and human serum albumin, Stud. Biophys. 45:91–103.Google Scholar
  371. Löber, G., Kleinwächter, V., Koudelka, J., Balcarová, Z., Filkuka, J., Krejci, P., Döbel, P., Beensen, V., and Rieger, R., 1976, Molecular and spectroscopic aspects of chromosome banding, Biol Zentralbl., 95:169–191.Google Scholar
  372. Lochmann, E. R., and Michler, A., 1973, Binding of organic dyes to nucleic acids and the photodynamic effect, in: Physicochemical Properties of Nucleic Acids, Vol. 1 (J. Duchesne, ed.), pp. 223–267, Academic Press, New York.Google Scholar
  373. Lochmann, E. R., and Stein, W., 1964, Zur Inaktivierung durch Thiopyronin mit und ohne Licht, Naturwissenschaften 51:59–61.Google Scholar
  374. Lochmann, E. R., and Stein, W., 1967, Hemmung der RNS-Synthese bei Saccharomyceszellen verschiedenen Ploidiegrades durch Farbstoffe in Gegenwart und Abwesenheit von sichtbarem Licht, Z. Naturforsch. 22b: 196–200.Google Scholar
  375. Lochmann, E. R., and Stein, W., 1968, Die Wirkung von Thiopyronin auf die Dunkelreaktivierung von UV-, Röntgen-und photodynamischen Schäden bei Saccharomyces, Biophysik 5:78–84.Google Scholar
  376. Loeser, C. N., West, S. S., and Schoenberg, M. D., 1960, Absorption and fluorescence studies on biological systems: Nucleic acid-dye complexes, Anat. Rec. 163-178.Google Scholar
  377. Logan, D. M., and Whitmore, G. F., 1966, Dehydration of UV irradiated uridine and its derivatives, Photochem. Photobiol. 5:143–156.Google Scholar
  378. Lomant, A. J., and Fresco, J. R., 1972a, Polynucleotides. X. Influences of polynucleotide conformation on susceptibility of pyrimidine residues to photochemical attack, J. Mol. Biol. 66:49–64.Google Scholar
  379. Lomant, A. J., and Fresco, J. R., 1972b, Ultraviolet photochemistry as a probe of polynucleotide conformation, in: Progress in Nucleic Acid Research, Vol. 12 (J. N. Davidson and W. E. Cohn, eds.), pp. 1–27, Academic Press, New York.Google Scholar
  380. Lomant, A. J., and Fresco, J. R., 1973, Polynucleotides. XIV. Photochemical evidence for an extrahelical solvent-accesible environment of non-complementary residues in polynucleotide helices, J. Mol. Biol. 77:345–354.Google Scholar
  381. Lozeron, H. A., and Gordon, M. P., 1964, Ultraviolet sensitization and photoreactivation of tobacco mosaic virus ribonucleic acid containing 5-fluorouracil, Biochemistry 3:507–510.Google Scholar
  382. Lozeron, H. A., Gordon, M. P., Gabriel, T., Tautz, W., and Duschinsky, R., 1964, The photochemistry of 5-fluor-uracil, Biochemistry 3:1844–1850.Google Scholar
  383. Maelicke, A., 1970, Interaction of ethidium with specific transfer ribonucleic acids and influence on the aminoacylation, in: Interaktionen bei Biopolymeren, Stud. Biophys. 24/25:343–350.Google Scholar
  384. Mantulin, W. W., and Song, P. S., 1973, Excited states of skin-sensitizing coumarins and psoralens: Spectroscopic studies, J. Am. Chem. Soc. 95:5122–5129.Google Scholar
  385. Marciani, S., Dall’Acqua, F., Gielfi, L., and Vedaldi, D., 1971. Photoreactivity (365 nm) of some coumarins and 4’,5’-dihydro-furocoumarins with nucleic acids, Z. Naturforsch. 26b:1129–1136.Google Scholar
  386. Marciani, S., Terbojevich, M., Dall’Acqua, F., and Rodighiero, G., 1973a, Light scattering and flow dichroism studies on DNA after the photoreaction with psoralen, Z. Naturforsch. 27b:196–200.Google Scholar
  387. Marciani, S., Terbojevich, M., Dall’Acqua, F., and Rodighiero, G., 1973 b, Bifuncional photobinding of psoralen to single stranded nucleic acids, Z. Naturforsch. 28c:370–375.Google Scholar
  388. Matheson, J. B. C., Etheridge, R. D., Kratovich, N. R., and Lee, J., 1975, The quenching of singlet oxygen by amino acids and proteins, Photochem. Photobiol. 21:165–171.Google Scholar
  389. Matolscy, G., Pinter, J., and Pozsar, B. J., 1969, Incorporation of radiocarbon labelled uracil-and thymine-analogoues into the RNA of bean leaf tissues, Acta Bot. Acad. Sci. Hung. 15:119–121.Google Scholar
  390. Mattern, M., Binder, R., and Cerutti, P., 1972, Cytidine photohydration in R 17 RNA, J. Mol. Biol. 66:201–204.Google Scholar
  391. Matthews, M. M., 1963, Comparative study of lethal photosensitizations of S. lutea by 8-methoxypsoralene, J. Bacteriol. 85:322–328.Google Scholar
  392. Matthews, R. E., and Smith, J. E., 1956, Distribution of 8-azaguanine in the nucleic acids of Bacillus cereus, Nature (London) 177:271–272.Google Scholar
  393. McLaren, A. D., and Shugar, D., 1964, Photochemistry of Proteins and Nucleic Acids, Pergamon Press, Oxford.Google Scholar
  394. McLaren, A. D., and Takahashi, W. N., 1970, Inactivation of infectious nucleic acid from tobacco mosaic virus by ultraviolet light (2537Å), Radiat. Res. 6:532–542.Google Scholar
  395. Meistrich, M. L., Lamola, A. A., and Gabbay, E. J., 1970, Sensitized photoinactivation of bacteriophage T4, Photochem. Photobiol. 11:169–178.Google Scholar
  396. Mennigmann, H.-D., and Wacker, A., 1970, Photoreactivation of Escherichia coli Bs-3 after inactivation by 313 nm radiation in the presence of acetone, Photochem. Photobiol. 11:196–291.Google Scholar
  397. Michaelis, L., 1947, The structure of the interaction of nucleic acids and nuclei with basic dyestuffs, Cold Spring Harbor Symp. Quant. Biol. 12:131–142.Google Scholar
  398. Micheler, A., Pietsch, J., and Lochmann, E.-R., 1973, Über die RNS-Synthese bei Saccharomyces-Zellen nach photodynamischer Behandlung und nach Röntgenbestrahlung, Biophysik 10:249–256.Google Scholar
  399. Michelson, A. M., Moony, C., and Kovoor, A., 1972, Action of quinacrine mustard on polynucleotides, Biochimie 54:1129–1136.Google Scholar
  400. Miller, N., and Cerutti, P., 1968, Structure of the photohydration products of cytidine and uridine, Proc. Natl. Acad. Sci. USA 59:34–38.Google Scholar
  401. Minyat, E. E., Borisova, O. F., Volkenstein, M. V., and Georgiev, G. P., 1970, On the deoxyribonucleoprotein structure. I. Studies of base content of protein-free regions of DNA, Mol. Biol. 4:291–301.Google Scholar
  402. Modak, S. P., and Setlow, J. K., 1969, Synthesis of deoxyribonucleic acid after ultraviolet irradiation of sensitive and resistant Haemophilus influenzae, J. Bacteriol. 98:1195–1198.Google Scholar
  403. Mönkehaus, F., 1973, Einfluss von Cysteamin auf die UV-Empfindlichkeit von X-Phagen mit variablem Bromurazil-Gehalt, Z. Naturforsch. 29c:286–288.Google Scholar
  404. Mönkehaus, F., 1974, UV-Empfindlichkeit von X-Phagen mit variablem Bromuracil-Gehalt, Z. Naturforsch. 29c:289–293.Google Scholar
  405. Mönkehaus, F., and Köhnlein, W., 1972, Experimente zur intramolekularen Energieleitung in BU-DNA des Phagen PBSH aus B. subtilis nach Bestrahlung mit langwelligem UV, Z. Naturforsch. 27b:833–839.Google Scholar
  406. Mönkehaus, F., and Köhnlein, W., 1973, Single-and double-strand breaks in 5-bromouracil-substituted DNA of B. subtilis and phage PBSH after irradiation with longwave length UV and their correlation to intramolecular energy transfer, Biopolymers 12:329–340.Google Scholar
  407. Mönkehaus, F., and Köhnlein, W., 1974, Intramolecular energy transfer in BU-DNA after irradiation: Single and double strand breakage rates, in: Progress in Photobiology, 1972 (G. O. Schenck, ed.), No. 106, Deutsche Gesellschaft für Lichtforschung, Frankfurt.Google Scholar
  408. Montenay-Garestier, T., and Helénè, C., 1968, Molecular interaction between tryptophan and nucleic acid components in frozen aqueous solutions, Nature (London) 217:844–845.Google Scholar
