Light and Diurnal Vertical Migration: Photobehavior and Photophysiology of Plankton

  • Richard B. ForwardJr.


Many phytoplankton and Zooplankton species display a daily pattern of vertical movement, generally termed diurnal vertical migration (DVM). The photoresponses of these organisms become functionally significant during such migrations, since light is agreed to be the dominant environmental factor controlling DVM. Light underwater, however, is a complex environmental stimulus, various aspects of which can participate in initiating, controlling, and/or orienting DVM.


Vertical Movement Spectral Sensitivity Vertical Migration Euglena Gracilis Photo Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aboul-Ela, I. A., 1958, Effects of ultra-violet radiation on oysters, Nature 181:1013.Google Scholar
  2. Bainbridge, R., 1953, Studies on the interrelationships of Zooplankton and phytoplankton, J. Mar. Biol. Ass. UK 32:385.Google Scholar
  3. Bainbridge, R., 1961, Migration, in: Physiology of Crustacea, Vol. II, (T. H. Waterman, ed.), Chap. 12, pp. 431–463, Academic, New York.Google Scholar
  4. Banse, K., 1964, On the vertical distribution of Zooplankton in the sea, Progr. Oceanog. 2:55.Google Scholar
  5. Barnes, H., and Klepal, W., 1972, Phototaxis in Stage I nauplius larvae of two cirripedes, J. Exp. Mar. Biol. Ecol. 10:267.Google Scholar
  6. Bary, B. McK., 1967, Diel vertical migrations of underwater scattering, mostly in Saanich Inlet, British Columbia, Deep-Sea Res. 14:35.Google Scholar
  7. Batra, P. P., and Tollin, G., 1964, Phototaxis in Euglena. I. Isolation of the eye-spot granules and identification of the eye-spot pigments, Biochim. Biophys. Acta 79:371.Google Scholar
  8. Baylor, E. R., and Smith, F. E., 1957, Diurnal migration of planktonic crustaceans, in:Recent Advances in Invertebrate Physiology (B. Scheer, ed.), University of Oregon Publications, Eugene, Oregon, pp. 21–35.Google Scholar
  9. Bayne, B. L., 1964, The response of the larvae of Mytilus edulis to light and to gravity, Oikos 15:162.Google Scholar
  10. Beeton, A. M., 1959, Photoreception in the opossum shrimp, Mysis relicta Lovén, Biol. Bull. 116:204.Google Scholar
  11. Bendix, S. W., 1960, Phototaxis, Bot. Rev. 26:145.Google Scholar
  12. Blaxter, J. H. S., 1968, Visual thresholds and spectral sensitivity of herring larvae, J. Exp. Biol. 48:39.Google Scholar
  13. Blaxter, J. H. S., 1969, Visual thresholds and spectral sensitivity of flatfish larvae, J. Exp. Biol. 51:221.Google Scholar
  14. Blaxter, J. H. S., 1970, Light:Animals:Fishes, in: Marine Ecology (O. Kinne, ed.), Vol. I, Part 1, pp. 213–285, Wiley-Interscience, London.Google Scholar
  15. Blaxter, J. H. S., 1972, Brightness discrimination in larvae of plaice and sole, J. Exp. Biol. 57:693.Google Scholar
  16. Blaxter, J. H. S., 1973, Monitoring the vertical movements and light responses of herring and plaice larvae, J. Mar. Biol. Ass. UK 53:635.Google Scholar
  17. Blaxter, J. H. S., and Currie, R. L, 1967, The effect of artificial lights on acoustic scattering layers in the ocean, Symp. Zool. Soc. Lond. 19:1–14.Google Scholar
  18. Boden, B. P., 1961, Twilight irradiance in the sea, Int. Un. Geod. Geophys. Monog. 10:91–95.Google Scholar
  19. Boden, B. P., and Kampa, E. M., 1965, An aspect of euphausiid ecology revealed by echo-sounding in a fjord, Crustaceana 9:155.Google Scholar
  20. Boden, B. P., and Kampa, E. M., 1967, The influence of natural light on the vertical migrations of an animal community in the sea, Symp. Zool. Soc. Lond. 19:15.Google Scholar
  21. Boden, B. P., Kampa, E. M., and Abbott, B. C., 1961, Photoreception of a planktonic crustacean in relation to light penetration in the sea, in: Progress in Photobiology, Proceedings of the Third International Congress on Photobiology (B. Christensen and B. Buchman, eds.), pp. 189–196, Elsevier, Amsterdam.Google Scholar
  22. Bound, K. E., and Tollin, G., 1967, Phototactic response of Euglena gracilis to polarized light, Nature (Lond.) 216:1042.Google Scholar
  23. Breeder, C. M., Jr., 1962, On the significance of transparency in osteichtid fish eggs and larvae, Copeia 1962(3):561.Google Scholar
  24. Brinkman, K., 1966, Temperatureinflüsse auf die circadiane rhythmik von Euglena gracilis bei mixotrophie und autotrophic, Planta (Berl.) 70:344.Google Scholar
  25. Broderick, A. J., and Hard, T. M., 1974, Proceedings of the Third Conference on the Climatic Impact Assessment Program, U.S. Department of Transportation, Washington, D. C.Google Scholar
  26. Bruce, V. G., 1970, The biological clock in Chlamydomonas reinhardiiJ. Protozoology 17:328.Google Scholar
  27. Bruce, V. G., 1973, The role of the clock in controlling phototactic rhythms in.Behavior of Micro-Organisms (A. Pérez-Miravete, coordinator), pp. 257–266, Plenum, London.Google Scholar
  28. Bruce, V. G., and Pittendrigh, C. S., 1956, Temperature independence in a unicellular “clock,” Proc. Natl. Acad. Sci. USA 42:676.Google Scholar
