Advertisement

Transmission of Solar Radiation into Natural Waters

  • Raymond C. Smith
  • John E. Tyler

Abstract

Physical and biological measurements in aquatic environments are becoming more accurate and precise as instruments and experimental techniques improve. These improved measurements go hand in hand with an increasingly quantitative description of the relationship between solar radiation, the optical properties of natural waters, and aquatic photoprocesses (e.g., Bannister, 1974; Kiefer and Austin, 1974; Morel and Smith, 1974; Patten, 1968). As man becomes increasingly aware of his own, often adverse, impact upon the aquatic environment, the techniques of optical oceanography assume greater importance as a means for the rapid and accurate assessment of this environment (e.g., Gibbs, 1974; Jerlov and Steemann Nielsen, 1974; Smith et al., 1973; Clark et al., 1969). It is timely, therefore, to formulate a consistent set of fundamental radiometric quantities, units, and nomenclature that will have consistent applicability to limnology and oceanography, as well as to photochemistry and photobiology.

Keywords

Attenuation Coefficient Radiant Energy Crater Lake Spectral Irradiance Radiance Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, F. A. J. and Boalch, G. T., 1961a, The ultraviolet absorption of sea water, J. Mar. Biol. Assoc. UK 41:591.CrossRefGoogle Scholar
  2. Armstrong, F. A. J. and Boalch, G. T., 1961b, Ultraviolet absorption of sea water and its volatile components, Union. Géod. Géophys. Intern. Monogr. 10:63.Google Scholar
  3. Baird, I., 1973, Chlorophyll concentration and phaeopigments, in: Scripps Institute of Oceanography Data Report 73–16, SCOR Discoverer Expedition May 1970 (J. E. Tyler, ed.), Section C.Google Scholar
  4. Bannister, T. T., 1974, Production equations in terms of chlorophyll concentration, quantum yield, and upper limits to production, Limnol. Oceanogr. 19:1.CrossRefGoogle Scholar
  5. Bauer, D. and Ivanoff, A., 1970, Spectro-irradiance-meter, Cahiers Oceanogr. Bull. Inj. 22:477.Google Scholar
  6. BIPM, 1970, Le Système International d’Unités, International Bureau of Weights and Measures, OFFLIB, 48 rue Gay-Lussae, F75, Paris, 5.Google Scholar
  7. Booth, C. R., 1974, A Quantum scalar irradiance measurement system, in: University of California Institute of Marine Resources Report No. 74–7, Research on the Marine Food Chain, Progress Report July 1973-June 1974, pp. 453–481.Google Scholar
  8. Burr, A. H., and Duncan, M. J., 1972, Portable spectroradiometer for underwater environments, Limnol. Oceanogr. 17:466.CrossRefGoogle Scholar
  9. Calkins, J., 1975, Measurements of the penetration of solar UV-B into various natural waters, in: Climatic Impact Assessment Program, Monograph 5. U.S. Department of Transportation, Washington, D.C. Climatic Impact Assessment Program, 1975, Monograph 5, U.S. Department of Transportation, Washington, D.C.Google Scholar
  10. Clark, G. L. and James, H. R., 1939, Laboratory analysis of the selective absorption of light by sea water, J. Opt. Soc. Amer. 39:43.Google Scholar
  11. Clarke, G. L. Ewing, G. C. and Lorenzen, C. J., 1969, Remote measurement of ocean color as an index of biological productivity, in: Proceedings of the Sixth International Symposium on Remote Sensing Environment, Ann Arbor, Mich. Vol. 2, pp. 991–1001, University of Michigan, Ann Arbor.Google Scholar
  12. Cohen, G. and Eisenberg, H., 1965, Light scattering of water, deuterium oxide, and other pure liquids,J.Chem. Phys. 43:3881.CrossRefGoogle Scholar