  409. Moore, A. M., 1958, Ultraviolet irradiation of pyrimidine derivatives. II. Synthesis of the product of reversible photolysis of uracil, Can. J. Chem. 36:281–295.Google Scholar
  410. Moore, A. M., and Thomson, C. H., 1955, Ultraviolet irradiation of pyrimidine derivatives, Science (Washington) 122:594–595.Google Scholar
  411. Moore, A. M., and Thomson, C. H., 1957, Ultraviolet irradiation of pyrimidine derivatives. I. 1,3-dimethyluracil, Can J. Chem. 35:163–174.Google Scholar
  412. Moore, T. A., Mantulin, W. W., and Song, P. S., 1973, Excited states and reactivity of carcinogenic benzpyrene; A comparison with skin-sensitizing coumarins, Photochem. Photobiol. 18:185–194.Google Scholar
  413. Morita, M., and Kato, S., 1969, Studies of the transient intermediates of a thiopyronine aqueous solution under flash excitation, Bull. Chem. Soc. Jpn. 42:25–35.Google Scholar
  414. Morrison, H., Feeley, A., and Kleopfer, R., 1968, Solution-phase photodimerization of dimethylthymine, Chem. Commun., 358-367.Google Scholar
  415. Müller, W., Crothers, D. M., and Waring, M. J., 1973, A non-intercalating proflavine derivative, Eur. J. Biochem. 39:223–234.Google Scholar
  416. Mund, C., and Venner, H., 1967, Spektrophotometrische Untersuchungen über die Sekundärstruktur UV-bestrahlter DNA, Stud. Biophys. 3:57–64.Google Scholar
  417. Murcia, D., Kleopfer, R., Maleski, R., and Morrison, H., 1972, Formation of a new 1,3-dimethylthymine photoproduct in the presence of carbon tetrachloride, Mol. Photochem., 61-65.Google Scholar
  418. Musajo, L., and Rodighiero, G., 1970, Studies on the photo-C4-cyclo-addition reactions between skin-photosensitizing furocoumarins and nucleic acids, Photochem. Photobiol. 11:27–35.Google Scholar
  419. Musajo, L., and Rodighiero, G., 1972, in: Photophysiology, Current Topics in Photobiology and Photochemistry (A. C. Giese, ed.), pp. 115–147, Academic Press, New York.Google Scholar
  420. Musajo, L., Rodighiero, G., Colombo, G., Torlone, V., and Dall’Acqua, F., 1965, Photosensitizing furocoumarins: Interactions with DNA and photo-inactivation of DNA containing viruses, Experientia 21:22–24.Google Scholar
  421. Musajo, L., Rodighiero, G., Breccia, A., Dall’Acqua, F., and Malesami, G., 1966, Skin-photosensitizing furocoumarins: Photochemical interaction between DNA and O14CH3 bergapten (5-methoxypsoralen), Photochem. Photobiol. 5:739–745.Google Scholar
  422. Musajo, L., Rodighiero, G., Caporale, G., Dall’Acqua, F., Marciani, S., Bordin, F., Baccichetti, F., and Bevilacqua, R., 1974, in: Sunlight and Man—Normal and Abnormal Photobiologic Response (M. A. Pathak, L. C. Harber, M. Seiji, and A. Kukita, eds.), pp. 369–387, University of Tokyo Press, Tokyo.Google Scholar
  423. Nakai, S., and Saeki, T., 1964, Induction of mutation by photodynamic action in Escherichia coli, Genet. Res. 5:158–161.Google Scholar
  424. Nicolau, C., 1972, Short-lived free radicals in aqueous solution of purine, in: The Purines— Theory and Experiment. The Jerusalem Symposia on Quantitative Chemistry and Biochemistry, IV, pp. 519–527, The Israel Academy of Sciences and Humanities, Jerusalem.Google Scholar
  425. Nicoletti, B., and Trippa, G., 1967, Sull’azione mutagena del psoralene irradiato con luce ultravioletta in Drosophila melanogaster, Rend. Accad. Naz. Lincei (Roma) 43:259–263.Google Scholar
  426. Nilsson, R., Merkel, P. B., and Kearns, D. R., 1972, Unambiguous evidence for the participation of singlet oxygen (1Δ) in photodynamic oxidation of amino acids, Photochem. Photobiol. 16:117–124.Google Scholar
  427. Nino, J., Favre, A., and Yaniv, M., 1969, Molecular model for transfer RNA, Nature (London) 223:1333–1335.Google Scholar
  428. Nirmala, J., and Sastry, K. S., 1971, Some factors influencing photodynamic degradation of guanosine, Ind. J. Biochem. Biophys. 8:263–265.Google Scholar
  429. Noble, M.-C, and Bradley, S. G., 1972, Photosensitization of actinophages by crystal violet or proflavine, in: Dev. Ind. Microbiol. (Washington) 13:412–420.Google Scholar
  430. Ofengard, J., and Bierbaum, J., 1973, Use of photochemically induced cross-linking as a conformational probe of the tertiary structure of certain regions in transfer ribonucleic acid, Biochemistry 12:1977–1989.Google Scholar
  431. Oginsky, E. L., Green, G. S., Griffith, D. G., and Fowlks, W. L., 1959, Lethal photosensitization of bacteria with 8-methoxypsoralen to long wavelength ultraviolet radiation, J. Bacteriol. 78:821–833.Google Scholar
  432. Ono, J., and Shimazu, Y., 1967, In vivo cleavage of a circular, single-stranded DNA of bacteriophage R irradiated with ultraviolet light, J. Mol. Biol. 24:491–495.Google Scholar
  433. Ono, J., Wilson, R. G., and Grossman, L., 1965a, Effects of ultraviolet light on the template properties of polycytidylic acid, J. Mol. Biol. 11:600–612.Google Scholar
  434. Ono, J., Wilson, R. G., and Grossman, L., 1965b, Continuity of DNA synthesis in E. coli, J. Mol. Biol. 11:650–653.Google Scholar
  435. Orbob, G. B., 1963, Some effects of photosensitizing dyes on three plant viruses, Virology 21:291–299.Google Scholar
  436. Ottensmeyer, F. P., and Whitmore, G. F., 1968, Coding properties of ultraviolet photo-products of uracil. I. Binding studies and polypeptide synthesis, J. Mol. Biol. 38:1–16.Google Scholar
  437. Pačes, V., Doskočil, J., and Šorm, F., 1968, Incorporation of 5-azacytidine into nucleic acids of E. coli, Biochim. Biophys. Acta 161:352–360.Google Scholar
  438. Parker, C. A., and Joyce, T. A., 1973, Prompt and delayed fluorescence of some DNA adsorbates, Photochem. Photobiol. 18:467–474.Google Scholar
  439. Parrish, J. A., Fitzpatrick, T. B., Tanenbaum, L., and Pathak, M. A., 1974, Photochemotherapy of psoriasis with oral methoxsalen and longwave ultraviolet light, N. Engl. J. Med. 291:1207–1222.Google Scholar
  440. Pathak, M. A., and Krämer, D. M., 1969, Photosensitization of skin in vivo by furocoumarins (psoralens), Biochim. Biophys. Acta 195:197–206.Google Scholar
  441. Pathak, M. A., Fellman, J. H., and Kaufmann, K. D., 1960, The effect of structural alterations on the erythemal activity of furocoumarins: psoralens, J. Invest. Dermatol. 35:165–183.Google Scholar
  442. Pathak, M. A., Worden, L. R., and Kaufmann, K. D., 1967, Effect of structural alterations on the photosensitizing potency of furocoumarins (psoralens) and related compounds, J. Invest. Dermatol. 48:103–111.Google Scholar
  443. Patrick, M. H., Haynes, R. H., and Uretz, R. B., 1964, Dark recovery phenomena in yeast. I. Comparative effects with various inactivating agents, Radiat. Res. 21:144–163.Google Scholar
  444. Peacocke, A. R., and Skerrett, J. N. H., 1956, The interaction of aminoacridines with nucleic acids, Trans. Faraday Soc. 52:261–279.Google Scholar
  445. Pearson, M., and Johns, H. E., 1966a, Excision of dimers and hydrates from ultraviolet-irradiated poly U by pancreatic ribonuclease, J. Mol. Biol. 19:303–319.Google Scholar
  446. Pearson, M., and Johns, H. E., 1966b, Suppression of hydrate and dimer formation in ultraviolet-irradiated poly (A + U) relative to poly U, J. Mol. Biol. 20:215–229.Google Scholar
  447. Pearson, M. L., Ottensmeyer, F. P., and Johns, H. E., 1965, Properties of an unusual photoproduct of UV-irradiated thymidylyl-thymidine, Photochem. Photobiol. 4:739–747.Google Scholar
  448. Pearson, M., Whillans, D. W., Le Blanc, J. C., and Johns, H. E., 1966, Dependence on wavelength of photoproduct yields in ultraviolet-irradiated poly U., J. Mol. Biol. 20:245–261.Google Scholar
  449. Peter, H. H., and Drewer, R. J., 1970, Photoproducts of bromouracil-labelled DNA and the structure of 5-bromodeoxyuridylyl-(3’ → 5’)-thymine photoproduct, Photochem. Photobiol. 12:269–282.Google Scholar