  29. Bruce, V. G., and Pittendrigh, C. S., 1958, Resetting the Euglena clock with a single light stimulus, Amer. Nat. 92:295.Google Scholar
  30. Buder, J., 1917, Zur Kenntnis der phototaktischen Richtungsbewegungen, Jahrb. Wiss. Bot. 58:105.Google Scholar
  31. Bünning, E., and Schneiderhöln, G., 1956, Über das Aktionsspektrum der phototaktischen Reaktionen von Euglena, Arch. Mikrobiol. 24:80.Google Scholar
  32. Bünning, E., and Tazawa, M., 1957, Über die negative-phototaktische Reaktion von Euglena, Arch. Mikrobiol. 27:306.Google Scholar
  33. Butler, W. L., Hendricks, S. B., and Siegelman, H. W., 1964, Action spectra of phytochrome in vitro, Photochem. Photobiol. 3:521.Google Scholar
  34. Christensen, A. M., and McDermott, J. J., 1958, Life history and biology of the oyster crab Pinnotheres ostreum Say, Biol. Bull. 114:146.Google Scholar
  35. Clarke, G. L., 1930, Change of phototropic and geotropic signs in Daphnia induced by changes in light intensity, J. Exp. Biol. 7:109.Google Scholar
  36. Clarke, G. L., 1932, Quantitative aspects of the change of phototropic sign in Daphnia, J. Exp. Biol. 9:180.Google Scholar
  37. Clarke, G. L., and Backus, R. H., 1956, Measurements of light penetration in relation to vertical migration and records of luminescence of deep-sea animals, Deep-Sea Res. 4:1.Google Scholar
  38. Clarke, G. L., and Backus, R. H., 1964, Interrelations between vertical migration of deep scattering layers, bioluminescence and changes in daylight in the sea, Bull. Inst. Oceanogr. Monaco 64(1318): 1–36.Google Scholar
  39. Clayton, R. K., 1964, Phototaxis in microorganisms, in: Photophysiology, Vol. II (A. C. Giese, ed.), pp. 51–77, Academic, New York.Google Scholar
  40. Cowles, R. P., and Brambel, C. E., 1936, A study of the environmental conditions in a bog pond with special reference to the diurnal vertical distribution of Gonyostomum semen, Biol. Bull. 71:286.Google Scholar
  41. Crisp, D. J., and Ritz, D. A., 1973, Responses of Cirripede larvae to light. I. Experiments with white light, Mar. Biol. 23:327.Google Scholar
  42. Cushing, D. H., 1951, The vertical migration of planktonic Crustacea, Biol. Rev. 26:158.Google Scholar
  43. Daan, N., and Ringelberg, J., 1969, Further studies on the positive and negative phototactic reaction of Daphnia magna Strans, Neth. J. Zool. 19:525.Google Scholar
  44. Diehn, B., 1969a, Action spectra of the phototactic responses in Euglena, Biochim. Biophys. Acta 177:136.Google Scholar
  45. Diehn, B., 1969b, Phototactic response of Euglena to single and repetitive pulses of actinic light: orientation time and mechanism, Exp. Cell Res. 56:375.Google Scholar
  46. Diehn, B., 1969c, Two perpendicularly oriented pigment systems involved in phototaxis of Euglena, Nature (Lond.) 221:366.Google Scholar
  47. Diehn, B., 1970, Mechanism and computer simulation of the phototactic accumulation of Euglena in a beam of light, Photochem. and Photobiol. 11:407.Google Scholar
  48. Diehn, B., 1973, Phototaxis in Euglena. Physiological basis of photoreceptor and tactic orientation, in: Behavior of Micro-Organisms (A. Pérez-Miravete, coordinator), pp. 83–90, Plenum, London.Google Scholar
  49. Diehn, B., and Kint, B., 1970, The flavin nature of the photoreceptor molecule for phototaxis in Euglena, Physiol. Chem. Phys. 2:483.Google Scholar
  50. Diehn, B., and Tollin, G. 1966a, Phototaxis in Euglena—II. Physical factors determining the rate of phototactic response, Photochem. Photobiol. 5:523.Google Scholar
  51. Diehn, B., and Tollin, G., 1966b, Phototaxis in Euglena—III. Lag phenomena and the overall mechanism of the tactic response to light, Photochem. Photobiol. 5:839.Google Scholar
  52. Dietz, R. S., 1962, The sea’s deep scattering layer,Sci. Amer. 207:44.Google Scholar
  53. Dingle, H., 1962, The occurrence and ecological significance of colour responses in some marine Crustacea, Amer. Nat. 96:151.Google Scholar
  54. Dingle, H., 1969, Ontogenetic changes in phototaxis and thigmokinesis in stomatopod larvae, Crustaceana 16:108.Google Scholar
  55. Dodge, J. D., 1969, A review of the fine structure of algal eye spots, Br. phycol. J. 4:199.Google Scholar
  56. Dodge, J. D., 1971, Fine Structure of the pyrrophyta, Bot. Rev. 37:481.Google Scholar
  57. Dodge, J. D., and Crawford, R. M., 1969, Observations on the fine structure of the eyespot and associated organelles in the dinoflagellate Glenodinium foliaceum, J. Cell Sci. 5:479.Google Scholar
  58. Easterly, C. O., 1917a, Specificity in behaviour and the relation between habits in nature and reactions in the laboratory, Univ. Calif. Publ. Zool. 16:381.Google Scholar
  59. Easterly, C. O., 1971b, The occurrence of a rhythm in geotropism of two species of planktonic copepods when certain recurring external conditions are absent, Univ. Calif. Publ. Zool. 16:393.Google Scholar
  60. Easterly, C. O., 1919, Reactions of various plankton animals with reference to their diurnal migrations, Univ. Calif. Publ. Zool. 19:1.Google Scholar
  61. Engelmann, T. W., 1882, Über Licht—und Farbenperception niederster Organismen, Pflüger Arch. 29:387.Google Scholar