  13. Curcio, J. A. and Petty, C. C., 1951, The near infrared absorption spectrum of liquid water, J. Opt. Soc. Amer. 41:302.CrossRefGoogle Scholar
  14. Curie, R. I., 1961, Scalar irradiance as a parameter in phytoplankton photosynthesis and a proposed method for its measurement, in: Symposium on Radiant Energy in the Sea. Helsinki, 4–5 August, 1960, International Union of Geodesy and Geophysics., IAPO, Monograph No. 10, Institute Géographique National Turon, 1961, Paris.Google Scholar
  15. Dawson, L. H. and Hulbert, E. O., 1934, The absorption of ultraviolet and visible light by water,J.Opt. Soc. Amer. 24:175.CrossRefGoogle Scholar
  16. Dorsey, N. E., 1940, Properties of Ordinary Water-Substance, Reinhold, New York.Google Scholar
  17. Duntley, S. Q., 1963, Light in the sea,J.Opt. Soc. Amer. 53:215.Google Scholar
  18. Environmental Studies Board, 1973, Biological Impact of Increased Intensities of Solar Ultraviolet Radiation, National Academy of Sciences, Washington, D.C.Google Scholar
  19. Gibbs, R. J., ed., 1974, Suspended Solids in Water, Plenum, New York.Google Scholar
  20. Gordon, H. R., Brown, O. B., and Jacobs, M. M., 1975, Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean, Appl. Opt. 14:417.CrossRefGoogle Scholar
  21. Green, A. E. S., Sawada, T. and Shettle, E. P., 1974, The middle ultraviolet reaching the ground, Photochem. Photobiol. 19:251.CrossRefGoogle Scholar
  22. Hale, G. M. and Querry, M. R. 1973, Optical constants of water in the 200 nm to 200 μm wavelength region, Appl. Opt. 12:555.CrossRefGoogle Scholar
  23. Halldal, P., 1969, Automatic recording of action spectra of photobiological processes, spectrophotometric analysis, fluorescence measurements and recording of the first derivative of the absorption curve in one simple unit, Photochem. Photobiol. 10:23.CrossRefGoogle Scholar
  24. Hickman, K., White, I., and Stark, E., 1973, A distilling system for purer water, Science 180:15.CrossRefGoogle Scholar
  25. Hodgman, C. D., 1933, Transmission of ultraviolet radiation by water, J. Opt. Soc. Amer. 23:426.CrossRefGoogle Scholar
  26. Hodkinson, J. R., and Greenfield, J. R., 1965, Response calculations for light-scattering aerosol counters and photometers, Appl. Opt. 4:1463.CrossRefGoogle Scholar
  27. Hulburt, E. O., 1928, The penetration of ultraviolet light into pure water and sea water, J. Opt. Soc.Amer. 17:15.CrossRefGoogle Scholar
  28. Hulburt, E. O., 1945, Optics of distilled and natural water, J. Opt. Soc. Amer. 35:698.CrossRefGoogle Scholar
  29. Hutchinson, G. E., 1957, A Treatise on Limnology, Vol. 1, Wiley, New York.Google Scholar
  30. International Association of Physical Oceanography, Committee on Radiant Energy in the Sea, 1964, Standard Terminology on Optics of the Sea, Oceanografiska Institution, Göteborg, Sweden.Google Scholar
  31. Irvine, W. M. and Pollack, J. B., 1968, Infrared optical properties of water and ice spheres, Icarus 8:321.CrossRefGoogle Scholar
  32. Ivanoff, A., 1956, Etude de la penetration des radiations visibles dan la mer, Ann. Geophys. 12:32.Google Scholar
  33. Ivanoff, A., 1974, Polarization measurements in the sea, in: Optical Aspects of Oceanography (N. G. Jerlov and E. Steemann Nielsen, eds.), Chap. 8 pp. 151–175, Academic, London.Google Scholar
  34. Ivanoff, A., Jerlov, N. G., and Waterman, T. H., 1961, A comparative study of irradiance, beam transmittance and scattering in the sea near Bermuda, Limnol. Oceanogr. 6:129.CrossRefGoogle Scholar
