Advertisement

Biological, Photochemical, and Spectroscopic Applications of Lasers

  • Michael W. Berns

Abstract

Not more than 5 years ago, it was common to refer to the laser as an “instrument in search of a problem.” Here was this marvelous device that could generate electromagnetic radiation that was naturally monochromatic (+0.05 nm) anywhere from 250 nm through the visible and infrared regions of the spectrum, and both the peak intensities and the average intensities were thousands of orders of magnitude higher than obtainable with the older classical sources. In addition, it was possible to generate ultrashort pulses (below 10-12 s) of this intense, monochromatic radiation. Furthermore, because of the physical mechanism involved in stimulated emission of radiation, and the design of laser cavities, the output beam was always plane polarized and virtually nondivergent.

Keywords

Raman Spectroscopy Acridine Orange Flash Photolysis Ruby Laser Laser Flash Photolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpert, B., Banerjee, R., and Lindqvist, L., 1974, The kinetics of conformational changes in hemoglobin, studied by laser photolysis, Proc. Natl. Acad. Sci. USA 71:558–562.Google Scholar
  2. Ambartzumian, R. V., and Letokhov, V. S., 1972, Selective two-step (STS) photoionization of atoms and photodissociation of molecules by laser radiation, Appl. Opt. 11:354–358.Google Scholar
  3. Amy, R. J., Storb, R., Fauconnier, B., and Wertz, R. K., 1967, Ruby laser microirradiation of single tissue cells vitally stained with Janus Green B. I. Effects observed with the phase contrast microscope, Exp. Cell Res. 45:361–373.Google Scholar
  4. Anderson, R. J., and Ricchio, S. G., 1973, Luminescent rise times of inorganic phosphors excited by high intensity ultraviolet light, Appl. Opt. 12:2751–2758.Google Scholar
  5. Andreoni, A., Benetti, P., and Sacchi, C. A., 1975a, Subnanosecond pulses from a single-cavity dye laser, Appl. Phys. 7:61–64.Google Scholar
  6. Andreoni, A., Sacchi, C. A., Cova, S., Bottiroli, G., and Prenna, G., 1975b, Pulsed tunable laser in cytofluorometry: A study of the fluorescence pattern of chromosomes, in: Lasers in Physical Chemistry and Biophysics (J. Joussot-Dubien, ed.), pp. 413–423, Elsevier Scientific, Amsterdam.Google Scholar
  7. Arrio, B., Chevallier, J., Jullien, M., Yon, J., and Calvayrac, R., 1974, Description by quasi elastic laser light scattering of a biological preparation: Sarcoplasmic reticulum vesicles, J. Membr. Biol. 18:95–112.Google Scholar
  8. Asher, I. M., Rothschild, K. J., and Stanley, H. E., 1974, Raman spectroscopic study of the Valinomycin-KSCN complex, J. Mol. Biol. 89:205–222.Google Scholar
  9. Ault, B. S., Howard, W. F., Jr., and Andrews, L., 1975, Laser-induced fluorescence and Raman spectra of chlorine and bromine molecules isolated in inert matrices, J. Mol. Spectrosc. 55:217–228.Google Scholar
  10. Baba, K., 1970, Selective injury of mitochondria with Janus Green B and ruby laser light: Enzyme morphological and ultrastructural study, Acta Pathol. Jpn. 20(1):59–78.Google Scholar
  11. Beatrice, E. S., Harding-Barlow, I., and Glick, D., 1969, Electric spark cross-excitation in laser microprobe-emission spectroscopy for samples of 10–25 μ diameter, Appl. Spectrosc. 23:257–259.Google Scholar