  62. Ennis, G. P., 1973, Behavioral responses to changes in hydrostatic pressure and light during larval development of the lobster Homarus gammarus, J. Fish Res. Board Can. 30:1349.Google Scholar
  63. Enright, J. T., and Hamner, W. M., 1967, Vertical diurnal migration and endogenous rhythmicity, Science 157:937.Google Scholar
  64. Eppley, R. W., Holm-Hansen, O., and Strickland, J. D. H., 1968, Some observations on the vertical migration of dinoflagellates, J. Phycol. 4:333.Google Scholar
  65. Eppley, R. W., Holmes, R. W., and Strickland, J. D. H., 1967, Sinking rates of marine phyto-plankton measured with a fluorometer,J. Exp. Mar. Biol. Ecol. 1:191.Google Scholar
  66. Ewald, W. F., 1910, Über Orientierung Lokomotion und Lichtreaktionen einiger Cladoceren und deren bedeutung für die Theorie der Tropismen, Biol. Zbl. 30:1, 49, 379, 385.Google Scholar
  67. Ewald, W. F., 1912, On artificial modification of light reactions and the influence of electrolytes on phototaxis, J. Exp. Zool. 13:591.Google Scholar
  68. Feinleib, M. E., and Curry, G. M., 1971a, The nature of the photoreceptor in phototaxis, in: Handbook of Sensory Physiology. I. Receptor Mechanisms, Vol. I (W. R. Loewenstein, ed.), pp. 366–395, Springer-Verlag, Berlin.Google Scholar
  69. Feinleib, M. E. H., and Curry, G. M., 1971b, The relationship between stimulus intensity and oriented phototactic response (topotaxis) in Chlamydomonas, Physiol. Plant. 25:346.Google Scholar
  70. Fernandez, H. R., 1973, Spectral sensitivity and visual pigment of the compound eye of the galatheid crab Pleuroncodes planipes, Mar. Biol. 20:148.Google Scholar
  71. Fisher, L. R., and Goldie, E. H., 1959, The eye pigments of a euphausiid crustacean Meganyctiphanes norvegica, in: Proceedings of the Fifteenth International Congress on Zoology (M. Sars, ed.), pp. 53–54.Google Scholar
  72. Fisher, L. R., and Goldie, E. H., 1961, Pigments of compound eyes, in: Progress in Photobiology, Proceedings of the Third International Congress on Photobiology. (B. Christensen and B. Buchman, eds.), pp. 153–154, Elsevier, Amsterdam.Google Scholar
  73. Forward, R. B., Jr., 1970, Change in the photoresponse action spectrum of the dinoflagellate Gyrodinium dorsum Kofoid by red and far-red light, Planta (Berl.) 92:248.Google Scholar
  74. Forward, R. B., Jr., 1973, Phototaxis in a dinoflagellate: action spectra as evidence for a two-pigment system, Planta (Berl.) 111:167.Google Scholar
  75. Forward, R. B., Jr., 1974a, Phototaxis by the dinoflagellate Gymnodinium splendens Lebour, J. Protozool. 21:312.Google Scholar
  76. Forward, R. B., Jr., 1974b, Negative phototaxis in crustacean larvae: possible functional significance, J. Exp. Mar. Biol. Ecol. 16:11.Google Scholar
  77. Forward, R. B., Jr., 1975, Dinoflagellate phototaxis: pigment system and circadian rhythm as related to diurnal migration, in: Physiological Ecology of Estuarine Organisms (F. Vernberg, ed.), pp. 367–381, University of South Carolina Press, Columbia, South Carolina.Google Scholar
  78. Forward, R. B., Jr., and Costlow, J. D., Jr., 1974, The ontogeny of phototaxis by larvae of the crab Rhithropanopeus harrisii, Mar. Biol. 26:27.Google Scholar
  79. Forward, R. B., Jr., and Davenport, D., 1968, Red and far-red light effects on a short-term behavioral response of a dinoflagellate, Science 161:1028.Google Scholar
  80. Forward, R. B., Jr., and Davenport, D., 1970, The circadian rhythm of a behavioral photo-response in the dinoflagellate Gyrodinium dorsum, Planta (Berl.) 92:259.Google Scholar
  81. Forward, R. B., Jr., Horch, K. W., and Waterman, T. H., 1972, Visual orientation at the water surface by the teleost Zenarchopterus, Biol. Bull. 143:112.Google Scholar
  82. Forward, R. B., Jr., and Waterman, T. H., 1973, Evidence for e-vector and light intensity pattern discrimination by the teleost Dermogenys, J. Comp. Physiol. 87:189.Google Scholar
  83. Fraenkel, G., 1931, Die Merchanik der Orientierung der Tiere im Raum, Biol. Rev. 6:36.Google Scholar
  84. Fraenkel, G. S., and Gunn, D. L., 1961, The Orientation of Animals, pp. 1–376, Dover, New York.Google Scholar
  85. Francis, D., 1967, On the eyespot of the dinoflagellate Nematodinium, J. Exp. Biol. 47:495.Google Scholar
  86. Goff, N. M., 1974, Observations on the vertical migration of Gymnodinium nelsoni Martin in an estuarine environment, Masters Thesis, University of Maryland, College Park, Maryland.Google Scholar
  87. Goldsmith, T. H., 1972, The natural history of invertebrate visual pigments, in: Handbook of Sensory Physiology, Vol. 7 (H. J. A. Dartnall, ed.), pp. 685–719, Springer-Verlag, Berlin.Google Scholar
  88. Gössel, I., 1957, Über das Aktionspektrum der Phototaxis chlorophyllfreien Euglenen und über die Absorption des Augenflecks, Arch. Mikrobiol. 27:288.Google Scholar
  89. Greuet, C., 1965, Structure fine de l’elle d’Erythropsis pavillardi Hertwig, Pédinien Warnowiidae Lindemann C. R. Acad. Sci. (Paris) 261:1904.Google Scholar
  90. Grindley, J. R., 1972, The vertical migration behavior of estuarine plankton, Zool. Africana 7:13.Google Scholar