  450. Peter, H. H., and Drewer, R. J., 1971, The photochemistry of 14C-5-bromo-2’-deoxyuridylyl-(3’ → 5’)-thymidine determination of quantum yields as a function of pH, Photochem. Photobiol. 14:561–567.Google Scholar
  451. Petrissant, G., and Favre, A., 1972, Separation and characterization of intramolecular cross-linked form of tRNAMet from E. coli, FEBS Lett. 23:191–194.Google Scholar
  452. Phillips, S. L., Person, S., and Jagger, J., 1967, Division delay induced in E. coli by near ultraviolet radiation, J. Bacteriol. 94:165–170.Google Scholar
  453. Pichowska, M., and Shugar, D., 1965, Replacement of 5-methyluracil (thymine) by 5-ethyl-uracil in bacteria DNA, Biochim. Biophys. Res. Commun. 20:768–773.Google Scholar
  454. Pietrzykowska, I., 1973, On the mechanism of bromouracil induced mutagenesis, Mutat. Res. 19:1–9.Google Scholar
  455. Pietrzykowska, I., and Shugar, D., 1966, Replacement of thymine by 5-ethyluracil in bacteriophage DNA, Biochim. Biophys. Res. Commun. 25:567–572.Google Scholar
  456. Pietrzykowska, I., and Shugar, D., 1968, 5-ethyldeoxyuridine, thymidine analog: Photochemical transformation, Science (Washington) 161:1248–1249.Google Scholar
  457. Pietrzykowska, I., and Shugar, D., 1970, Photochemistry of 5-ethyluracil and its glycosides, Acta Biochim. Polon. 17:361–384.Google Scholar
  458. Pilet, J., and Brahms, J., 1973, Investigation of DNA structural changes by infrared spectroscopy, Biopolymers 12:387–403.Google Scholar
  459. Pochon, F., Pascal, Y., Pitha, P., and Michelson, A. M., 1970, Photochimie des polynucleotides. IV. Photochimie de quelques nucleosides puriques, Acta Biochim. Biophys. 213:273–281.Google Scholar
  460. Pochon, F., Balny, C., Scheit, K. H., and Michelson, A. M., 1971, Photochimie des polynucleotides. V. Études sur des polymeres contenant de la 4-thio-uridine, Biochim. Biophys. Acta 228:49–56.Google Scholar
  461. Pohl, D., and Kaplan, R. W., 1968, Einfluo von Bromuracil auf die Mutationsauslösung und Inaktivierung durch UV und Röntgenstrahlen beim Phagen, Biophysik 4:196–213.Google Scholar
  462. Pörschke, D., 1973a, A specific photoreaction in polydeoxyadenylic acid, Proc. Natl. Acad. Sci. USA 70:2683–2686.Google Scholar
  463. Pörschke, D., 1973b, Analysis of a specific photoreaction in oligo-and polydeoxyadenosine acids, J. Am. Chem. Soc. 95:8840–8846.Google Scholar
  464. Portocala, R., Sorodoc, G., Peiulescu, P., Surdan, G., and Stoian, N., 1972, Photodynamic action of toluidine blue on a strain of Clamidia psittaci, Rev. Roum. Virol. 9:251–252.Google Scholar
  465. Pritchard, N. J., Blake, A., and Peacocke, A. R., 1966, Modified interaction model for the interaction of amino acridines and DNA, Nature (London) 212:1360–1361.Google Scholar
  466. Pullman, A., and Pullman, B., 1955, Cancerisation par les Substances Chimiques Moleculaires, Masson, Paris.Google Scholar
  467. Pullman, B., 1968, Electronic factors in the photodimerization of thymine, Photochem. Photobiol. 7:525–530.Google Scholar
  468. Rada, B., and Zavada, J., 1962, Screening-test for cytostatic and virostatic substances, Neoplasma 9:57–65.Google Scholar
  469. Rahn, R. O., 1970, Physical and environmental factors influencing the photochemistry of DNA, in: Photochemistry of Macromolecules (R. F. Reinisch, ed.), pp. 15–29, Plenum Press, New York.Google Scholar
  470. Rahn, R. O., 1973, Denaturation in ultraviolet-irradiated DNA, in: Photophysiology, Vol. VIII (A. C. Giese, ed.), pp. 231–255, Academic Press, New York.Google Scholar
  471. Rahn, R. O., and Hosszu, J. L., 1968a, Photochemistry of polynucleotides, a summary of temperature effects, Photochem. Photobiol. 7:637–642.Google Scholar
  472. Rahn, R. O., and Hosszu, J. L., 1968b, Photoproduct formation in DNA at low temperatures, Photochem. Photobiol. 8:53–63.Google Scholar
  473. Rahn, R. O., and Hosszu, J. L., 1969a, Influence of relative humidity on the photochemistry of DNA films, Biochim. Biophys. Acta 190:126–131.Google Scholar
  474. Rahn, R. O., and Hosszu, J. L., 1969b, Photochemical studies of thymine in ice, Photochem. Photobiol. 10:131–137.Google Scholar
  475. Rahn, R. O., and Landry, L. C., 1971, Pyrimidine dimer formation in poly(dT) and apurinic acid, Biochim. Biophys. Acta 247:197–206.Google Scholar
  476. Rahn, R. O., and Landry, L. C., 1973, Ultraviolet irradiation of nucleic acids complexed with heavy atoms. II. Phosphorescence and photodimerization of DNA complexed with Ag, Photochem. Photobiol. 18:29–38.Google Scholar
  477. Rahn, R. O., and Schleich, T., 1974, Proton magnetic resonance studies of ultraviolet-irradiated apurinic acid, Nucleic Acid Res. 1:999–1005.Google Scholar
  478. Rahn, R. O., and Stafford, R. S., 1974, Measurement of defects in ultraviolet-irradiated DNA by the kinetic formaldehyde method, Nature (London) 248:52–54.Google Scholar
  479. Rahn, R. O., Setlow, J. K., and Hosszu, J. L., 1969, Ultraviolet inactivation and photoproducts of transforming DNA irradiated at low temperatures, Biophys. J. 9:510–517.Google Scholar
  480. Rahn, R. O., Battista, M. D. C., and Landry, L. C., 1970, Influence of mercuric ions on the phosphorescence and photochemistry of DNA, Proc. Natl. Acad. Sci. USA 67:1390–1397.Google Scholar
  481. Ramenda, K. P., and Sinsheimer, R. L., 1971, Nature of the complementary strands synthesized in vitro upon the single-stranded circular DNA of bacteriophage φX174 after ultraviolet irradiation, Biophys. J. 11:355–369.Google Scholar
  482. Ramstein, J., and Leng, M., 1975, Effect of DNA base composition on the intercalation of proflavine: A kinetic study, Biophys. Chem. 3:234–240.Google Scholar
  483. Rauth, A. M., and Whitmore, G. F., 1966, The survival of synchronized L cells after ultraviolet irradiation, Radiat. Res. 28:84–95.Google Scholar
  484. Rawls, H. R., and ptvan Santen, R. J., 1970, Singlet oxygen: A possible source of the original hydroperoxides in fatty acids, Ann. N.Y. Acad. Sci. 171:135–142.Google Scholar
  485. Regan, J. D., Setlow, R. B., and Ley, R. D., 1971, Normal and defective repair of damaged DNA in human cells: A sensitive assay utilizing the photolysis of bromodeoxyuridine, Proc. Natl. Acad. Sci. USA 68:708–712.Google Scholar
  486. Remsen, J. F., Miller, N., and Cerruti, P. A., 1970, Photohydration of uridine in the RNA of coliphage R17. II. The relationship between ultraviolet inactivation and uridine photohydration, Proc. Natl. Acad. Sci. USA 65:460–469.Google Scholar
  487. Rhoades, D. F., and Wang, S. Y., 1970, Uracil-thymine adduct from a mixture of uracil and thymine irradiated with ultraviolet light, Biochemistry 9:4416–4420.Google Scholar
  488. Rhoades, D. F., and Wang, S. Y., 1971a, Photochemistry of polycytidylic acid, deoxycytidine, and cytidine, Biochemistry 10:4603–4611.Google Scholar
  489. Rhoades, D. F., and Wang, S. Y., 1971b, A new photoproduct of cytosine. Structure and mechanism studies, J. Am. Chem. Soc. 93:3779–3781.Google Scholar
  490. Rigler, R., 1966, Microfluorometric characterization of intracellular nucleic acids and nucleoproteins by acridine orange, Acta Physiol. Scand. 67:1–122 (Suppl. 267).Google Scholar
  491. Rigler, R., Cronvall, E., Hirsch, R., Pachmann, U., and Zachau, H., 1970, Interactions of seryl-tRNA synthetase with serine and phenylalanine specific tRNA, FEBS Lett. 11:320–323.Google Scholar
  492. Ritchie, D. A., 1964, Mutagenesis with light and proflavine in phage T4, Genet. Res. 5:168–169.Google Scholar