  35. Jagger, J., 1974, Editorial, Dosimetry in photobiology, Photochem. Photobiol. 20:201.CrossRefGoogle Scholar
  36. James, H. R. and Birge, E. A., 1938, A laboratory study of the absorption of light by lake waters, Trans. Wisconsin Acad. Sci. 31:1.Google Scholar
  37. Jerlov, N. G., 1950, Ultraviolet radiation in the sea, Nature 166:111.CrossRefGoogle Scholar
  38. Jerlov, N. G., 1951, Optical studies of ocean water, Rep. Swedish Deep-Sea Expedition 3:1.Google Scholar
  39. Jerlov, N. G., 1953, Influence of suspended and dissolved matter on the transparency of sea water, Tellus 5:59.CrossRefGoogle Scholar
  40. Jerlov, N. G., 1968, Optical Oceanography, Elsevier, Amsterdam.Google Scholar
  41. Jerlov, N. G., and Koczy, F., 1951, Photometric measurements of daylight in deep waters Rep. Swedish Deep-Sea Expedition 3:61.Google Scholar
  42. Jerlov, N. G. and Steemann Nielsen, E., eds., 1974, Optical Aspects of Oceanography, Academic, London.Google Scholar
  43. Kampa, E. M., 1970, Underwater daylight and moonlight measurements in the eastern North Atlantic,J.Mar. Biol. Assoc. UK 50:397.CrossRefGoogle Scholar
  44. Kerker, M., 1969, The Scattering of Light and Other Electromagnetic Radiation, Academic, New York.Google Scholar
  45. Kiefer, D. A. and Austin, R. W., 1974, The effect of varying phytoplankton concentration on submarine light transmission in the Gulf of California, Limnol. Oceanogr. 19:55.CrossRefGoogle Scholar
  46. Kratohvil, J. P., Kerker, M., and Oppenheimer, L. E., 1965, Light scattering by pure water, J. Chem. Phys. 43:914.CrossRefGoogle Scholar
  47. Kruyt, H. R., 1952, Colloid Science (English transl. by L. C. Jackson) Elsevier, New York.Google Scholar
  48. Kullenberg, G., Lundgren, B., Malmberg, SV. AA., Nygård, K., and Højerslev, N., 1970, Inherent Optical Properties of the Sargasso Sea, University of Copenhagen, Institute of Physical Oceanography Report No. 11.Google Scholar
  49. Latimer, P., 1972, Dependence of extinction efficiency of spherical scatterers on photometer geometry,J. Opt. Soc. Amer. 62:208.CrossRefGoogle Scholar
  50. Lenoble, J., 1954, Sur quelques mesures de la pénétration du rayonnement ultraviolet dan la Mediterranée, Compt. Rend. 239:1821.Google Scholar
  51. Lenoble, J., 1955, Sur quelques nouvelles mesures de la pénétration du rayonnement ultraviolet dans la Mediterrannée et leur interprétation théorique, Compt. Rend. 241:1407.Google Scholar
  52. Lenoble, J., 1956a, L’absorption du rayonnement ultraviolet par les ions présents dan la mer, Rev. Opt. 35:526.Google Scholar
  53. Lenoble, J. 1956b, Sur le rōle des principaux sels dan l’absorption ultraviolet de l’eau de mer, Compt. Rend. 242:806.Google Scholar
  54. Lenoble, J., 1956c, Étude de la pénétration de l’ultraviolet dans la mer, Ann. Geophys. 12:16.Google Scholar
  55. Lenoble, J. and Saint-Guilly, B., 1955, Sur l’absorption du rayonnement ultraviolet par l’eau distiliée, Compt. Rend. 240:954.Google Scholar
  56. Litan, A., 1968, Fluctuation theory of light scattering from pure water, J. Chem. Phy. 48:1059.CrossRefGoogle Scholar
  57. Lundgren, B. and Højerslev, N., 1971, Daylight Measurements in the Sargasso Sea—Results from the “Dana” Expedition January-April, 1966, University of Copenhagen, Institute of Physical Oceanography Report No. 14.Google Scholar
  58. Maddux, W. S., 1966, A 4π light meter, Limnol. Oceanogr. 11:136.CrossRefGoogle Scholar