  91. Halldal, P., 1958, Action spectra of phototaxis and related problems in Volvocales, Ulvagametes and Dinophyceae, Physiol. Plant. 11:118.Google Scholar
  92. Halldal, P., 1959, Factors affecting light response in phototactic algae, Physiol. Plant. 12:742.Google Scholar
  93. Halldal, P., 1960, Action spectra of induced phototactic response changes in Platymonas, Physiol. Plant. 13:726.Google Scholar
  94. Halldal, P., 1961, Ultraviolet action spectra of positive and negative phototaxis in Platymonas subcordiformis, Physiol. Plant. 14:133.Google Scholar
  95. Halldal, P., 1962, Taxes, in: Physiology and Biochemistry of Algae (R. A. Lewis, ed.), pp. 583–593, Academic, New York.Google Scholar
  96. Halldal, P., 1964, Phototaxis in protozoa, in: Biochemistry and Physiology of Protozoa (S. H. Hutner, ed.), Vol. 3, pp. 277–296, Academic, New York.Google Scholar
  97. Halldal, P., 1967, Ultraviolet action spectra in algology: a review, Photochem. Photobiol. 6:445.Google Scholar
  98. Hand, W. G., 1970, Phototactic orientation by the marine dinoflagellate Gyrodinium dorsum Kofoid I. A mechanism model, J. Exp. Zool. 174:33.Google Scholar
  99. Hand, W. G., Collard, P. A., and Davenport, D., 1965, The effects of temperature and salinity change on swimming rate in the dinoflagellates Gonyaulax and Gyrodinium, Biol. Bull. 128:90.Google Scholar
  100. Hand, W. G., and Davenport, D., 1970, The experimental analysis of phototaxis and photokinesis in flagellates, in: Photobiology of Microorganisms (P. Halldal, ed.), pp. 255–282, Wiley-Interscience, London.Google Scholar
  101. Hand, W. G., Forward, R., and Davenport, D., 1967, Short-term photic regulation of a receptor mechanism in a dinoflagellate, Biol. Bull. 133:150.Google Scholar
  102. Hand, W. G., and Haupt, W., 1971, Flagellar activity of the colony members of Vovox aureus Ehrbg. during light stimulation, J. Protozool. 18:361.Google Scholar
  103. Hardy, A. C., and Bainbridge, R., 1954, Experimental observations on the vertical migrations of planktonic animals, J. Mar. Biol. Ass. UK 33:409.Google Scholar
  104. Hardy, A. C., and Paton, W. N., 1947, Experiments on the vertical migration of plankton animals, Mar. Biol. Ass. UK 26:467.Google Scholar
  105. Harris, J. E., 1963, The role of endogenous rhythms in vertical migration, J. Mar. Biol. Ass. UK 43:153.Google Scholar
  106. Harris, J. E., and Wolfe, U. K., 1955, A laboratory study of vertical migration. Proc. R. Soc. B 144:329.Google Scholar
  107. Hartshorne, J. N., 1953, The function of the eyespot in Chlamydomonas, New Phytol. 52:292.Google Scholar
  108. Harvey, J. M., 1929, The action of light on Calanus finmarchicus (Gunnerus) as determined by its effect on the heart beat, Centr. Can. Biol. Fish. 5:83.Google Scholar
  109. Hasle, G. R., 1950, Phototactic vertical migrations in marine dinoflagellates, Oikos 2:162.Google Scholar
  110. Hasle, G. R., 1954, More on phototactic diurnal migration in marine dinoflagellates, Nytt. Mag. Bot. 2:139.Google Scholar
  111. Haupt, W., 1959, Die phototaxis der algen, in: Handbuch der Pflanzenphysiologie, Vol. 17/1 (W. Ruhland, ed.), pp. 318–370, Springer-Verlag, Heidelberg.Google Scholar
  112. Haupt, W., 1965, Perception of environmental stimuli orienting, growth, and movement in lower plants, Annu. Rev. Plant Physiol. 16:267.Google Scholar
  113. Haupt, W., 1966, Phototaxis in plants, Int. Rev. Cytol. 19:267.Google Scholar
  114. Haupt, W., and Schönbohn, E., 1970, Light-oriented chloroplast movements, in: Photobiology of Microorganisms (P. Halldal, ed.), pp. 283–301, Wiley-Interscience, London.Google Scholar
  115. Heberdey, R. F., and Kupka, U. F., 1942, Helligkeitsunterscheidungsvermón von Daphnia pulex, Z. Vergl. Physiol. 29:541.Google Scholar
  116. Herman, S. S., 1962, Spectral sensitivity and phototaxis in the opossum shrimp Neomysis americana Smith, Biol. Bull. 123:562.Google Scholar
  117. Herrnkind, W. F., 1968, The breeding of Uca pugilator and mass rearing of the larvae with comments on the behavior of the larvae and early crab stages, Crustaceana (Suppl.) 2:214.Google Scholar
  118. Holmes, S. J., 1903, Phototaxis in Volvox, Biol. Bull. 4:319.Google Scholar
  119. Huntsman, A. G., 1924, Limiting factors for marine animals. I. The lethal effects of sunlight, Contr. Can. Biol. Fish. (NS) 2:83.Google Scholar
  120. Hutchinson, G. E., 1957, A Treatise on Limnology, Vol. I. Wiley, London.Google Scholar
  121. Hutchinson, G. E., 1967, A Treatise on Limnology, Vol. II, Chap. 25, pp. 725–809, Wiley, New York.Google Scholar
  122. Huth, K., 1970, Bewegung und Orientierung bei Volvox aurenus Ehrb. I. Mechanismus der phototaktischen Reaktion, Z. Pflanzenphysiol. 62:436.Google Scholar
  123. Hyman, O. W., 1920, On the development of Gelasimus after hatching,J. Morph. 33:485.Google Scholar
  124. Ivanoff, A., 1974, Polarization measurements on the sea, in: Optical Aspects of Oceanography (N. G. Jerlov and E. Steemann Nielsen, eds.), pp. 151–175, Academic, New York.Google Scholar