  493. Ritchie, D. A., 1965, Mutagenesis with light and proflavine in phage T4, II. Properties of the mutants, Genet. Res. 6:474–478.Google Scholar
  494. Rodighiero, G., Chandra, P., and Wacker, A., 1970a, Structural specifity for the photoinactivation of nucleic acids by furocoumarins, FEBS Lett. 10:29–32.Google Scholar
  495. Rodighiero, G., Musajo, L., Dall’Acqua, F., Marciani, S., Carporale, G., and Ciavatta, L., 1970b, Mechanism of skin photosensitization by furocoumarins: Photoreactivity of various furocoumarins with native DNA and with ribosomal RNA, Biochim. Biophys. Acta 217:40–49.Google Scholar
  496. Rodighiero, G., Dall’Acqua, F., Marciani, S., Chandra, P., Feller, H., Götz, A., and Wacker, A., 1971, Studies on the reactivation of bacteria photodamaged by an angular furocoumarin: Angelicin, Biophysik 8:1–8.Google Scholar
  497. Romanovskaja, L.N., Kulba, A. M., and Gabrilovich, I. M., 1972, On the mechanism of interaction between acridine dyes and nucleic acids, Biophysika (USSR) 17:313–316.Google Scholar
  498. Rosen, B., Rothman, F., and Weigert, M. G., 1969, Miscoding caused by 5-fluorouracil, J. Mol. Biol. 44:363–375.Google Scholar
  499. Roth, D., 1973, Effect of ultraviolet irradiation of DNA on the dissociation transition of the strong DNA-acriflavine complex, Photochem. Photobiol. 18:437–439.Google Scholar
  500. Roth, J. A., and McGormick, D. B., 1967, Complexing of riboflavin and its 2-substituted analogs with adenosine and other 6-substituted purine derivatives, Photochem. Photobiol. 6:657–664.Google Scholar
  501. Rothman, W., and Kearns, D. R., 1967, Triplet states of bromouracil and iodouracil, Photochem. Photobiol. 6:775–778.Google Scholar
  502. Rupp, W. D., and Prusoff, W. H., 1964, Incorporation of 5-iodo-2-deoxyuridine into bacteriophage T1 as related to ultraviolet sensitization or protection, Nature (London) 202:1288–1290.Google Scholar
  503. Rupp, W. D., and Prusoff, W. H., 1965a, Photochemistry of iodouracil. I. Photoproducts obtained in water, Biochem. Biophys. Res. Commun. 18:145–151.Google Scholar
  504. Rupp, W. D., and Prusoff, W. H., 1965b, Photochemistry of iodouracil. II. Effects of sulfur compounds, ethanol, and oxygen, Biochem. Biophys. Res. Commun. 18:158–164.Google Scholar
  505. Salomon, J., and Elad, D., 1974, Selective photochemical alkylation of purines in DNA, Biochim. Biophys. Res. Commun. 58:890–895.Google Scholar
  506. Samejima, R., Kita, M., Saneyoski, M., and Sawada, F., 1969, Optical rotatory dispersion and circular dichroism of sulfur-containing nucleosides and nucleotides and of the ribonuclease-thionucleotide complex, Biochem. Biophys. Acta 179:1–9.Google Scholar
  507. Santamaria, L., 1967, Natural photodynamic sensitivity in retina and cancer cells, Stud. Biophys. 3:269–275.Google Scholar
  508. Santus, R., Helénè, C, Ovadia, J., and Grossweiner, L. J., 1972, Splitting of thymine dimer by hydrated electrons, Photochem. Photobiol. 16:65–67.Google Scholar
  509. Sarin, P. S., and Johns, H. E., 1968, UV induced conformational changes in transfer RNA, Photochem. Photobiol. 7:203–210.Google Scholar
  510. Sastry, K. S., and Gordon, M. P., 1966, The photodynamic inactivation of Tobacco Mosaic Virus and its ribonucleic acid by acridine orange, Biochim. Biophys. Acta 129:42–48.Google Scholar
  511. Sawada, F., and Kanbayashi, N., 1973, Fractionation of ribonuclease A photosensitized with 4-thiouridylic acid, J. Biochem. 74:459–471.Google Scholar
  512. Sawada, F., 1974, Kinetics of 4-thiouridylate-sensitized photoinactivation of ribonuclease A, Photochem. Photobiol. 20:523–526.Google Scholar
  513. Scaife, J. F., 1970, RNA synthesis and uridine pools in normal and BUdR-containing human kidney T-cells after UV-irradiation, Int. J. Radial. Biol. 18:189–192.Google Scholar
  514. Schenck, G. O., 1970, Mechanism of formation of singlet oxygen in photosensitized oxygenation, Ann. N. Y. Acad. Sci. 171:67–78.Google Scholar
  515. Schoentjes, M., and Fredericq, E., 1972, Proflavine binding of yeast rRNA and ribosomes as related to structure, Biopolymers 11:361–374.Google Scholar
  516. Scholes, C. P., Hutchinson, F., and Hales, H. B., 1967, Ultraviolet-induced damage to DNA independent of molecular weight, J. Mol. Biol. 24:471–474.Google Scholar
  517. Schott, H. N., and Shetlar, M. D., 1974, Photochemical addition of amino acids to thymine, Biochem. Biophys. Res. Commun. 59:1112–1116.Google Scholar
  518. Schreiber, J. P., and Daune, M. P., 1974, Fluorescence of complexes of acridine dyes with synthetic polydeoxyribonucleotides: A physical model of frameshift mutations, J. Mol. Biol. 83:487–501.Google Scholar
  519. Schuster, H., 1964, Photochemie von Ribonucleinsäuren, Z. Naturforsch. 19b:815–830.Google Scholar
  520. Secrist, J. A., Barrio, J. R., and Leonard, N. J., 1971, Attachement of a fluorescent label to 4-thiouracil and 4-thiouridine, Biochim. Biophys. Res. Commun. 45:1262–1270.Google Scholar
  521. Sehgal, V. N., 1971, Oral application of trimethylpsoralen in vitiligo in children: Preliminary report, Biol. J. Dermatol. 85:454–456.Google Scholar
  522. Sekely, L., and Prusoff, W. H., 1966, Anti-viral activity of azathymidine and uracil methyl sulphone, Nature (London) 211:1260–1260.Google Scholar
  523. Sela, J., 1969, Fluorescence of nucleic acids with ethidium bromide: An indication of the configurative state of nucleic acids, Biochim. Biophys. Acta 190:216–219.Google Scholar
  524. Selander, R. K., 1974a, The binding of quinacrine mustard to nucleic acids, Acta Chem. Scand. B 28:45–55.Google Scholar
  525. Selander, R. K., 1974b, Interaction of quinacrine mustard with whole and partially deproteinized calf thymus deoxynucleoproteins, Acta Chem. Scand. B 28:937–948.Google Scholar
  526. Seliskar, C. J., and Brand, L., 1971, Electronic spectra of L-aminonaphthalene-6-sulfonate and related molecules, J. Am. Chem. Soc. 93:5414–5420.Google Scholar
  527. Setlow, J. K., 1964, Effects of UV on DNA: Correlations among biological changes, physical changes and repair mechanisms, Photochem. Photobiol. 3:405–413.Google Scholar
  528. Setlow, J. K., 1966, The molecular basis of biological effects of ultraviolet radiation and photoreactivation, in: Current Topics in Radiation Research, Vol. II (M. Ebert and A. Howard, eds.), pp. 195–248, North-Holland, Amsterdam.Google Scholar
  529. Setlow, R. B., 1964, Physical changes and mutagenesis, J. Cell Comp. Physiol Suppl. 64:51–68.Google Scholar
  530. Setlow, R. B., 1966, Cyclobutane-type pyrimidine dimers in polynucleotides, Science (Washington) 153:379–386.Google Scholar
  531. Setlow, R. B., 1968, Photoproducts in DNA irradiated in vivo, Photochem. Photobiol 7:643–649.Google Scholar
  532. Setlow, R. B., and Carrier, W. L., 1963, Identification of ultraviolet-induced thymine dimers in DNA by absorbance measurements, Photochem. Photobiol 2:49–57.Google Scholar
  533. Setlow, R. B., and Carrier, W. L., 1966, Pyrimidine dimers in ultraviolet irradiated DNAs, J. Mol. Biol. 17:237–254.Google Scholar
  534. Setlow, R. B., and Carrier, W. L., 1967, Formation and destruction of pyrimidine dimers in polynucleotides by ultraviolet irradiation in presence of proflavine, Nature (London) 213:906–909.Google Scholar
  535. Setlow, R. B., and Setlow, J. K., 1962, Evidence that ultraviolet-induced thymine dimers in DNA cause biological damage, Proc. Natl. Acad. Sci. USA 48:1250–1257.Google Scholar
  536. Setlow, R. B., and Setlow, J. K., 1970, Macromolecular synthesis in irradiated bacteria, Mutat. Res. 9:434–436.Google Scholar