  12. Behringer, J., 1967, Observed resonance Raman spectra, in: Raman Spectroscopy, Vol. 1 (H. A. Szymanski, ed.), pp. 168–223, Plenum Press, New York.Google Scholar
  13. Bensasson, R., and Land, E. J., 1971, Triplet-triplet extinction coefficients via energy transfer, Trans. Faraday Soc. 67:1904–1915.Google Scholar
  14. Bensasson, R., Chachaty, C., Land, E. J., and Salet, C., 1972, Nanosecond irradiation studies of biological molecules. I. Coenzyme Q6 (ubiquinone-30), Photochem. Photobiol. 16:27–37.Google Scholar
  15. Bergmann, K., and Demtroder, W., 1972, Inelastic collision cross section of excited molecules. II. Asymmetries in the cross section for rotational transitions in the Na2(B1IIu) state, J. Phys. B 5:1386–1395.Google Scholar
  16. Bergmann, K., Demtroder, W., Stock, M., and Vogl, G., 1974, Inelastic collision cross section of excited molecules. IV. Rotational transitions for very high rotational quantum numbers and temperature effects in Na2(B1IIu), J. Phys. B 7:2036–2046.Google Scholar
  17. Berman, M. R., and Zare, R. N., 1975, Laser fluorescence analysis of chromatograms: Subnanogram detection of aflatoxins, Anal. Chem. 47:1200–1201.Google Scholar
  18. Berns, M. W., 1974a, Recent progress with laser microbeams, Int. Rev. Cytol. 39:383–411.Google Scholar
  19. Berns, M. W., 1974b, Microbeams and Partial Cell Irradiation, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  20. Berns, M. W., 1974c, Laser microirradiation of chromosomes, Cold Spring Harbor Symp. Quant. Biol. 38:165–174.Google Scholar
  21. Berns, M. W., 1974d, Directed chromosome loss by laser microirradiation, Science 186:700–705.Google Scholar
  22. Berns, M. W., and Cheng, W. K., 1971, Are chromosome secondary constrictions nucleolar organizers: A re-evaluation using a laser microbeam, Exp. Cell Res. 69:185–192.Google Scholar
  23. Berns, M. W., and Rattner, J. B., 1975, Irradiation of the centriolar region in mitotic Potorous cells with a laser microbeam, J. Cell Biol. 67:30a.Google Scholar
  24. Berns, M. W., and Salet, C., 1972, Laser microbeams for partial cell irradiation, Int. Rev. Cytol. 33:131–156.Google Scholar
  25. Berns, M. W., Olson, R. S., and Rounds, D. E., 1969, Argon laser microirradiation of nucleoli, J. Cell Biol. 43:621–626.Google Scholar
  26. Berns, M. W., Matsui, S., Olson, R. S., and Rounds, D. E., 1970a, Enzyme inactivation with ultraviolet laser energy (2650 Angstroms), Science 169:1215–1217.Google Scholar
  27. Berns, M. W., El-Kadi, S., Oison, R. S., and Rounds, D. E., 1970b, Laser photosensitization and metabolic inhibition of tissue culture cells treated with quinacrine hydrochloride, Life Sci. 9:1061–1069.Google Scholar
  28. Berns, M. W., Cheng, W. K., Floyd, A. D., and Ohnuki, Y., 1971, Chromosome lesions produced with an argon laser microbeam without dye sensitization, Science 171:903–905.Google Scholar
  29. Bessis, M., and Ter-Pogossian, M., 1965, Micropuncture of cells by means of a laser beam, Ann. N.Y. Acad. Sci. 122:689–694.Google Scholar
  30. Bessis, M., Gires, F., and Mayer, G., 1962, Irradiation des organites à l’aide d’un laser à rubis, C.R. Acad. Sci. 255:1010–1012.Google Scholar