  125. Ivanoff, A., and Waterman, T. H., 1958a, Elliptical polarization of submarine illumination, J. Mar. Res. 16:255.Google Scholar
  126. Ivanoff, A., and Waterman, T. H., 1958b, Factors mainly depth and wavelength affecting the degree of underwater light polarization, J. Mar. Res. 16:283.Google Scholar
  127. Jahn, T. L., and Bovee, E. C., 1967, Motile behavior of protozoa, in: Research in Protozoology (T. T. Chen, ed.), Vol. 1, pp. 41–200, Pergamon, Oxford.Google Scholar
  128. Jander, R., Daumer, K., and Waterman, T. H., 1963, Polarized light orientation by two Hawaiian decapod cephalopods, Z. Verg. Physiol. 46:383.Google Scholar
  129. Jander, R., and Waterman, T. H., 1960, Sensory discrimination between polarized light and light intensity patterns by arthropods. J. Cell Comp. Physiol. 56:137.Google Scholar
  130. Jerlov, N. G., 1968, Optical Oceanography, pp. 1–194, Elsevier, Amsterdam.Google Scholar
  131. Jerlov, N. G., 1970, Light—general introduction, in: Marine Ecology (O. Kinne, ed.), Vol. I, Part I, pp. 95–102, Wiley-Interscience, London.Google Scholar
  132. Jerlov, N. G., and Steeman Nielsen, E., 1973, Optical Aspects of Oceanography, Academic, London.Google Scholar
  133. Kampa, E. M., 1955, Euphausiopsin a new photosensitive pigment from the eyes of euphausiid crustaceans, Nature 175:996.Google Scholar
  134. Kampa, E. M., 1961, Daylight penetration measurements in three oceans, Int. Un. Geod. Geophys. Monog. 10:91–95.Google Scholar
  135. Kampa, E. M., 1970a, Photoenvironment and sonic scattering, in: Proceedings of an International Symposium on Biological Sound Scattering in the Ocean (G. B. Farquhar, ed.), pp. 51–59. Maury Center for Ocean Science, Department of the Navy, Washington, D.C.Google Scholar
  136. Kampa, E. M., 1970b, Underwater daylight and moonlight measurements in the eastern North Atlantic,J. Mar. Biol. Ass. UK 50:397.Google Scholar
  137. Kampa, E. M., 1970c, Underwater daylight measurements in the Sea of Cortez, Deep-Sea Res. 17:271.Google Scholar
  138. Kivic, P. A., and Vesk, M., 1972, Structure and function of euglenoid eyespot. The probable location of the phototaxis photoreceptor, J. Exp. Bot. 23:1070.Google Scholar
  139. Kleerekoper, H., Matis, J. H., Timms, A. M., and Gensler, P., 1973, Locomotor response of the goldfish to polarized light and its e-vector, J. Comp. Physiol. 86:27.Google Scholar
  140. Klugh, A. G., 1929, The effect of the ultra-violet component of sunlight on certain marine organisms, Can. J. Res. 1:100.Google Scholar
  141. Klugh, A. B., 1930, The effect of U.V. component of light on certain aquatic organisms, Can. J. Res. 3:104.Google Scholar
  142. Lewis, J. B., 1954, The occurrence and vertical distribution of Euphausiacea of the Florida Current, Bull. Mar. Sci. Gulf Caribb. 4:265.Google Scholar
  143. Lincoln, R. J., 1970, A laboratory investigation into the effects of hydrostatic pressure on the vertical migration of planktonic Crustacea, Mar. Biol. 6:5.Google Scholar
  144. Lincoln, R. J., 1971, Observations on the effects of changes in hydrostatic pressure and illumination on the behavior of some planktonic crustaceans, J. Exp. Biol. 54:677.Google Scholar
  145. Lipps, M. J., 1973, The determination of the far-red effect on marine phytoplankton, J. Phycol. 9:237.Google Scholar
  146. Loeb, J., 1906, Ueber die Erregung von positivem Heliotropismus durch Säure, insbesondere Kohlensäure und von negativem Heliotropismus durch ultraviolette Strahlen, Pflüg. Arch. Ges. Physiol. 115:564.Google Scholar
  147. Loeb, J., 1908, Ueber Heliotropismus und die periodischen tiefenbewegungen pelogischer Tiere, Biol. Zbl. 28:732.Google Scholar
  148. Lucas, C. E., 1936, On certain interrelations between phytoplankton and Zooplankton under experimental conditions, J. Cons. Cons. Perm. Int. Explor. Mer. 11:343.Google Scholar
  149. Luntz, A., 1931a, Untersuchunger über die phototaxis I. Die absoluten Schwellenwerte und die relative Wirksamkeit von spektralfarben bei grünen and farblosen einzelligen, Z. Vergl. Physiol. 14:68.Google Scholar
  150. Luntz, A., 1931b, Untersuchunger über die phototaxis II. Lichtintensität und Schwimmergeschwindigkeit bei Eudorina elegans, Z. Vergl. Physiol. 15:652.Google Scholar
  151. Luntz, A., 1932, Untersuchunger über die phototaxis III. Die Umkehr der Reactionsrichtung bei starken Lichtintensitäten und ihre Bedeutung für eine allgemeine Theorie der photische Reizwirkung, Z. Vergl. Physiol. 16:204.Google Scholar
  152. Lynch, W. R., 1947, The behavior and metamorphosis of the larva of Bugula neritina (Linnaeus): Experimental modification of the length of the free-swimming period and the responses of the larvae to light and gravity, Biol. Bull. 92:115.Google Scholar
  153. Lythgoe, J. N., 1966, Visual pigments and underwater vision, in: Light as an Ecological Factora Symposium of the British Ecology Society (R. Bainbridge, G. C. Evans, and O. Rackham, eds.), pp. 375–391, Blackwell Scientific Publications, Oxford.Google Scholar