  537. Setlow, R. B., Swenson, P. A., and Carrier, W. L., 1963, Thymine dimers and inhibitation of DNA synthesis by ultraviolet irradiation of cells, Science (Washington) 142:1464–1465.Google Scholar
  538. Setlow, R. B., Carrier, W. L., and Bollum, F. J., 1965, Pyrimidine dimers in UV-irradiated poly dI:dC, Proc. Natl. Acad. Sci. USA 5:1111–1118.Google Scholar
  539. Shafranovskaya, N. N., Trifonov, E. N., Lazurkin, Y. S., and Frank-Kamenetskii, 1973, Clustering of thymine dimers in ultraviolet-irradiated DNA and the long range transfer of electronic excitation along the molecule, Nature (London) New Biol. 241:58–60.Google Scholar
  540. Simon, M. J., and Van Vunakis, H., 1962, The photodynamic reaction of methylene blue with deoxyribonucleic acid, J. Mol. Biol. 4:488–499.Google Scholar
  541. Simon, M. J., Grossman, L., and Van Vunakis, H., 1965, Photosensitized reaction of polyribonucleotides. I. Effects on their susceptibility to enzyme digestion and their ability to act as synthetic messengers, J. Mol. Biol. 12:50–58.Google Scholar
  542. Sinclair, W. K., and Morton, R. A., 1965, X-ray and ultraviolet sensitivity of synchronized Chinese hamster cells at various stages of the cell cycle, Biophys. J. 5:1–25.Google Scholar
  543. Singer, B., and Fraenkel-Conrat, H., 1966, Dye-catalyzed photoinactivation of tobacco mosaic virus ribonucleic acid, Biochemistry 5:2446–2450.Google Scholar
  544. Sinsheimer, R. L., 1954, The photochemistry of uridylic acid, Radiat. Res. 1:505–513.Google Scholar
  545. Sinsheimer, R. L., 1957, The photochemistry of cytidylic acid, Radiat. Res. 6:121–125.Google Scholar
  546. Sinsheimer, R. L., and Hastings, R., 1949, A reversible photochemical alteration of uracil and uridine, Science (Washington) 110:525–527.Google Scholar
  547. Škoda, J., 1963, Mechanism of action and application of azapyrimidines, in: Progress in Nucleic Acid Research, Vol. II (J. N. Davidson and W. E. Cohn, eds.), pp. 197–219, Academic Press, New York.Google Scholar
  548. Škoda, J., 1968, Dead code triplets, in: Biochemistry of Ribosomes and Messenger-RNA (R. Lindigkeit, P. Langen, and J. Richter, eds.), pp. 499–507, Akademie Verlag, Berlin.Google Scholar
  549. Škoda, J., 1969, The role of pharmacologically active nucleoside derivatives in RNA translation, FEBS Symp. 16:23–30.Google Scholar
  550. Škoda, J., and Sorm, F., 1964, Biosynthesis of co-polymers of uridylic and cytidylic acids with 6-azacytidylic acid, Biochim. Biophys. Acta 91:352–354.Google Scholar
  551. Smets, L. A., and Cornelis, J. J., 1971, Repairable and irrepairable damage in 5-bromouracil-substituted DNA exposed to ultraviolet radiation, Int. J. Radiat. Biol. 19:445–457.Google Scholar
  552. Smith, B. J., 1966, Some effects of bromouracil on the kinetics of thymineless death in E. coli, J. Mol. Biol. 20:21–28.Google Scholar
  553. Smith, K. C., 1961/1962, A chemical basis for the sensitization of bacteria to ultraviolet light by incorporated bromouracil, Biochem. Biophys. Res. Commun. 6:458–463.Google Scholar
  554. Smith, K. C. 1962, Dose dependent decrease in extractability of DNP from bacteria following irradiation with ultraviolet light or with visible light plus dye, Biochem. Biophys. Res. Commun. 8:157–163.Google Scholar
  555. Smith, K. C., 1963, Photochemical reactions of thymine, uracil, uridine, cytosine and bromouracil in frozen solutions and in dried films, Photochem. Photobiol. 2:503–517.Google Scholar
  556. Smith, K. C., 1964a, The photochemical interaction of deoxyribonucleic acid and protein in vivo and its biological importance, Photochem. Photobiol. 3:415–427.Google Scholar
  557. Smith, K. C., 1964a, Photochemistry of nucleic acids, in: Photophysiology, Vol. II (A. C. Giese, ed.), pp. 329–388, Academic Press, New York.Google Scholar
  558. Smith, K. C., 1964c, The photochemistry of thymine and bromouracil in vivo, Photochem. Photobiol. 3:1–10.Google Scholar
  559. Smith, K. C., 1966a, Physical and chemical changes induced in nucleic acids by ultraviolet light, Radiat. Res. Suppl. 6:54–79.Google Scholar
  560. Smith, K. C., 1966b, An isomer of the cyclobutane type thymine dimer, Biochem. Biophys. Res. Commun. 25:426–433.Google Scholar
  561. Smith, K. C., 1968, The biological importance of UV-induced DNA-protein cross-linking in vivo and its probable chemical mechanism, Photochem. Photobiol. 7:651–660.Google Scholar
  562. Smith, K. C., 1969, Photochemical addition of amino acids to 14C-uracil, Biochem. Biophys. Res. Commun. 34:354–357.Google Scholar
  563. Smith, K. C., 1970, A mixed photoproduct of thymine and cysteine: S-S-cysteine, 6-hydrothymine, Biochem. Biophys. Res. Commun. 39:1011–1016.Google Scholar
  564. Smith, K. C., 1974, Photoaddition of proteins and other molecules to nucleic acids, in: Progress in Photobiology, 1972 (G. O. Schenck, ed.), Abst. 017, Deutsche Gesellschaft für Lichtforschung, Frankfurt.Google Scholar
  565. Smith, K. C., 1976, The radiation-induced addition of proteins and other molecules to nucleic acids, in: Photochemistry and Photobiology of Nucleic Acids, Vol. 2 (S. Y. Wang, ed.), pp. 187–218, Academic Press, New York.Google Scholar
  566. Smith, K. C., and Aplin, R. T., 1966, A mixed photoproduct of uracil and cysteine (5-s-cysteine-6-hydrouracil): A possible model for the in vivo cross-linking of DNA and protein by UV-light, Biochemistry 5:2125–2130.Google Scholar
  567. Smith, K. C., and Hanawalt, P. C., 1969, Molecular Photobiology—Inactivation and Recovery, Academic Press, New York.Google Scholar
  568. Smith, K. C., and Meun, H. C., 1968, Kinetics of the photochemical addition of 35S-cysteine to polynucleotides and nucleic acids, Biochemistry 7:1033–1037.Google Scholar
  569. Smith, K. C., Hodgkins, B., and O’Leary, M. E., 1966, The biological importance of ultraviolet light induced DNA-protein cross links in E. coli 15 TAU, Biochim. Biophys. Acta 114:1–15.Google Scholar
  570. Snyder, L. C., Shulman, R. C., and Neuman, D. B., 1970, Electronic structure of thymine, J. Chem. Phys. 53:256–267.Google Scholar
  571. Song, P. S., and Gordon, W. H., 1970, A spectroscopic study of the excited states of coumarins, J. Phys. Chem. 74:4234–4240.Google Scholar
  572. Song, P. S., Harter, M. L., Moore, T. A., and Herndon, W. C., 1971, Luminescence spectra and photocycloaddition of the excited coumarins to DNA bases, Photochem. Photobiol. 14:521–530.Google Scholar
  573. Song, P. S., Mantulin, W. W., Mc. Inturff, D., Felkner, I. C., and Harter, M. L., 1975, Photoreactivity of hydroxypsoralens and their photobiological effects in Bacillus subtilis, Photochem. Photobiol. 21:317–324.Google Scholar
  574. Šorm, F., and Škoda, J., 1964, The mechanism of action of cancerostatically important azapyrimidines, Acta Unio Int. Contra Cancrum 20:37–38.Google Scholar
  575. Šorm, F., Šormova, Z., Raška, K., and Jurovcik, M., 1966, Comparison of the metabolism and inhibitory effects of 5-azacytidine and 5-aza-2’-deoxycytidine in mammalian tissues, Rev. Roum. Biochim. 3:139–147.Google Scholar
  576. Spectra-Physics Laser Review, 1975, 2(2):3-4.Google Scholar
  577. Spikes, J. D., 1967, Sensitized photochemical processes in biological systems, Ann. Rev. Phys. Chem. 18:409–436.Google Scholar
  578. Spikes, J. D., and Livingston, R., 1969, The molecular biology of photodynamic action: Sensitized photoautoxidations in biological systems, in: Advances in Radiation Biology, Vol. 3 (L. G. Augenstein, R. Mason, and M. Zelle, ed.), pp. 29–121, Academic Press, New York.Google Scholar
  579. Spikes, J. D., and MacKnight, M. L., 1970, The dye-sensitized photooxidation of biological macromolecules, in: Photochemistry of Macromolecules (R. F. Reinisch, ed.), pp. 67–83, Plenum Press, New York.Google Scholar
  580. Stankunas, A., Rosenthal, I., and Pitts, J. N., 1971, Photochemical and radiochemical alkylation of caffeine by alkyl amines, Tetrahedron Lett. 4479-4782.Google Scholar
  581. Steele, P. H., and Cusachs, L. C., 1967, Energy terms of oxygen and riboflavin—a biological quantum ladder? Nature (London) 213:800–801.Google Scholar
  582. Steinmaus, H., Rosenthal, I., and Elad, D., 1969, Photochemical and 7-ray-induced reactions of purines and purine nucleosides with 2-propanol, J. Am. Chem. Soc. 91:4921–4923.Google Scholar
  583. Steinmaus, H., Elad, D., and Ben-Ishai, R., 1971, Ultraviolet light-induced purine modified DNA, Biochim. Biophys. Res. Commun. 40:1021–1025.Google Scholar
  584. Stephan, G., Miltenburger, H. G., and Hotz, G., 1970, UV-induzierte Brüche in 5-Bromuracil-substituierter DNA des Phagen T1, Z. Naturforsch. 25b:1037–1042.Google Scholar
  585. Stepien, E., Lisewski, R., and Wierzchowski, K. L., 1973a, Cyclobutane dimers of 1-methylthymine: Isolation, identification and properties, Acta Biochim. Pol. 20:297–311.Google Scholar
  586. Stepien, E., Lisewski, R., and Wierzchowski, K. L., 1973b, Photochemistry of 2,4-diketopyrimidines: Photodimerization, photohydration and stacking association of 1,3-dimethyluracil in aqueous solution, Acta Biochim. Pol. 20:313–323.Google Scholar
  587. Stermitz, F. R., Wei, C. C., and O’Donell, C. M., 1970, Photochemistry of qinoline and some substituted quinoline derivatives, J. Am. Chem. Soc. 9:2745–2752.Google Scholar
  588. Stockert, J. C., and Lisanti, J. A., 1972, Acridine orange differential fluorescence of fast-and slow-reassociating chromosomal DNA after in situ denaturation and reassociation, Chromosoma (Berlin) 37:117–130.Google Scholar
  589. Strauss, B. S., 1975, Repair of DNA in mammalian cells, Life Sci. 15:1685–1693.Google Scholar
  590. Summers, W. A., and Burr, J. G., 1972, Viscosity effects on the photohydration of pyrimidines, J. Am. Chem. Soc. 76:3137–3141.Google Scholar
  591. Summers, W. A., Enwall, C., Burr, J. G., and Letsinger, R. L., 1973, The photoaddition of nucleophiles to uracil, Photochem. Photobiol. 17:295–301.Google Scholar
  592. Surovaya, A., and Trubitsyn, S., 1972, Binding isotherms of tRNA—acriflavine complexes, FEBS Lett. 25:349–352.Google Scholar
  593. Sussenbach, J. S., and Berends, W., 1963, Photosensitized inactivation of deoxyribonucleic acid, Biochim. Biophys. Acta 76:154–156.Google Scholar
  594. Sussenbach, J. S., and Berends, W., 1964, Photodynamic degradation of guanine, Biochim. Biophys. Res. Commun. 16:263–266.Google Scholar
  595. Sussenbach, J. S., and Berends, W., 1965, Photodynamic degradation of guanine, Biochim. Biophys. Acta 95:184–185.Google Scholar
  596. Sutherland, B. M., and Sutherland, J. C., 1969a, Mechanisms of inhibition of pyrimidine dimer formation in deoxyribonucleic acid by acridine dyes, Biophys. J. 9:292–302.Google Scholar
  597. Sutherland, J. C., and Sutherland, B. M., 1969b, Energy transfer in the DNA-chloroquine complex, Biochim. Biophys. Acta 190:545–548.Google Scholar
  598. Sutherland, J. C., and Sutherland, B. M., 1970, Ethidium bromide-DNA complex: Wavelength dependence of pyrimidine dimer inhibition and sensitized fluorescence as probes of excited state, Biopolymers 9:639–653.Google Scholar
  599. Swenson, P. A., and Setlow, R. B., 1966, Effects of ultraviolet radiation on macromolecular syntheses in Escherichia coli, J. Mol. Biol. 15:201–219.Google Scholar
  600. Swierkowski, M., and Shugar, D., 1969, A new thymine base analogue, 5-ethyluracil: 5-Ethyluridine-5’-pyrophosphate and poly-5-ethyluridylic acid, Acta Biochim. Pol. 16:263–277.Google Scholar
  601. Szabo, A. G., Riddell, W. D., and Yip., R. W., 1970, Detection and chemistry of the triplet state in acetonitril, Can. J. Chem. 48:694–696.Google Scholar
  602. Sztumpf, E., and Shugar, D., 1965, Preparation and properties of photoproducts of orotic acid analogues, Photochem. Photobiol. 4:719–733.Google Scholar
  603. Sztumpf-Kulikowska, E., Shugar, D., and Boag, J. W., 1967, Kinetics of photodimerization of orotic acid in aqueous medium, Photochem. Photobiol. 6:41–54.Google Scholar
  604. Szybalski, W., 1967, Molecular events resulting in radiation injury, repair and sensitization of DNA, Radiat. Res. Suppl. 7:147–159.Google Scholar
  605. Tamm, C., Shappiro, H. S., Lipschitz, H., and Chargaff, E., 1953, Distribution density of nucleotides within a deoxyribonucleic acid chain, J. Biol. Chem. 203:673–688.Google Scholar
  606. Tao, T., Nelson, J. H., and Cantor, C. R., 1970, Conformational studies on transfer ribonucleic acid: Fluorescence lifetime and nanosecond depolarization measurements on bound ethidium bromide, Biochemistry 9:3514–3524.Google Scholar
  607. Taylor, E. C., Maki, Y., and Evans, A. C., 1969, Photochemical addition of alcoholes to an amidine —C=N—bond, J. Am. Chem. Soc. 91:5181–5182.Google Scholar
  608. Thomas, J. C., Weill, G., and Daune, M., 1969, Fluorescence of proflavine-DNA complexes: Heterogeneity of binding sites, Biopolymers 8:647–659.Google Scholar
  609. Tomasz, M., and Chambers, R. W., 1966, The chemistry of pseudouridine. VII. Selective cleavage of polynucleotides containing pseudouridylic acid residues by a unique photochemical reaction, Biochemistry 5:773–781.Google Scholar
  610. Tomita, G., 1968, Absorption and fluorescence properties of some basic dyes complexing with nucleosides or nucleic acids, Z. Naturforsch. 23b:922–925.Google Scholar
  611. Toulme, J. T., Charlier, M., and Helénè, C., 1974, Specific recognition of single-stranded regions in ultraviolet-irradiated and heat-denatured DNA by tryptophan-containing peptides, Proc. Natl. Acad. Sci. USA 71:3185–3188.Google Scholar
  612. Träger, L., Türck, G., Ishimoto, M., and Wacker, A., 1964, Strahlenchemische Reaktionen zur Aufklärung molekulargenetischer Vorgänge, Biophysik 1:403–406.Google Scholar
  613. Tramer, Z., Wierzchowski, K. L., and Shugar, D., 1969, Influence of polynucleotide secondary structure on thymine photodimerization, Acta Biochim. Pol. 16:83–107.Google Scholar
  614. Trosko, J. E., and Isoun, M., 1971, Photosensitizing effect of tripsoralen on DNA synthesis in human cell grown in vitro, Int. J. Radial. Biol. 19:87–92.Google Scholar
  615. Trosko, J. E., Krause, D., and Isoun, M., 1970, Sunlight-induced pyrimidine dimers in human cells in vitro, Nature (London) 228:358–360.Google Scholar
  616. Tsugita, A., Okada, Y., and Uehara, K., 1965, Photosensitized inavitation of ribonucleic acids in the presence of riboflavin, Biochem. Biophys. Acta 103:360–363.Google Scholar
  617. Tubbs, K. R., Ditmars, W. E., Jr., and Van Winkle, Q., 1964, Heterogeneity of the interaction of DNA with acriflavine, J. Mol. Biol. 9:545–557.Google Scholar
  618. Uliana, R., Creach, P. V., and Ducastaing, A., 1971, Ouelques aspects de la radiodenaturation de l’acide desoxyribonucleique (ADN), Biochimie 53:461–468.Google Scholar
  619. Uretz, R. B., 1964, Sensitivity to acridine sensitized photoinactivation in E. coli B, B/r, and Bs-1, Radiat. Res. 22:245–253.Google Scholar
  620. Van de Vorst, A., and Lion, Y., 1971a, Formation de radicaux libres dans les constituants du DNA photosensibilises par la proflavine, Biochim. Biophys. Acta 238:417–428.Google Scholar