  31. Brinkley, L., and Berns, M. W., 1974, Laser microdissection of actinomycin D segregated nucleoli, Exp. Cell Res. 87:417–422.Google Scholar
  32. Brunner, H., Mayer, A., and Sussner, H., 1972, Resonance Raman scattering on the haem group of oxy-and deoxyhaemoglobin, J. Mol. Biol. 70:153–156.Google Scholar
  33. Cameron, L., Burton, A. L., and Hiatt, C. W., 1972, Photodynamic action of laser light on cells, in: Concepts in Radiation Cell Biology (G. L. Whitson, ed.), pp. 245–258, Academic Press, New York.Google Scholar
  34. Chance, B., and Erecinska, M., 1971, Flow flash kinetics of the cytochrome a 3-oxygen reaction in coupled and uncoupled mitochondria using the liquid dye laser, Arch. Biochem. Biophys. 143:675–687.Google Scholar
  35. Chance, B., and Schoener, B., 1964, Abst. 8th Ann. Mtg. Biophys. Soc. FD9.Google Scholar
  36. Chance, B., Schleyer, H., and Legallais, V., 1963, Activation of electron transfer in a Chlamydomonas mutant by light impulses from an optical maser, in: Microalgae and Photosynthetic Bacteria (Japan Soc. Plant Physiol., ed.), pp. 337–346, University of Tokyo Press, Tokyo, Japan.Google Scholar
  37. Chance, B., McCray, J. A., and Bunkenburg, J., 1970, Fast spectrophotometric measurement of H+ changes in Chromatium chromatophores activated by a liquid dye laser, Nature (London) 225:705–708.Google Scholar
  38. Crissman, H. A., and Steinkamp, J. A., 1973, Rapid, simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations, J. Cell Biol. 59:766–771.Google Scholar
  39. Délèze, J., 1970, The recovery of resting potential and input resistance in sheep heart injured by knife or laser, J. Physiol. 208:547–562.Google Scholar
  40. Demtroder, W., and Stock, M., 1975, Molecular constants and potential curves of Na2 from laser-induced fluorescence, J. Mol. Spectrosc. 55:476–486.Google Scholar
  41. DeVault, D., and Chance, B., 1966, Studies of photosynthesis using a pulsed laser. I. Temperature dependence of cytochrome oxidation rate in Chromatium. Evidence for tunneling, Biophys. J. 6:825–847.Google Scholar
  42. Dubin, S. B., 1972, Measurement of translational and rotational diffusion coefficients by laser light scattering, in: Methods in Enzymology, Vol. 26 (C. M. W. Hirs and S. N. Timasheff, eds.), Part C, pp. 119–174, Academic Press, New York.Google Scholar
  43. Dubin, S. B., Lunacek, J. H., and Benedek, G. B., 1967. Observation of the spectrum of light scattered by solution of biological macromolecules, Proc. Natl. Acad. Sci. USA 57:1164–1171.Google Scholar
  44. Edlow, J., Fine, S., Vawter, G. F., Jockin, H., and Klein, E., 1965, Laser irradiation: Effect on rat embryo and fetus in utero, Life Sci. 4:615–623.Google Scholar
  45. Erfurth, S., and Peticolas, W. L., 1975, Melting and premelting phenomenon in DNA by laser Raman scattering, Biopolymers 14:247–264.Google Scholar
  46. Feir, D., and Lough, J. W., Jr., 1969, Physiology of the large milkweed bug after laser irradiation, Comp. Biochem. Physiol. 28:759–764.Google Scholar
  47. Fisher, M. M., and Weiss, K., 1974, Laser photolysis of retinal and its protonated and unprotonated n-butylamine Schiff base, Photochem. Photobiol. 20:423–432.Google Scholar