  154. Lythgoe, J. N., 1972, The adaptation of visual pigments to the photic environment, in: Photochemistry of Vision (H. J. A. Dartnall, ed.), pp. 566–603, Springer-Verlag, Berlin.Google Scholar
  155. Mainx, F., 1929, Untersuchunger über den Einfluss von Aussenfaktoren auf die Phototaktische Stimmung, Arch. Protistenk. 68:105.Google Scholar
  156. Mainx, F., and Wolf, H., 1939, Reaktionsintensität und Stimmungsänderung in ihrer Bedeutung für eine Theorie der Phototaxis, Arch. Protistenk. 93:105.Google Scholar
  157. Marbach, I. and Mayer, A. M., 1970, Direction of phototaxis in Chlamydomonas reinhardii and its relation to cell metabolism, Phycologia 9:255.Google Scholar
  158. Marshall, N., and Wheeler, B. N., 1965, Role of coastal and upper estuarine waters, contributing phytoplankton to the shoals of the Niantic estuary, Ecology 46:665.Google Scholar
  159. Marshall, S. M., and Orr, A. P., 1955, The Biology of a Marine Copepod, Oliver and Boyd, Edinburgh.Google Scholar
  160. Marshall, S. M., and Orr, A. P., 1972, The Biology of a Marine Copepod Calanus finmarchicus (Gunnerus), Springer-Verlag, New York.Google Scholar
  161. Marshall, S. M., and Orr, A. P., 1960, On the biology of Calanus finmarchicus II. Observations on vertical migration especially infernale Calanus, J. Mar. Biol. Ass. UK 39:135.Google Scholar
  162. Mast, S. O., 1911, Light and the Behavior of Organisms, Wiley, New York.Google Scholar
  163. Mast, S. O., 1918, Effects of chemicals on reversion in orientation to light in the colonial form Spondylomorum quaternarium, J. Exp. Zool. 26:503.Google Scholar
  164. Mast, S. O., 1919, Reversion in the sense of orientation to light in colonial forms Volvox globator and Pandorina morum, J. Exp. Zool. 27:367.Google Scholar
  165. Mast, S. O., 1926, Reaction to light in Volvox with special reference to the process of orientation, Z. Vergl. Physiol. 4:637.Google Scholar
  166. Mast, S. O., and Gover, M., 1922, Relation between intensity of light and rate of locomotion in Phacus pleuronectes and Euglena gracilis and its bearing on orientation, Biol. Bull. 43:203.Google Scholar
  167. Mauchline, J., and Fisher, L. R., 1969, The biology of euphausiids, in: Advances in Marine Biology (F. S. Russell and M. Young, eds.), Vol. 7, pp. 1–454, Academic, London.Google Scholar
  168. Mayer, A. M., and Poljakoff-Mayber, A., 1959, The phototactic behavior of Chlamydomonas snowiae, Physiol. Plant. 12:8.Google Scholar
  169. Menzel, R., and Roth, F., 1972, Spektrale phototaxis von Planktonrotatorien, Experientia 28:356.Google Scholar
  170. Mileikovsky, S. A., 1973, Speed of active movement of pelagic larvae of marine bottom invertebrates and their ability to regulate their vertical position, Mar. Biol. 23:11.Google Scholar
  171. Mjaaland, G., 1956, Some laboratory experiments on the coccolithophorid Coccolithus huxleyi, Oikos 7:251.Google Scholar
  172. Moore, A. R., 1912, Concerning negative phototropism in Daphnia pulex, J. Exp. Zool. 13:573.Google Scholar
  173. Moore, H. B., 1950, The relation between the scattering layer and the Euphausiacea, Biol. Bull. 99:181.Google Scholar
  174. Moore, H. B., and Corwin, E. G., 1956, The effect of temperature, illumination and pressure on the vertical distribution of Zooplankton, Bull. Mar. Sci. Gulf Caribb. 6:273.Google Scholar
  175. Mornin, L., and Francis, D., 1967, The fine structure of Nemtodinium armatum, a naked dinoflagellate, J. Micros. 6:759.Google Scholar
  176. Nicol, J. A., 1959, Studies on luminescence. Attraction of animals to a weak light, J. Mar. Biol. Ass. UK 38:477.Google Scholar
  177. Nultsch, W., 1956, Studien über die Phototaxis der Diatomeen, Arch. Protistenk. 101:1Google Scholar
  178. Nultsch, W., 1970, Photomotion of microorganisms and its interaction with photosynthesis, in: Photobiology of Microorganisms (P. Halldal, ed.), pp. 213–251, Wiley-Interscience, New York.Google Scholar
  179. Nultsch, W., and Wenderoth, K., 1973, Phototaktische Untersuchungen an einzelnen Zellen von Navicula peregrina (Ehrenberg) Kuetzing, Arch. Mikrobiol. 90:47.Google Scholar
  180. Nultsch, W., Throm, G., and Rimscha, I. V., 1971, Phototaktische untersuckungen an Chlamydomonas reinhardii Dangeard in Homokontinuierlicher Kultur, Arch. Mikrobiol. 80:351.Google Scholar
  181. Oltmanns, F., 1917, Über Phototaxis, Z. Bot. 9:257.Google Scholar
  182. Pardi, L., and Papi, F., 1961, Kinetic and tactic responses, in: Physiology of Crustacea (T. H. Waterman, ed.), Vol. II, pp. 365–399, Academic, New York.Google Scholar
  183. Pearre, S., Jr., 1973, Vertical migration and feeding in Sagitta elegans Verrill, Ecology 54:300.Google Scholar
  184. Pohl, R., 1948, Tagesrhythmus im phototaktischen Verhalten der Euglena gracilis, Z. Naturforsch. 3b:367.Google Scholar
  185. Pomeroy, L. R., Haskin, H. H., and Ragotzkie, R. H., 1956, Observations on dinoflagellate blooms, Limnol. Oceanogr. 1:54.Google Scholar
  186. Qasim, S. Z., and Knight-Jones, E. W., 1957, Further investigations on the pressure responses of marine animals, Rep. Challenger Soc. 3:21.Google Scholar