  621. Van de Vorst, A., and Lion, Y., 1971b, Mécanisme de la photosensibilisation des constituents du DNA par la proflavine: Une étude par resonance paramagnétique electronique, Biochim. Biophys. Acta 246:421–429.Google Scholar
  622. Varghese, A. J., 1970a, Photochemistry of thymidine in ice, Biochemistry 9:4781–4787.Google Scholar
  623. Varghese, A. J., 1970b, Photochemistry of thymidine as a thin solid film, Photochem. Photobiol. 13:357–364.Google Scholar
  624. Varghese, A. J., 1970c, 5-thyminyl-5,6-dihydrothymine from DNA irradiated with ultraviolet light, Biochim. Biophys. Res. Commun. 38:484–490.Google Scholar
  625. Varghese, A. J., 1971a, Photochemical reactions of cytosine nucleosides in frozen aqueous solution and in deoxyribonucleic acid, Biochemistry 10:2194–2199.Google Scholar
  626. Varghese, A. J., 1971b, Photochemistry of uracil and uridine, Biochemistry 10:4283–4289.Google Scholar
  627. Varghese, A. J., 1972a, Photochemistry of nucleic acids and their constituents, in: Photophysiology, Vol. VII (A. C. Giese, ed.), pp. 207–274, Academic Press, New York.Google Scholar
  628. Varghese, A. J., 1972b, Acetone-sensitized dimerization of cytosine derivatives, Photochem. Photobiol. 15:113–118.Google Scholar
  629. Varghese, A. J., 1973, Properties of photoaddition products of thymine and cysteine, Biochemistry 12:2725–2730.Google Scholar
  630. Varghese, A. J., 1974a, Photoaddition products of uracil and cysteine, Biochim. Biophys. Acta 374:109–114.Google Scholar
  631. Varghese, A. J., 1974b, Photochemical addition of glutathione to uracil and thymine, Photochem. Photobiol. 20:339–343.Google Scholar
  632. Varghese, A. J., 1974c, Photoreactions of 5-bromouracil in the presence of cysteine and glutathione, Photochem. Photobiol. 20:461–464.Google Scholar
  633. Varghese, A. J., and Day, R. S., 1970, Excision of cytosine-thymine adduct from the DNA of ultraviolet-irradiated Micrococcus radiodurans, Photochem. Photobiol. 11:511–517.Google Scholar
  634. Varghese, A. J., and Rupert, C. S., 1971, Ultraviolet irradiation of cytosine nucleosides in frozen solution products cyclobutane-type dimeric products, Photochem. Photobiol. 13:365–368.Google Scholar
  635. Varghese, A. J., and Wang, S. Y., 1967a, Cis-syn thymine homodimer from ultraviolet-irradiated calf thymus DNA, Nature (London) 213:909–910.Google Scholar
  636. Varghese, A. J., and Wang, S. Y., 1967b, Ultraviolet irradiation of DNA in vitro and in vivo produced a third thymine-derived product, Science (Washington) 156:955–957.Google Scholar
  637. Varghese, A. J., and Wang, S. Y., 1968a, Thymine-thymine adduct as a photoproduct of thymine, Science (Washington) 160:186–187.Google Scholar
  638. Varghese, A. J., and Wang, S. Y., 1968b, Photoreversible photoproduct of thymine, Biochim. Biophys. Res. Commun. 33:102–107.Google Scholar
  639. Venner, H., and Zimmer, C., 1964, Zum Mechanismus der aurch UV-Bestrahlung hervorgerufenen Veränderungen an DNA, in: Physikalische Chemie biogener Makromoleküle (H. Berg, ed.), pp. 341–347, Akademie Verlag, Berlin.Google Scholar
  640. Vorlickova, M., and Paleček, E., 1974, A study of changes in DNA conformation caused by ionizing and ultra-violet radiation by means of pulse polarography and circular dichroism, Int. J. Radial. Biol. 26:363–372.Google Scholar
  641. Vosa, C. G., 1971, The quinacrine-fluorescence patterns of chromosomes of Allium carinatum, Chromosoma (Berlin) 33:382–385.Google Scholar
  642. Wacker, A., and Jacherts, D., 1962, UV-Resistenz Azathyminhaltiger Bakterienzellen, J. Mol. Biol. 4:413–418.Google Scholar
  643. Wacker, A., and Lodemann, E., 1965, Einfluss der Grenzflächenenergie organischer Lösungsmittel auf die photochemische Dimerisierung von Thymidylyl-(3’ → 5’)-thymidin, Angew. Chem. 77:133–134.Google Scholar
  644. Wacker, A., Dellweg, H., and Weinblum, D., 1960, Strahlenchemische Veränderung der Bakteriendesoxyribonucleinsäure in vivo, Naturwissenschaften 47:477–477.Google Scholar
  645. Wacker, A., Dellweg, H., and Lodemann, E., 1961, Strahlenchemische Veränderungen der Nukleinsäuren in vivo und in vitro. 2. Mitteilung, Angew. Chem. 73:64–65.Google Scholar
  646. Wacker, A., Dellweg, H., and Jacherts, D., 1962, Thymine dimerization and survival of bacteria, J. Mol. Biol. 4:410–412.Google Scholar
  647. Wacker, A., Türck, I.G., and Gerstenberger, A., 1963, Zum Wirkungsmechanismus photodynamischer Farbstoffe, Naturwissenschaften 50:377–377.Google Scholar
  648. Wacker, A., Ishimoto, M., Chandra, P., and Selzer, 1964a, Photoreaktivierung von UV-inaktivierter Polyuridylsäure, Z. Naturforsch. 19b:406–408.Google Scholar
  649. Wacker, A., Dellweg, H., Träger, L., Kornhauser, A., Lodemann, E., Türck, G., Selzer, R., Chandra, P., and Ishimoto, M., 1964b, Organic photochemistry of nucleic acids, Photochem. Photobiol. 3:369–394.Google Scholar
  650. Wacker, A., Kornhauser, A., and Träger, L., 1965, Isotopeneffekte bei der photochemischen Umwandlung von Tritium markiertem Uracil, Z. Naturforsch. 20b:1043–1047.Google Scholar
  651. Wacker, A., Chandra, P., Mildner, P., and Feller, H., 1968, Photodynamic action of acetone on the template activity of nucleic acids, Biophysik 4:283–288.Google Scholar
  652. Wagner, P. J., and Bucheck, D. J., 1968, Causes for the low efficiency of thymine and uracil photodimerization in solution, J. Am. Chem. Soc. 90:6530–6532.Google Scholar
  653. Wallnöfer, P., and Bukatsch, F., 1960, Untersuchungen über den photodynamischen Effekt von Acridinfarbstoffen an Escherichia coli und Bacillus subtilis, Naturwissenschaften 47:282–283.Google Scholar
  654. Walter, J. F., and Voorhees, J. J., 1973, Psoriasis improved by psoralen plus black light, Acta Dermatol. Venereol. (Stockholm) 53:469–472.Google Scholar
  655. Wang, S. Y., 1958, Photochemistry of nucleic acids and related compounds. I. The first step in the ultraviolet irradiation of l,3-dimethyluracil, J. Am. Chem. Soc. 80:6196–6198.Google Scholar
  656. Wang, S. Y., 1959, Phototautomerization of cytosine derivatives by ultraviolet irradiation, Nature (London) 184:184–186 (Suppl. 4).Google Scholar
  657. Wang, S. Y., 1961, Photochemical reactions in frozen solution, Nature (London) 190:690–694.Google Scholar
  658. Wang, S. Y., 1964, The mechanism for frozen aqueous solution irradiation of pyrimidines, Photochem. Photobiol. 3:395–398.Google Scholar
  659. Wang, S. Y., 1965, Photochemical reactions of nucleic acid components in frozen solutions, Fed. Proc. 24:71–79.Google Scholar
  660. Wang, S. Y., 1971, Thymine phototrimer, J. Am. Chem. Soc. 93:2768–2771.Google Scholar
  661. Wang, S. Y., and Nnadi, J. C., 1968, Mechanism for the photohydration of pyrimidines, Chem. Commun. 1160-1162.Google Scholar
  662. Wang, S. Y., and Rhoades, D. F., 1971, Pyrimidine phototetramer, J. Am. Chem. Soc. 93:2554–2556.Google Scholar
  663. Wang, S. Y., and Varghese, A. J., 1967, Cytosine-thymine addition product from DNA irradiated with ultraviolet light, Biochem. Biophys. Res. Commun. 29:543–549.Google Scholar
  664. Wang, S. Y., Patrick, M. H., Varghese, A. J., and Rupert, C. S., 1967, Concerning the mechanism of formation of UV-induced thymine photoproducts in DNA, Proc. Natl. Acad. Sci. USA 57:465–472.Google Scholar
  665. Waskell, L. A., Sastry, K. S., and Gordon, M. P., 1966, Studies on the photosensitized breakdown of guanosine by methylene blue, Biochim. Biophys. Acta 129:49–53.Google Scholar
  666. Webb, R. B., and Kubitschek, H. E., 1963, Mutagenic and antimutagenic effects of acridine orange in E. coli, Biochem. Biophys. Res. Commun. 13:90–94.Google Scholar