  48. Floyd, R. A., Keyhani, E., and Chance, B., 1971, Membrane structure and function. II. Alterations in the photo-induced absorption changes after treatment of isolated chloroplasts with large pulses of the ruby laser, Arch. Biochem. Biophys. 146:627–634.Google Scholar
  49. Fujime, S., Maruyama, M., and Asakura, S., 1972, Flexural rigidity of bacterial flagella studied by quasielastic scattering of laser light, J. Mol. Biol. 68:347–359.Google Scholar
  50. Gee, R. A., and Truscott, T. G., 1968, Fluorescence spectra of chlorophyll excited by a continuous gas laser, Chem. Commun. 15:839–841.Google Scholar
  51. Gill, D., Heyde, M. E., and Rimai, L., 1971, Raman spectrum of the 11cis isomer of retinaldehyde, J. Am. Chem. Soc. 93:6288–6289.Google Scholar
  52. Glick, D., 1966, The laser microprobe. Its use for elemental analysis in histochemistry, J. Histochem. Cytochem. 14:862–868.Google Scholar
  53. Glick, D., 1969, Cytochemical analysis by laser microprobe-emission spectroscopy, Ann. N.Y. Acad. Sci. 157:265–274.Google Scholar
  54. Glick, D., and Marien, K. W., 1975, Potential for clinical use of the analytical laser microprobe for element measurement, Clin. Chem. 21:1238–1244.Google Scholar
  55. Glick, D., and Rosan, R. C., 1966, Laser microprobe for elemental microanalysis, application in histochemistry, Microchem. J. 10:393–401.Google Scholar
  56. Goldman, L., Rockwell, R. J., Jr., Naprstek, Z., Siler, V.E., Hoefer, R., Hobeika, C., Hishimoto, C., Polanyi, T., and Bredmeier, H. C., 1970, Some parameters of high output CO2 laser experimental surgery, Nature (London) 228:1344–1345.Google Scholar
  57. Goldstein, S. F., Holwill, M. E. J., and Silvester, N. R., 1970, The effects of laser microbeam irradiation on the flagellum of Crithidia (Strigomonas) oncopelti, J. Exp. Biol. 53:401–409.Google Scholar
  58. Gordon, T. E., Bishop, K., Carter, C. H., and Connolly, M. J., 1968, Laser blockage or delay of cell division at prophase in human leukocyte cultures, J. Dent. Res. 47:171.Google Scholar
  59. Hall, R. R., Beach, A. D., Baker, E., and Morison, P. C. A., 1971, Incision of tissue by carbon dioxide laser, Nature (London) 232:131–132.Google Scholar
  60. Ham, W. T., Jr., Mueller, H. A., Goldman, A. I., Newnam, B. E., Holland, L. M., and Kuwabara, T., 1974, Ocular hazard from picosecond pulses of Nd:YAG laser radiation, Science 185:362–363.Google Scholar
  61. Herczegh, M., Mester, E., and Ronto, G., 1971, Examination of laser-inactivation on T7 phages, Acta Biochim. Biophys. Acad. Sci. Hung. 6(1):41–44.Google Scholar
  62. Heyde, M. E., Rimai, L., Kilponen, R. G., and Gill, D., 1972, Resonance-enhanced Raman spectra of iodine complexes with amylose and polyvinyl alcohol, and of some iodine-containing trihalides, J. Am. Chem. Soc. 94:5222–5227.Google Scholar
  63. Hillenkamp, F., Unsold, E., Kaufmann, R., and Nitsche, R., 1975, Laser microprobe mass analysis of organic materials, Nature (London) 256:119–120.Google Scholar
  64. Hoye, R. C., Ketcham, A. S., and Riggle, G. C., 1967, The air-borne dissemination of viable tumor by high-energy neodymium laser, Life Sci. 6:119–125.Google Scholar
  65. Inaba, H., and Kobayashi, T., 1969, Laser-Raman radar for chemical analysis of polluted air, Nature (London) 224:170–172.Google Scholar
  66. Ippen, E. P., and Shank, C. V., 1975, Subpicosecond spectroscopy with a mode-locked CW dye laser, in: Lasers in Physical Chemistry and Biophysics (J. Joussot-Dubien, ed.), pp. 293–302, Elsevier Scientific, Amsterdam.Google Scholar
  67. Jamieson, C. W., Litwin, M. S., Longo, S. E., and Krementz, E. T., 1969, Enhancement of melanoma cell culture growth rate by ruby laser radiation, Life Sci. 8:101–106.Google Scholar
  68. Jortner, J., and Berry, R. S., 1968, Radiationless transitions and molecular quantum beats, J. Chem. Phys. 48:2757–2766.Google Scholar
  69. Junge, W., and DeVault, D., 1975, Symmetry, orientation and rotational mobility of heme A3 of cytochrome-c-oxidase in the inner membrane of mitochondria, in: Lasers in Physical Chemistry and Biophysics (J. Joussot-Dubien, ed.), pp. 439–447, Elsevier Scientific, Amsterdam.Google Scholar
  70. Katan, M. B., Giling, L.J., and van Voorst, J. D. W., 1971, pH dependence of the transient absorptions on the flash photolysis of 3-methyllumiflavin, Biochim. Biophys. Acta 234:242–248.Google Scholar
  71. Kaufmann, K. J., Dutton, P. L., Netzel, T. L., Leigh, J. S., and Rentzepis, P. M., 1975, Picosecond kinetics of events leading to reaction center bacteriochlorophyll oxidation, Science 188:1301–1304.Google Scholar
  72. Keyhani, E., Floyd, R. A., and Chance, B., 1971, Membrane structure and function. I. An electron microscope study of the alteration induced by laser irradiation on the chloroplast lamellar membranes, Arch. Biochem. Biophys. 146:618–626.Google Scholar
  73. Klar, H., 1973, Theory of collision induced rotational energy transfer in the π state of diatomic molecules, J. Phys. B 6:2139–2149.Google Scholar
  74. Kolar, J., Babicky, A., and Blabla, J., 1969, Some effects of laser upon the bones, Experientia 25:365–366.Google Scholar
  75. Kraemer, P. M., Deaven, L. L., Crissman, H. A., Steinkamp, J. A., and Petersen, D. F., 1974, On the nature of heteroploidy, Cold Spring Harbor Symp. Quant. Biol. 38:133–144.Google Scholar
  76. Lamotte, M., Dewey, H. J., Keller, R. A., and Ritter, J. J., 1975a, Laser induced photochemical enrichment of chlorine isotopes, Chem. Phys. Lett. 30:165–170.Google Scholar
  77. Lamotte, M., Dewey, H. J., Ritter, J. J., and Keller, R. A., 1975 b, Laser induced photochemical enrichment of chlorine isotopes, in: Lasers in Physical Chemistry and Biophysics (J. Joussot-Dubien, ed.), pp. 153–162, Elsevier Scientific, Amsterdam.Google Scholar
  78. Leone, S. R., and Wodarczyk, F. J., 1974, Laser-excited electronic-to-vibrational energy transfer from bromine (42P1/2) to hydrogen chloride and hydrogen bromide, J. Chem. Phys. 60:314–315.Google Scholar
  79. Letokhov, V. S., 1973, Use of lasers to control selective chemical reactions, Science 180:451–458.Google Scholar
  80. Letokhov, V. S., and Ambartzumian, R. V., 1971, Selective two-step (STS) photoionization of atoms and photodissociation of molecules by laser radiation, IEEE J. Quantum Electron. 7:305–306.Google Scholar
  81. Lewis, A., and Spoonhower, J., 1974, Tunable laser resonance Raman spectroscopy in biology, in: Spectroscopy in Biology and Chemistry (S. Yip and S. Chen, eds.), pp. 347–376, Academic Press, New York.Google Scholar