  187. Rice, A. L., 1964, Observations on the effects of changes of hydrostatic pressure on the behavior of some marine animals, J. Mar. Biol. Ass. UK 44:163.Google Scholar
  188. Rimet, M., 1960, Persistances rhythmiques dans le phototropisme de Daphnia pulex de Geer, Année Biol. 36:189.Google Scholar
  189. Ringelberg, J., 1964, The positively phototactic reaction of Daphnia magna Straus: A contribution to the understanding of diurnal vertical migration, Neth. J. Sea Res. 2:319.Google Scholar
  190. Ringelberg, J., 1966, Stimulus for diurnal vertical migration of pelagic animals, Nature (Lond.) 212:301.Google Scholar
  191. Ringelberg, J., and Servaas, H., 1971, A circadian rhythm in Daphnia magna, Oecologia (Berl.) 6:289.Google Scholar
  192. Ringelberg, J., Kasteel, J. V., and Servaas, H., 1967, The sensitivity of Daphnia magna Straus to changes in light intensity at various adaptation levels and its implication in diurnal vertical migration, Z. Vergl. Physiol. 56:397.Google Scholar
  193. Ritchie, G. S., 1954, The deep scattering layer, Int. Hydrogr. Rev. 31:2.Google Scholar
  194. Ritz, D. A., 1972a, Behavioral response to light of the newly hatched Phyllosoma larvae of Panulirus longipes cygnus George (Crustacean: Decapoda: Palinuridae), J. Exp. Mar. Biol.Ecol. 10:105.Google Scholar
  195. Ritz, D. A., 1972b, Factors affecting the distribution of rock lobster larvae (Panulirus longipes cygnus) with reference to variability of plankton-net catches, Mar. Biol. 13:309.Google Scholar
  196. Robert, P., Scheffer, D., and Médioni, J., 1958, Réactions oculo-motrices de la Daphnie en réponse à des lumieres monochromatiques d’égale énergie. Sensibilité visuelle et sensibilité dermatoptique, C. R. Soc. Biol. 152:1000.Google Scholar
  197. Rose, M., 1925, Contributions à Fétude de la biologie du plankton: le problème des migrations verticales journalières, Arch. Zool. Exp. Gen. 64:387.Google Scholar
  198. Rudjakov, J. A., 1970, The possible causes of diel vertical migrations of planktonic animais, Mar. Biol. 6:98.Google Scholar
  199. Russell, F. S., 1927, The vertical distribution of plankton in sea, Biol. Revs. Biol. Proc. Cambridge Phil. Soc. 2:213.Google Scholar
  200. Ruttner, F., 1943, Beobachtungen über die tägliche Vertikalwanderung des Planktons in tropisches Seen, Arch. Hydrobiol. 40:474.Google Scholar
  201. Sachs, T., and Mayer, A. M., 1961, Studies on the relation between metabolism and phototaxis of Chlamydomonas snowiae, Phycologia 1:149.Google Scholar
  202. Schallek, W., 1942, The vertical migration of the copepod Accartia tonsa under controlled illumination, Biol. Bull. 82:112.Google Scholar
  203. Schultz, H., 1928, Über die Bedeutung des Lichtes im Leben niederer Krebse, Z. Vergl. Physiol. 7:488.Google Scholar
  204. Segal, E., 1970, Light: Animals: Invertebrates, in: Marine Ecology (O. Kinne, ed.), pp. 159–211, Wiley-Interscience, New York.Google Scholar
  205. Seliger, H. H., Fastie, W. G., Taylor, W. R., and McElroy, W. D., 1962, Bioluminescence of marine dinoflagellates. I. An underwater photometer for day and night measurements, J. Gen. Physiol. 45:1003.Google Scholar
  206. Siebeck, O., 1960, Untersuchungen über die Vertikalwanderung planktischer Crustaceen unter Berücksichtigung der Strahlungsverhältnisse, Int. Rev. Ger. Hydrobiol. 45:381.Google Scholar
  207. Singarajah, K. V., Moyse, J., and Knight-Jones, E. W., 1967, The effect of feeding upon the phototactic behavior of cirripede nauplii, J. Exp. Mar. Biol. Ecol. 1:144.Google Scholar
  208. Smith, F. E. and Baylor, E. R., 1953, Color responses in the cladocera and their ecological significance, Amer. Nat. 57:49.Google Scholar
  209. Soli, G., 1966, Bioluminescent cycle of photosynthetic dinoflagellates, Limnol. Oceanogr. 11:355.Google Scholar
  210. Stavis, R. L., and Hirschberg, R., 1973, Phototaxis in Chlamydomonas reinhardtii, J. Cell Biol. 59:367.Google Scholar
  211. Strother, G. K. and Wolken, J. J., 1960, Microspectrophotometry of Euglena chloroplast and eyespot, Nature (Lond.) 188:601.Google Scholar
  212. Strother, G. K., and Wolken, J. J., 1961, In vivo absorption spectra of Euglena: chloroplast and eyespot, J. Protozool. 8(3):261.Google Scholar
  213. Sulkin, S. D., 1971, Behavioral Responses of the Developmental Stages of Two Xanthid Crabs to Light Gravity and Pressure under Laboratory Conditions, Ph.D. Thesis, Duke University, Durham, North Carolina.Google Scholar
  214. Swift, E., and Taylor, W. R., 1967, Bioluminescence and chloroplast movement in the dinoflagellate Pyrocystis lunula, J. Phycol. 3:77.Google Scholar
  215. Taylor, W. R., Seliger, H. H., Fastie, W. G., and McElroy, W. D., 1966, Biological and physical observations on a phosphorescent bay in Falmouth Harbor, Jamaica, W. I., J. Mar. Res. 24:28.Google Scholar
  216. Tollin, G., 1973, Phototaxis in Euglena II: Biochemical aspects, in: Behavior of Microorganisms (A. Pérez-Miravete, coordinator), pp. 91–105, Plenum, London.Google Scholar
  217. Thorson, G., 1964, Light as an ecological factor in the dispersal and settlement of larvae of marine bottom invertebrates, Ophelia 1:167.Google Scholar
  218. Tsubo, Y., 1960, Chemotaxis and sexual behavior in Chlamydomonas, J. Protozool. 8:114.Google Scholar
  219. Umminger, B. L., 1968a, Polarotaxis in copepods. I. An endogenous rhythm in polarotaxis in Cyclops vernalis and its relation to vertical migration, Biol. Bull. 135:239.Google Scholar
  220. Umminger, B. L., 1968b, Polarotaxis in copepods. II. The ultrastructural basis and ecological significance of polarized light sensitivity in copepods, Biol. Bull. 135:252.Google Scholar
  221. Utermöhl, H., 1925, Lumnologische Phytoplankton-studien Die Besiedlung ostholsteinisher Seen mit schwebpflazen, Arch. Hydrobiol. Suppl. 5:1.Google Scholar
  222. Via, S., and Forward, R. B., Jr., 1975, The ontogeny and spectral sensitivity of polarotaxis in larvae of the crab, Rhithropanopeus harrisii (Gould), Bio. Bull. 149:251.Google Scholar
  223. Viand, G., 1951, Le phototropisme chez less chadocères, les rotifëres et les planaires, Année Biol. 27:365.Google Scholar
  224. Vinogradov, M. E., 1968, Vertical Distribution of the Oceanic Zooplankton, Academy of Sciences of the U.S.S.R. Institute of Oceanography (1970 translation), Israel Program for Scientific Translations, Wiener Bindery, Ltd., Jerusalem.Google Scholar
  225. Visscher, J. P., and Luce, R. H., 1928, Reactions of cyprid larvae of barnacles to light with special reference to spectral color, Biol. Bull. 54:336.Google Scholar
  226. Walne, P. L., and Arnott, H. J., 1967, The comparative ultrastructure and possible function of eye spots: Euglena granulata and Chlamydomonas eugametos, Planta (Berl.) 77:325.Google Scholar
  227. Walsh, J. J., Kelley, J. C., Whitledge, T. E., MacIsaac, J. J., and Huntsman, S. A., 1974, Spin-up of the Baja California upwelling ecosystem, Limnol. Oceanogr. 19:553.Google Scholar
  228. Watanabe, M., and Furuya, M., 1974, Action spectrum of phototaxis in a cryptomonad alga, Cryptomonas sp., Plant Cell Physiol. 15:413.Google Scholar
  229. Waterman, T. H., 1954, Polarization patterns in submarine illumination, Science 120:927.Google Scholar
  230. Waterman, T. H., 1955, Polarization of scattered sunlight in deep water, Deep-Sea Res. (Suppl) 3:426.Google Scholar
  231. Waterman, T. H., 1966, Specific effects of polarized light on organisms, in: Environmental Biology (P. L. Altman and D. S. Dittmer, eds.), pp. 155–165, Federation of American Societies for Experimental Biology, Bethesda, Md.Google Scholar
  232. Waterman, T. H., 1973, Responses to polarized light: animals, in: Biology Data Book, 2nd ed., Vol. II (P. L. Altman and D. S. Dittmer, eds.), pp. 1272–1289, Federation of American Societies for Experimental Biology, Bethesda, Maryland.Google Scholar
  233. Waterman, T. H., 1974a, Underwater light and the orientation of animals, in: Optical Aspects of Oceanography (N. G. Jerlov and E. Steemann Nielsen, eds.), pp. 415–443, Academic, London.Google Scholar
  234. Waterman, T. H., 1974b, Polarimeters in animals, in: Planets, Stars and Nebulae Studied with Photopolarimetry (T. Gehreis, ed.), pp. 472–474, University of Arizona Press, Tucson.Google Scholar
  235. Waterman, T. H., and Forward, R. B., Jr., 1970, Field evidence for polarized light sensitivity in the fish Zenarchopterus, Nature (Lond.) 228:85.Google Scholar
  236. Waterman, T. H., and Forward, R. B., Jr., 1972, Field demonstrations of polarotaxis in the fish Zenarchopterus, J. Exp. Zool. 180:33.Google Scholar
  237. Waterman, T. H., and Westell, W. E., 1956, Quantitative effects of the sun’s position on submarine light polarization,J. Mar. Res. 15:149.Google Scholar
  238. Welsch, J. H., 1932, Temperature and light as factors influencing the rate of swimming of larvae of the mussel crab Pinnotheres maculatus Say, Biol. Bull. 63:310.Google Scholar
  239. Wheeler, D. M., 1966, Phototactic vertical migration in Exuviaella baltica, Bot. Mar. 9:15.Google Scholar
  240. White, G. M., 1924, Reactions of the larvae of the shrimp Palaemonetes vulgaris and the squid Loligo pealii to monochromatic light, Biol. Bull. 47:265.Google Scholar
  241. Wolken, J. J., 1967, Euglena: An Experimental Organism jor Biochemical and Biophysical Studies, 2nd ed. Appleton-Century-Crofts, New York.Google Scholar
  242. Wolken, J. J., and Shin, E., 1958, Photomotion in Euglena gracilis I) Photokinesis, II) Phototaxis,J. Protozool. 5:39.Google Scholar
  243. Woodhead, P. M. J., 1966, The behavior of fish in relation to light in the sea, Oceanogr. Mar. Biol. Annu. Rev. 4:337.Google Scholar
  244. Yentsch, C. S., Bachus, R. H., Wing, A., 1964, Factors affecting the vertical distribution of bioluminescence in the Euphotic zone, Limnol. Oceanogr. 9:519.Google Scholar
  245. Young, S., 1974, Directional differences in the colour sensitivity of Daphnia magna, J. Exp. Biol. 61:261.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Richard B. ForwardJr.
    • 1
    • 2
  1. 1.Zoology DepartmentDuke UniversityDurhamUSA
  2. 2.Marine LaboratoryDuke UniversityBeaufortUSA

Personalised recommendations