  667. Webb, R. B., and Petrusek, R. L. 1966, Oxygen effect in the protection of E. coli against U.V. inactivation and mutagenesis by acridine orange, Photochem. Photobiol. 5:645–654.Google Scholar
  668. Weill, G., and Calvin, M., 1963, Optical properties of chromophore-macromolecule complexes: Absorption and fluorescence of acridine dyes bound to polyphosphates and DNA, Biopolymers 1:401–417.Google Scholar
  669. Weinblum, D., 1967, Characterization of the photodimers from DNA, Biochim. Biophys. Res. Commun. 27:384–390.Google Scholar
  670. Weinblum, D., and Johns, H. E., 1966, Isolation and properties of isomeric thymine dimers, Biochim. Biophys. Acta 114:450–459.Google Scholar
  671. Weinblum, D., Ottensmeyer, F. P., and Wright, G. F., 1968, The structures of the isomeric thymine dimers as deduced from their dipole moments, Biochim. Biophys. Acta 155:24–31Google Scholar
  672. Weisblum, B., 1973, Fluorescent probes of chromosomal DNA structure: Three classes of acridines, Cold Spring Harbor Symp. Quant. Biol. 38:441–449.Google Scholar
  673. Weisblum, B., and Haenssler, E., 1974, Fluorometric properties of the bibenzimidazole derivative Hoechst 33258, a fluorescent probe specific for AT concentration in chromosomal DNA, Chromosoma (Berlin) 46:255–260.Google Scholar
  674. Weisblum, B., and De Haseth, P. L., 1972, Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylate-rich regions in DNA, Proc. Natl. Acad. Sci. USA 69:629–632.Google Scholar
  675. Weisblum, B., and De Haseth, P. L., 1973, Nucleotide specifity of the quinacrine staining reaction for chromosomes, Chromosomes Today 4:35–51.Google Scholar
  676. Whillans, D. W., and Johns, H. E., 1969, Dependence of intersystem crossing on excitation energy in orotic acid, Photochem. Photobiol. 9:323–330.Google Scholar
  677. Whillans, D. W., and Johns, H. E., 1971, Properties of the triplet states of thymine and uracil in aqueous solution, J. Am. Chem. Soc. 93:1358–1362.Google Scholar
  678. Whillans, D. W., and Johns, H. E., 1972a, Photoreactions in aqueous solutions of thymine, pH 12, J. Phys. Chem. 76:489–493.Google Scholar
  679. Whillans, D. W., and Johns, H. E., 1972b, Triplet state studies of the nucleoside and nucleotide derivatives of uracil and thymine, Biochim. Biophys. Acta 277:1–6.Google Scholar
  680. Whillans, D. W., Herbert, M. A., Hunt, J. W., and Johns, H. E., 1969, Optical detection of the triplet state of uracil, Biochem. Biophys. Res. Commun. 36:912–918.Google Scholar
  681. Wierzchowski, K. L., and Shugar, D., 1957, Photochemistry of cytosine nucleosides and nucleotides, Biochim. Biophys. Acta 25:355–369.Google Scholar
  682. Wierzchowski, K. L., and Shugar, D., 1959, Studies of reversible photolysis in oligo-and polyuridylic acids, Acta Biochim. Pol. 6:313–334.Google Scholar
  683. Wierzchowski, K. L., and Shugar, D., 1961a, Photochemistry of model oligo-and polynucleotides. IV. Hetero-oligo-nucleotides and high molecular weight single and double-stranded polymer chains, Photochem. Photobiol. 1:21–36.Google Scholar
  684. Wierzchowski, K. L., and Shugar, D., 1961b, Photochemistry of cytosine nucleosides and nucleotides. II. Acta Biochim. Pol. 8:219–234.Google Scholar
  685. Witkin, E. M., 1969, Ultraviolet-induced mutation and DNA repair, Annu. Rev. Genet. 3:525–552.Google Scholar
  686. Witkop, B., 1968, Mechanisms of photoreductions and hydrogenolysis of pyrimidine nucleosides and their photodimers, Photochem. Photobiol. 7:813–827.Google Scholar
  687. Witmer, H., and Fraser, D., 1970, Photodynamic action of proflavine on Coliphage T3. I. Kinetics of inactivation, J. Virol. 7:314–318.Google Scholar
  688. Witmer, H., and Fraser, D., 1971a, Photodynamic action of proflavine on Coliphage T3. II. Protection by L-cysteine. J. Virol. 7:319–322.Google Scholar
  689. Witmer, H., and Fraser, D., 1971b, Photodynamic action of proflavine on Coliphage T3. III. Damages to the deoxyribonucleic acid associated with RX1 and RX2, J. Virol. 7:323–331.Google Scholar
  690. Wulff, D. L., and Fraenkel, G., 1961, On the nature of thymine photoproduct, Biochim. Biophys. Acta 51:332–339.Google Scholar
  691. Yamabe, S., 1969, A fluorospectrophotometric study on the binding of acridine orange with DNA and its bases, Arch. Biochem. Biophys. 130:148–155.Google Scholar
  692. Yamamoto, N., 1958, Photodynamic inactivation of bacteriophage and its inhibition, J. Bacteriol. 75:443–448.Google Scholar
  693. Yamamoto, N., 1967, Photodynamic action on bacteriophage genome: Inactivation and genetic recombination of bacteriophage, in: Molekulare Mechanismen photodynamischer Effekte, Stud. Biophys. 3:175–180.Google Scholar
  694. Yamasaki, N., 1973, Différentielle Darstellung der Metaphasechromosomen von Cypropedium debile mit Chinacrin-und Giemsafärbung, Chromosoma (Berlin) 41:403–412.Google Scholar
  695. Yan, Y., 1969, Effect of UV-irradiated DNA containing 5-bromuracil on reactivation of UV damage in phage X. Int. J. Radial. Biol. 16:367–376.Google Scholar
  696. Yang, N. C., Gorelic, L. G., and Kim, B., 1971, A new photochemical reaction of purine, photochemical alkylation of purine by 1-propylamine, Photochem. Photobiol. 13:275–278.Google Scholar
  697. Yaniv, M., Chestier, A., Gros, F., and Favre, A., 1971, Biological activity of irradiated tRNAVal containing 4-thiouridine-cytosine dimer, J. Mol. Biol. 58:381–388.Google Scholar
  698. Yasuda, K., and Fukutome, H., 1970, Inactivation of E. Coli ribosomes by ultraviolet irradiation. III. The activity of poly U-directed binding of phenylalanyl-tRNA, Biochim. Biophys. Acta 217:142–147.Google Scholar
  699. Yguerabide, J., 1972, Nanosecond fluorescence spectroscopy of macromolecules, in: Methods in Enzymology, Vol. XXVI, Enzyme Structure Part C (C. H. W. Hirs and S. N. Timasheff, eds.), pp. 498–578, Academic Press, New York.Google Scholar
  700. Yielding, K. L., and Sternglanz, H., 1971, Comments on the interaction of LSD with DNA, in: Progress in Molecular and Subcellular Biology, Vol. 2 (F. E. Hahn, ed.), pp. 163–165, Springer Verlag, Berlin.Google Scholar
  701. Yip, R. W., Riddell, W. D., and Szabo, A. G., 1970, Triplet state of orotic acid and orotic acid methyl ester in solution, Can. J. Chem. 48:987–999.Google Scholar
  702. Zampieri, A., and Greenberg, J., 1965, Mutagenesis by acridine orange and proflavine in Escherichia coli strain S, Mutat. Res. 2:552–556.Google Scholar
  703. Zavilgelskij, G. B., Iljasenko, B. W., Minjat, E. E., and Rudoenko, C. N., 1964, Dokl. Akad. Nauk(USSR) 155:937–939.Google Scholar
  704. Zenda, K., Saneyoshi, M., and Chihara, G., 1965, Biological photochemistry. I. The correlation between the photodynamical behaviours and the chemical structures of nucleic acid bases, nucleosides, and related compounds in the presence of methylene blue, Chem. Pharm. Bull. (Tokyo) 13:1108–1117.Google Scholar
  705. Zierenberg, B. E., Krämer, D. M., Geisert, M. G., and Kirste, R. G., 1971, Effect of sensitized and unsensitized long-wave U.V.-irradiation on the solution properties of DNA, Photochem. Photobiol. 14:515–520.Google Scholar
  706. Zügel, M., Förster, T., and Kramer, H. E. A., 1972, Sensitized photooxygenation according to type-I mechanism (radical mechanism). III. Experiments with continuous illumination, Photochem. Photobiol. 15:33–42.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Leonhard Kittler
    • 1
  • Günter Löber
    • 1
  1. 1.Forschungszentrum für Molekularbiologie und Medizin, Zentralinstitut für Mikrobiologie und experimentelle Therapie Jena, Abteilung BiophysikochemieAkademie der Wissenschaften der DDRJenaGermany

Personalised recommendations