  82. Lewis, A., Spoonhower, J., Bogomolni, R., Lozier, R., and Stoeckenius, W., 1974, Tunable laser resonance Raman spectroscopy of bacteriorhodopsin, Proc. Natl. Acad. Sci. USA 71:4462–4466.Google Scholar
  83. Lewis, A., Nelson, N., and Racker, E., 1975, Laser Raman spectroscopy as a mechanistic probe of the phosphate transfer from adenosine triphosphate in a model system, Biochemistry 14:1532–1535.Google Scholar
  84. Litwin, M. S., and Earle, K. M. (eds.), 1965, Proceedings of the First Annual Conference on Biologic Effects of Laser Radiation, Fed. Proc, Suppl. 14, Vol. 24, No. 1, Part III.Google Scholar
  85. Liu, D. D.-S., Datta, S., and Zare, R. N., 1975, Laser separation of chlorine isotopes. The photochemical reaction of electronically excited iodine monochloride with halogenated olefins. J. Am. Chem. Soc. 97:2557–2558.Google Scholar
  86. Lytle, F. E., and Kelsey, M.S., 1974, Cavity-dumped argon-ion laser as an excitation source in time-resolved fluorimetry, Anal. Chem. 46:855–860.Google Scholar
  87. Mathis, P., Vermeglio, A., and Haveman, J., 1975, Primary reactions of photosynthesis in green plants. A study of photosystem-2 at low temperature, in: Lasers in Physical Chemistry and Biophysics (J. Joussot-Dubien, ed.), pp. 465–474, Elsevier Scientific, Amsterdam.Google Scholar
  88. Matsui, S., Rounds, D. E., and Olson, R. S., 1971, The effect of laser power at 2650 A on deoxyribonucleic acid, Life Sci. 10:217–221.Google Scholar
  89. Mayer, S. W., Kwok, M. A., Gross, R. W., and Spencer, D. J., 1970, Isotope separation with the CW hydrogen fluoride laser, Appl. Phys. Lett. 17:516–519.Google Scholar
  90. McKinnel, R. G., Mims, M. F., and Reed, L. A., 1969, Laser ablation of maternal chromosomes in eggs of Rana pipiens, Z. Zellforsch. Mikrosk. Anat. 93:30–35.Google Scholar
  91. Mendelsohn, R., 1973, Resonance Raman spectroscopy of the photoreceptor-like pigment of Halobacterium halobium, Nature (London) 243:22–24.Google Scholar
  92. Moore, C. B., and Zittel, P. F., 1973, State-selected kinetics from laser-excited fluorescence, Science 182:541–546.Google Scholar
  93. Netzel, T. L., Rentzepis, P. M., and Leigh, J., 1973, Picosecond kinetics of reaction centers containing bacteriochlorophyll, Science 182:238–241.Google Scholar
  94. Nicholls, D. M., Petryshyn, R., and Warner, L., 1974, Laser irradiation induces increased activity of liver elongation factor 1, Radiat. Res. 60:98–107.Google Scholar
  95. Novak, J. R., and Windsor, M. W., 1967, Laser photolysis and spectroscopy in the nanosecond time range: Excited singlet state absorption in coronene, J. Chem. Phys. 47:3075–3076.Google Scholar
  96. Ohnuki, Y., Olson, R. S., Rounds, D. E., and Berns, M. W., 1972, Laser microbeam irradiation of the juxtanucleolar region of prophase nucleolar chromosomes, Exp. Cell Res. 71:132–144.Google Scholar
  97. Okigaki, T., and Rounds, D. E., 1967, Effect of laser radiation on mitosis, Chromosome Info. Serv. No.8, pp. 16-19.Google Scholar
  98. Paleg, L. G., and Aspinall, D., 1970, Field control of plant growth and development through the laser activation of phytochrome, Nature (London) 228:970–973.Google Scholar
  99. Pao, Y.-H., and Rentzepis, P. M., 1965, Multiphoton absorption and optical-harmonic generation in highly absorbing molecular crystals, J. Chem. Phys. 43:1281–1286.Google Scholar