  59. Moon, P., 1940, Proposed standard solar-radiation curves for engineering use, J. Franklin Inst. 230:583.CrossRefGoogle Scholar
  60. Morel, A., 1966, Étude expérimentale de la diffusion de la lumière pour l’eau, les solutions de chlouere de sodium et l’eau de mer optiquement pures, J. Chim. Phy. 10:1359.Google Scholar
  61. Morel, A., 1973, Spectral and total irradiance, in: Scripps Institute of Oceanography Data Report 73–16, SCOR Discoverer Expedition May, 1970 (J. E. Tyler, ed.) Section F.Google Scholar
  62. Morel, A., 1974, Optical properties of pure water and pure sea water, in: Optical Aspects of Oceanography (N. G. Jerlov and E. Steemann Nielsen, eds.), Chap. 1, p. 1–24, Academic, London.Google Scholar
  63. Morel, A. and Caloumenos, L., 1973, Mesures d’eclairements sous marins, flux de photons et analyse spectral, Centre de la Reserche de l’Oceanographie, Villefranch-Sur-Mer Rapport No. 11.Google Scholar
  64. Morel, A. and Caloumenos, L., 1974, Variabilité de la répartition spectrale de l’énergie photosynthetic, in: Proceedings of the Conference on Upwelling Ecosystem Analysis, Marseille, 1973, Vol. 6, in press.Google Scholar
  65. Morel, A. and Smith, R. C., 1974, Relation between total quanta and total energy for aquatic photosynthesis, Limnol. Oceanogr. 19:591.CrossRefGoogle Scholar
  66. Mysels, K. J., 1959, Introduction to Colloid Chemistry, Interscience, New York.Google Scholar
  67. National Bureau of Standards, 1972, The International System of Units, (Special Publication 330, 2nd ed. Catalog No. C13.10:330/2) Washington, D.C.Google Scholar
  68. Neuymin, G. G., Sorokina, N. A., Paramonov, A. N., and Proschchin, V. N., 1961, Hydrophysical investigations. Some results of the optical investigations in the northern part of the Atlantic Ocean (seventh cruise of the S. R. ship “Mikhail Lomonosov”), Morsk. Gidrofiz. Issled Akad. Nauk, SSSR 29:64.Google Scholar
  69. Patten, B. C., 1968, Mathematical model of plankton productivity, Int. Rev. Ges. Hydrobiol. 53:357.CrossRefGoogle Scholar
  70. Preisendorfer, R. W., 1958a, Unified irradiance equations, Scripps Institute of Oceanography Report 58–43.Google Scholar
  71. Preisendorfer, R. W., 1958b, Directly observable quantities for light fields in natural hydrosols, Scripps Institute of Oceanography Report 58–46.Google Scholar
  72. Preisendorfer, R. W., 1959, Theoretical proof of the existence of characteristic diffuse light in natural waters, J. Marine Res. 18:1.Google Scholar
  73. Preisendorfer, R. W., 1960, Recommendation on the standardization of concepts, terminology, and notation of hydrological optics, Scripps Institute of Oceanography, unpublished.Google Scholar
  74. Preisendorfer, R. W., 1961, Application of radiative transfer theory to light measurements in the sea, in: Symposium on Radiant Energy in the Sea, Helsinki, 4–5 August 1960, International Union of Geodesy and Geophysics, IAPO, Monograph No. 10.Google Scholar
  75. Rich, P. H. and Wetzel, R. G., 1969, A simple sensitive underwater photometer, Limnol. Oceanogr. 14:611.CrossRefGoogle Scholar
  76. Robertson, D. F., 1972, Solar ultraviolet radiation in relation to human sunburn and skin cancer, Ph.D. Thesis, University of Queensland, Australia.Google Scholar
  77. Rupert, C. S., 1974, Dosimetric concepts in photobiology, Photochem. Photobiol. 20:203.CrossRefGoogle Scholar
  78. Sasaki, T. G., Oshiba, G., and Kishino, M., 1966, A underwater irradiance meter,J. Oceanogr. Soc. Jap. 22:123.Google Scholar