  100. Rattner, J. B., and Berns, M. W., 1974, Light and electron microscopy of laser microirradiated chromosomes, J. Cell Biol. 62:526–533.Google Scholar
  101. Rentzepis, P. M., 1968, Lasers in chemistry, Photochem. Photobiol. 8:579–588.Google Scholar
  102. Rimai, L., Kilponen, R. G., and Gill, D., 1970, Resonance-enhanced Raman spectra of visual pigments in intact bovine retinas at low temperatures, Biochem. Biophys. Res. Commun. 41:492–497.Google Scholar
  103. Rimai, L., Gill, D., and Parsons, J. L., 1971a, Raman spectra of dilute solutions of some stereoisomes of vitamin A type molecules. J. Am. Chem. Soc. 93:1353–1357.Google Scholar
  104. Rimai, L., Heyde, M. E., Heller, H. C., and Gill, D., 1971 b, Raman excitation profiles as probes for inaccessible electronic levels in molecules: Retinal, retinol and naphthalene, Chem. Phys. Lett. 10:207–211.Google Scholar
  105. Rosenfeld, T., Alchalal, A., and Ottolenghi, M., 1972, Nanosecond laser photolysis of rhodopsin in solution, Nature (London) 240:482–483.Google Scholar
  106. Rothschild, K. J., and Stanley, H. E., 1974, Raman spectroscopic investigation of Gramicidin A conformations, Science 185:616–618.Google Scholar
  107. Rounds, D. E., 1965, Effects of laser radiation on cell cultures, Fed. Proc. Suppl. 14, 24(1):S116–S121.Google Scholar
  108. Rounds, D. E., Olson, R. S., and Johnson, F. M., 1965a, The laser as a potential tool for cell research, J. Cell Biol. 27:191–197.Google Scholar
  109. Rounds, D. E., Olson, R. S., and Johnson, F. M., 1965b, The effect of the laser on cellular respiration, IEEE/NEREM Rec. 7:106–108.Google Scholar
  110. Rounds, D. E., Chamberlain, E. C., and Okigaki, T., 1965c, Laser radiation of tissue cultures, Ann. N.Y. Acad. Sci. 122:713–721.Google Scholar
  111. Rounds, D. E., Olson, R. S., and Johnson, F. M., 1966, Two photon absorption in reduced nicotinamide-adenine denucleotide (NADH), NEREM Rec. 8:158–159.Google Scholar
  112. Rounds, D. E., Olson, R. S., and Johnson, F. M., 1967a, The effect of the laser on cellular respiration, Z. Zellforsch. Mikrosk. Anat. 87:193–198.Google Scholar
  113. Rounds, D. E., Olson, R. S., and Johnson, F. M., 19676, Wavelength specificity of laser-induced biological damage, IEEE 9th Ann. Symp. Electron, Ion, Laser Beam Technology, pp. 363-370.Google Scholar
  114. Sacchi, C. A., Svelto, O., and Prenna, G., 1974, Pulsed tunable lasers in cytofluorometry, Histochem. J. 6:251–258.Google Scholar
  115. Salmeen, I., Rimai, L., Gill, D., Yamamoto, T., Palmer, G., Hartzell, C. R., and Beinert, H., 1973, Resonance Raman spectroscopy of cytochrome c oxidase and electron transport particles with excitation near the Soret band, Biochem. Biophys. Res. Commun. 52(3):1100–1107.Google Scholar
  116. Schleyer, H., and Chance, B., 1962, Abst. 6th Ann. Mtg. Biophys. Soc, FC9.Google Scholar
  117. Spiro, T. G., and Strekas, T. C., 1972, Resonance Raman spectra of hemoglobin and cytochrome c: Inverse polarization and vibronic scattering, Proc. Natl. Acad. Sci. USA 69:2622–2626.Google Scholar
  118. Strekas, T. C., and Spiro, T. G., 1972, Hemoglobin: Resonance Raman spectra, Biochim. Biophys. Acta 263:830–833.Google Scholar
  119. Thomas, G. J., Jr., 1970, Raman spectral studies of nucleic acids in laser-excited spectra of ribosomal RNA, Biochim. Biophys. Acta 213:417–423.Google Scholar
  120. Tsuboi, M., Takahashi, S., Muraishi, S., Kajiura, T., and Nishimura, S., 1971, Raman spectrum of a transfer RNA, Science 174:1142–1144.Google Scholar
  121. Vacek, K., Vavrinec, E., and Kalousek, I., 1973, Fluorescence of chlorophyll a excited by a He-Ne laser, Photochem. Photobiol. 17:63–64.Google Scholar
  122. Visser, A. J. W. G., van Ommen, G. J., van Ark, G., Muller, F., and van Voorst, J. D. W., 1974, Laser photolysis of 3-methyllumiflavin, Photochem. Photobiol. 20:227–232.Google Scholar
  123. Whipple, H. E. (ed.), 1965, The Laser, Ann. N.Y. Acad. Sci., Vol. 122.Google Scholar
  124. Wilde, W. H. A., 1965, Laser effects on two insects, Can. Entomol. 97:88–92.Google Scholar
  125. Wilde, W. H. A., 1967, Laser effects on some phytophagous arthropods and their hosts, Ann. Entomol. Soc. Am. 60:204–207.Google Scholar
  126. Wilson, R. M., and Wunderly, S. W., 1974a, Laser-induced formation of 1,2,4-trioxans: The trapping oxetan precursors with molecular oxygen, J. Chem. Soc. Chem. Comm. 12:461–462.Google Scholar
  127. Wilson, R. M., and Wunderly, S. W., 1974b, Sulfur dioxide trapping of photochemically generated 1,4-biradicals, J. Am. Chem. Soc. 96:7350–7351.Google Scholar
  128. Wilson, R. M., Gardner, E. J., Elder, R. C., Squire, R. H., and Florian, L. R., 1974, The laser initiated oxidative photoaddition of p-benzoquinone to cyclooctatetraene, J. Am. Chem. Soc. 96:2955–2963.Google Scholar
  129. Windsor, M. W., Rockley, M. G., Cogdell, R. J., and Parson, W. W., 1975, Picosecond flash photolysis and spectroscopy and kinetics of intermediates in bacterial photosynthesis, in: Lasers in Physical Chemistry and Biophysics (J. Joussot-Dubien, ed.), pp. 369–376, Elsevier Scientific, Amsterdam.Google Scholar
  130. Wolbarsht, M. L. (ed.), 1971, Laser Applications in Medicine and Biology, Vol. 1, Plenum Press, New York.Google Scholar
  131. Wolbarsht, M. L. (ed.), 1974, Laser Applications in Medicine and Biology, Vol. 2, Plenum Press, New York.Google Scholar
  132. Yamamoto, T., Palmer, G., Gill D., Salmeen, I. T., and Rimai, L., 1973, The valence and spin state of iron in oxyhemoglobin as inferred from resonance Raman spectroscopy, J. Biol. Chem. 248:5211–5213.Google Scholar
  133. Yu, N.-T., and East, E. J., 1975, Laser Raman spectroscopic studies of ocular lens and its isolated protein fractions, J. Biol. Chem. 250:2196–2202.Google Scholar
  134. Yu, N.-T., Liu, C. S., and O’Shea, D. C., 1972, Laser Raman spectroscopy and the conformation of insulin and proinsulin, J. Mol. Biol. 70:117–132.Google Scholar
  135. Yu, N.-T., Lin, T.-S., and Tu, A. T., 1975, Laser Raman scattering of neurotoxins isolated from the venoms of sea snakes Lapemis hardwickii and Enhydrina schistosa, J. Biol. Chem. 250:1782–1785.Google Scholar
  136. Zitter, R. N., Lau, R. A., and Wills, K. S., 1975, Infrared laser induced reaction of CF2Cl2, Am. Chem. Soc. 97:2578.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Michael W. Berns
    • 1
  1. 1.Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineUSA

Personalised recommendations