  79. Sawyer, W. R., 1931, The spectral absorption of light by pure water and Bay of Fundy water, Contrib. Can. Biol. Fisheries, New Ser. 7:74.Google Scholar
  80. Schuster, A., 1905, Radiation through a foggy atmosphere, Astrophys. J. 21:1.CrossRefGoogle Scholar
  81. Smith, R. C., 1969, An underwater spectral irradiance collector, J. Mar. Res., 27:341.Google Scholar
  82. Smith, R. C., 1973, Spectral and total irradiance, in: Scripps Institute of Oceanography DataReport 73–16 SCOR Discoverer Expedition May, 1970 (J. E. Tyler, Ed.) Section G.Google Scholar
  83. Smith, R. C., 1974, Structure of solar radiation in the upper layers of the sea, in: Optical Aspects of Oceanography (N. G. Jerlov and E. Steemann Nielsen, eds.), Chap. 5 pp. 95–119, Adademic, New York.Google Scholar
  84. Smith, R. C., and Tyler, J. E., 1967, Optical properties of clear natural water, J. Opt. Soc. Amer. 57:589.CrossRefGoogle Scholar
  85. Smith, R. C. and Wilson, W. H„ 1972, Photon scalar irradiance, Appl. Opt. 4:934.CrossRefGoogle Scholar
  86. Smith, R. C., Tyler, J. E., and Goldman, C. R., 1973, Optical properties and color of Lake Tahoe and Crater Lake, Limnol. Oceanogr. 18:189.CrossRefGoogle Scholar
  87. Stair, R., Schneider, W. E., and Jackson, J. K., 1963, A new standard of spectral irradiance, Appl. Opt. 2:1151.CrossRefGoogle Scholar
  88. Steemann Nielsen, E., 1964, On a complication in marine productivity work due to the influence of ultraviolet light, J. Conseil., Conseil Perm. Int. Explor. Mer. 29:130.Google Scholar
  89. Sullivan, S. A., 1963, Experimental study of the absorption in distilled water, artificial sea water, and heavy water in the visible region of the spectrum, J. Opt. Soc. Amer. 53:962.CrossRefGoogle Scholar
  90. Tyler, J. E., 1959, Natural water as a monochromator, Limnol. Oceanogr. 4:102.CrossRefGoogle Scholar
  91. Tyler, J. E., 1960, Radiance distribution as a function of depth in an underwater environment. Bull. Scripps Inst. Oceanogr. 7:363.Google Scholar
  92. Tyler, J. E., 1965, In situ spectroscopy in ocean and lake waters,J.Opt. Soc. Amer. 55:800.CrossRefGoogle Scholar
  93. Tyler, J. E. Ed., 1973, Scripps Institute of Oceanography Data Report 73–16 SCOR Discoverer Expedition, May, 1970, Vols I and II.Google Scholar
  94. Tyler, J. E., and Preisendorfer, R. W., 1962, Transmission of energy within the sea, in: The Sea (M. N. Hill, ed.), Vol. 1, pp. 397–451, Interscience, New York.Google Scholar
  95. Tyler, J. E., and Smith, R. C., 1966, Submersible spectroradiometer, J. Opt. Soc. Amer. 56:1390.CrossRefGoogle Scholar
  96. Tyler, J. E. and Smith, R. C., 1967, Spectroradiometric characteristics of natural light underwater,J. Opt. Soc. Amer. 57:595.CrossRefGoogle Scholar
  97. Tyler, J. E., and Smith, R. C., 1970, Measurement of Spectral Irradiance Underwater, Gordon and Breach, New York.Google Scholar
  98. Tyler, J. E., Austin, R. W., and Petzold, T. J., 1974, Beam trasmissometers for oceanographic measurements, in: Suspended Solids in Water (R. J. Gibbs, ed.), pp. 51–59, Plenum, New York.Google Scholar
  99. UNESCO, 1965, Standard terminology on optics of the sea, in: UNESCO technical papers in marine science No. 2.Google Scholar
  100. Van de Hulst, H. C., 1957, Light Scattering by Small Particles, Wiley, New York.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Raymond C. Smith
    • 1
  • John E. Tyler
    • 1
  1. 1.Visibility Laboratory, Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations