Phycocyanins: Structure and Function

  • Alexander N. Glazer


The presence of lamellar structures (thylakoids) is a common feature of the ultrastructure of cells performing oxygen evolving photosynthesis. In eukaryotic cells, the photosynthetic lamellae are contained within chloroplasts. In addition to protein-chlorophyll complexes, the thylakoids contain cytochromes, ferredoxin, plastocyanin, carotenoids, various quinones, and a high proportion of galactosylglycerides, phospholipids, and sulfolipids. The bulk of the chlorophyll within the thylakoid serves as a light-harvesting (or antenna) pigment. The trapped light energy is transferred from the antenna pigment to specialized protein-chlorophyll complexes—the “reaction centers”—at which it is converted to chemical energy. The reaction center chlorophylls represent a very small proportion (< 1%) of the chlorophyll within the thylakoid.


Amino Acid Composition Circular Dichroism Spectrum Subunit Structure Accessory Pigment Circular Dichroism Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, M. B., Dougherty, E. C., and McLaughlin, J. J. A., 1959, Chromoprotein pigments of some cryptomonad flagellates, Nature 184:1047.Google Scholar
  2. Allen, M. M., and Smith, A. J., 1969, Nitrogen chlorosis in blue-green algae, Arch. Mikrobiol. 69:114.Google Scholar
  3. Arnold, W., and Oppenheimer, J. R., 1950, Internal conversion in the photosynthetic mechanism of blue-green algae, J. Gen. Physiol. 33:423.Google Scholar
  4. Arnon, D. I., McSwain, B. D., Tsujimoto, H. Y., and Wada, K., 1974, Photochemical activity and components of membrane preparations from blue-gree algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin, Biochim. Biophys. Acta 357:231.Google Scholar
  5. Bennett, A., and Bogorad, L., 1971, Properties of subunits and aggregates of blue-green algal biliproteins, Biochem. 10:3625.Google Scholar
  6. Bennett, A., and Bogorad, L., 1973, Complementary chromatic adaptation in a filamentous blue-green alga, J. Cell Biol. 58:419.Google Scholar
  7. Bergeron, J. A., 1963, Studies on the localization, physicochemical properties and action of phycocyanin in Anacystis, in: Photosynthetic Mechanisms in Green Plants (B. Kok and A. T. Jagendorf, eds.), (Nat. Res. Council Publ. 1145), pp. 527–536, Natl. Acad. Sci. USA.Google Scholar
  8. Berns, D. S., 1967, Immunochemistry of biliproteins, Plant Physiol. 42:1569.Google Scholar
  9. Berns, D. S., 1971, Phycocyanins and deuterated proteins, Biol. Macromol. 5:105.Google Scholar
  10. Berns, D. S., and Edwards, M. R., 1965, Electron micrographic investigations of C-phycocyanin, Arch. Biochem. Biophys. 110:511.Google Scholar
  11. Binder, A., Wilson, K., and Zuber, M., 1972, C-Phycocyanin from the thermophilic blue-green alga Mastigocladus laminosus. Isolation, characterization and subunit composition, Biochem. Biophys. Res. Commun. 20:111.Google Scholar
  12. Blinks, L. R., 1964, Accessory pigments and photosynthesis, in: Photophysiology (A. C. Giese, ed.), pp. 199–221, Academic, New York.Google Scholar
  13. Bogorad, L., 1965, Studies of phycobiliproteins, in: Biochemical Dimensions of Photosynthesis (D. W. Krogmann and W. H. Powers, eds.), pp. 108–119, Wayne State University Press, Detroit.Google Scholar
  14. Boucher, L. J., Crespi, H. L., and Katz, J. J., 1966, Optical rotatory dispersion of phycocyanin, Biochem. 5:3796.Google Scholar
  15. Brand, L., and Witholt, B., 1967, Fluorescence measurements, Meth. Enzymol. 11:776.Google Scholar
  16. Brooks, C., and Gantt, E., 1973, Comparison of phycoerythrins (542, 566 nm) from cryptophycean algae, Arch. Mikrobiol. 88:193.Google Scholar
  17. Byfield, P. G. H., and Zuber, H., 1972, Chromophore-containing peptide sequences in C-phycocyanin from Mastigocladus laminosus, FEBS Lett. 28:36.Google Scholar
  18. Chapman, D. J., 1973, Biliproteins and bile pigments, in: The Biology of Blue-Green Algae (N. G. Carr and B. A. Whitton, eds.), pp. 162–185, University of California Press, Berkeley.Google Scholar
  19. Chapman, D. J., Cole, W. J., and Siegelman, H. W., 1967, Chromophores of allophycocyanin and R-phycocyanin, Biochem. J. 105:903.Google Scholar
  20. Cohen-Bazire, G., 1971, The photosynthetic apparatus of procaryotic organisms, in: Biological Ultrastructute: The Origin of Cell Organelles (P. J. Harris, ed.), pp. 65–90, Oregon State University Press, Corvallis.Google Scholar
  21. Cohen-Bazire, G., and Lefort-Tran, M., 1970, Fixation of phycobiliproteins to photosynthetic membranes by glutaraldehyde, Arch. Mikrobiol. 71:245.Google Scholar
  22. Cole, W. J., Chapman, D. J., and Siegelman, W. H., 1967, The structure of phycocyanobilin, J. Amer. Chem. Soc. 89:3643.Google Scholar
  23. Cole, W. J., Chapman, D. J., and Siegelman, W. H., 1968, The structure and properties of phycocyanobilin and related bilatrienes, Biochem. 7:2929.Google Scholar
  24. Craig, I. W., and Carr, N. G., 1969, C-Phycocyanin and allophycocyanin in two species of blue-green algae, Biochem. J. 106:361.Google Scholar
  25. Crespi, H. L., and Smith, U. H., 1970, The chromophore-protein bonds in phycocyanin, Phytochem. 9:205.Google Scholar
  26. Crespi, H. L., Boucher, L. J., Norman, G. D., Katz, J. J., and Dougherty, R. C., 1967, Structure of phycocyanobilin, J. Amer. Chem. Soc. 89:3642.Google Scholar
  27. Crespi, H. L., Smith, U., and Katz, J. J., 1968, Phycocyanobilin. Structure and exchange studies by nuclear magnetic resonance and its mode of attachment in phycocyanin. A model for phytochrome, Biochem. 7:2232.Google Scholar
  28. Dale, R. E., and Teale, F. W. J., 1970, Number and distribution of chromophore types in native phycobiliproteins, Photochem. Photobiol. 12:99.Google Scholar
  29. Dodge, J. D., 1969, The ultrastructure of Chroomonas mesostigmatica Butcher (Cryptophyceae), Arch. Mikrobiol. 69:266.Google Scholar
  30. Dodge, J. D., 1973, The Fine Structure of Algal Cells, Academic, London.Google Scholar
  31. Duysens, L. N. M., 1952, Transfer of Excitation Energy in Photosynthesis, Ph.D. Thesis, University of Utrecht, The Netherlands.Google Scholar
  32. Edwards, M. R., and Gantt, E., 1971, Phycobilisomes of the thermophilic blue-green alga Synechococcus lividus, J. Cell Biol. 50:896.Google Scholar
  33. Eiserling, F. A., and Glazer, A. N., 1974, Blue-green algal proteins: Assembly forms of C-phycocyanin from Synechococcus sp., J. Ultrastruct. Res. 47:16.Google Scholar
  34. Emerson, R., and Lewis, C. M., 1942, The photosynthetic efficiency of phycocyanin in Chroococcus, and the problem of carotenoid participation in photosynthesis, J. Gen. Physiol. 25:579.Google Scholar
  35. Förster, T., 1948, Zwischenmolekulare energiewanderung und fluoreszenz, Ann. Physik. 2:55.Google Scholar
  36. Förster, T., 1960, Transfer mechanisms of electronic excitation energy, Radiat. Res. Suppl. 2:326.Google Scholar
  37. Förster, T., 1965, Delocalized excitation and excitation transfer, in:Modern Quantum Chemistry—Istanbul Lectures (O. Sinanoglu, ed.), Sec. IIIB, pp. 93–137, Academic, London.Google Scholar
  38. French, C. S., and Young, V. K., 1952, The fluorescence spectra of red algae and the transfer of energy from phycoerythrin to phycocyanin and chlorophyll, J. Gen. Physiol. 35:873.Google Scholar
  39. Fry, K. T., and Mumford, F. E., 1971, Isolation and partial characterization of a chromophore-peptide fragment from pepsin digests of phytochrome, Biochem. Biophys. Res. Commun. 45:1466.Google Scholar
  40. Fujita, Y., and Shimura, S., 1974, Phycoerythrin of the marine blue-green alga Trichodesmium thiehautii, Plant and Cell Physiol. 15:939.Google Scholar
  41. Gantt, E., 1969, Properties and ultrastructure of phycoerythrin from Porphyridium cruentum, Plant Physiol. 44:1629.Google Scholar
  42. Gantt, E., and Conti, S. F., 1966a, Phycobiliprotein localization in algae, Brookhaven Symp. Biol. 19:393.Google Scholar
  43. Gantt, E., and Conti, S. F.., 1966b, Granules associated with the chloroplast lamellae of Porphyridium cruentum, J. Cell Biol. 29:423.Google Scholar
  44. Gantt, E., and Conti, S. F., 1969, Ultrastructure of blue-green algae, J. Bacteriol. 97:1486.Google Scholar
  45. Gantt, E., and Lipschultz, C. A., 1972, Phycobilisomes of Porphyridium cruentum. I. Isolation, J. Cell Biol. 54:313.Google Scholar
  46. Gantt, E., and Lipschultz, C. A., 1973, Energy transfer in phycobilisomes from phycoerythrin to allophycocyanin, Biochim. Biophys. Acta 292:858.Google Scholar
  47. Gantt, E., and Lipschultz, C. A., 1974, Phycobilisomes of Porphyridium cruentum: Pigment analysis, Biochem. 13:2960.Google Scholar
  48. Gantt, E., Edwards, M. R., and Provasoli, L., 1971, Chloroplast structure of the Cryptophyceae. Evidence for phycobiliproteins within intrathylakoidal spaces, J. Cell Biol. 48:280.Google Scholar
  49. Glazer, A. N., and Cohen-Bazire, G., 1971, Subunit structure of the phycobiliproteins of blue-green algae, Proc. Natl. Acad. Sci. USA 68:1398.Google Scholar
  50. Glazer, A. N., and Fang, S., 1973a, Chromophore content of blue-green algal phycobiliproteins, J. Biol. Chem. 248:659.Google Scholar
  51. Glazer, A. N., and Fang, S., 1973b, Formation of hybrid proteins from the α and ß subunits of phycocyanins of unicellular and filamentous blue-green algae, J. Biol. Chem. 248:663.Google Scholar
  52. Glazer, A. N., and Hixson, C. S., 1975, Characterization of R-phycocyanin. Chromophore content of R-phycocyanin and C-phycoerythrin, J. Biol. Chem., 250:5487.Google Scholar
  53. Glazer, A. N., Cohen-Bazire, G., and Stanier, R. Y., 1971a, Comparative immunology of algal biliproteins, Proc. Natl. Acad. Sci. USA 68:3005.Google Scholar
  54. Glazer, A. N., Cohen-Bazire, G., and Stanier, R. Y., 1971b, Characterization of phycoerythrin from a Cryptomonas sp., Arch. Mikrobiol. 80:1.Google Scholar
  55. Glazer, A. N., Fang, S., and Brown, D. M., 1973, Spectroscopic properties of C-phycocyanin and of its α and ß subunits, J.Biol. Chem. 248:5679.Google Scholar
  56. Goedheer, J. C., and Birnie, F., 1965, Fluorescence polarization and location of fluorescence maxima of C-phycocyanin, Biochim. Biophys. Acta 94:579.Google Scholar
  57. Goodwin, T. W., 1974, Carotenoids and biliproteins, in: Algal Physiology and Biochemistry (W. D. P. Stewart, ed.), pp. 176–205, University of California Press, Berkeley.Google Scholar
  58. Gray, B. H., Lipschultz, C. A., and Gantt, E., 1973, Phycobilisomes from a blue-green alga Nostoc species, J. Bacteriol. 116:471.Google Scholar
  59. Gysi, J., and Zuber, H., 1974, Isolation and characterization of allophycocyanin II from the thermophilic blue-green alga Mastigocladus laminosus Cohn, FEBS Lett. 48:209.Google Scholar
  60. Halldal, P., 1970, The photosynthetic apparatus of microalgae and its adaptation to environmental factors, in: Photobiology of Microorganisms (P. Halldal, ed.), pp. 17–55, Wiley, London.Google Scholar
  61. Hattori, A., and Fujita, Y., 1959, Crystalline phycobilin chromoproteins obtained from a blue-green alga, Tolypothrix tenuis, J. Biochem. Tokyo 46:633.Google Scholar
  62. Hattori, A., Crespi, H. L., and Katz, J. J., 1965, Association and dissociation of phycocyanin and the effects of deuterium substitution on the processes, Biochem. 4:1225.Google Scholar
  63. Haugland, R. P., Yguerabide, J., and Stryer, L., 1969, Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap, Proc. Natl. Acad. Sci. USA 63:23.Google Scholar
  64. Haxo, F. T., and Blinks, L. R., 1950, Photosynthetic action spectra of marine algae,J. Gen. Physiol. 33:389.Google Scholar
  65. Haxo, F. T., and Fork, D. C., 1959, Photosynthetically active accessory pigments of cryptomonads, Nature 184:1051.Google Scholar
  66. Jensen, A., 1964, Algal carotenoids IV. On the structure of fucoxanthin, Acta Chem. Scand. 18:2005.Google Scholar
  67. Kessel, M., MacColl, R., Berns, D. S., and Edwards, M. R., 1973, Electron microscope and physical chemical characterization of C-phycocyanin from fresh extracts of two blue-green algae, Can. J. Microbiol. 19:831.Google Scholar
  68. Kobayashi, Y., Siegelman, H. W., and Hirs, C. H. W., 1972, C-Phycocyanin from Phormidium luridum: Isolation of subunits, Arch. Biochem. Biophys. 152:187.Google Scholar
  69. Koller, K. P., and Wehrmeyer, W., 1974, Isolierung und characterisierung der biliproteide von Rhodeila violacea (Bangiophycidae), Arch. Mikrobiol. 100:253.Google Scholar
  70. Latt, S. A., Cheung, H. T., and Blout, E. R., 1965, Energy transfer. A system with relatively fixed donor-acceptor separation, J. Amer. Chem. Soc. 87:995.Google Scholar
  71. Lefort-Tran, M., Cohen-Bazire, G., and Pouphile, M., 1973, Les membranes photosynthétiques des algues à biliproteines observées apres cryodécapage, J. Ultrastruct. Res. 44:199.Google Scholar
  72. Lemasson, C., Tandeau de Marsac, N., and Cohen-Bazire, G., 1973, Role of allophycocyanin as a light-harvesting pigment in cyanobacteria, Proc. Natl. Acad. Sci. USA 70:3130.Google Scholar
  73. Licari, G. R., and Cloud, P., 1972, Prokaryotic algae associated with Australian proterozoic stromatolites, Proc. Natl. Acad. Sci. USA 69:2500.Google Scholar
  74. Lichtlé, C., and Giraud, G., 1970, Aspects ultrastructuraux particuliers au plaste du Batrachospermum virgatum (Sirdt)—Rhodophycée—Nemalionale, J. Phycol. 6:281.Google Scholar
  75. Lin, D. K., Niece, R. L., and Fitch, W. M., 1973, The properties and amino acid sequence of cytochrome c from Euglena gracilis, Nature 241:533.Google Scholar
  76. MacColl, R., Lee, J. J., and Berns, D. S., 1971, Protein aggregation in C-phycocyanin. Studies at very low concentrations with the photoelectric scanner of the ultracentrifuge, Biochem. J. 122:421.Google Scholar
  77. MacColl, R., Habig, W., and Berns, D. S., 1973, Characterization of phycocyanin from Chroomonas species,J.Biol. Chem. 248:7080.Google Scholar
  78. MacDowall, F. D. H., Bednar, T., and Rosenberg, A., 1968, Conformation dependence of intramolecular energy transfer in phycoerythrin, Proc. Natl. Acad. Sci. USA 59:1356.Google Scholar
  79. Mann, J. E., and Myers, J., 1968, On pigments, growth and photosynthesis of Phaeodactylum tricornutum, J. Phycol. 4:349.Google Scholar
  80. Margoliash, E., 1971, The molecular variations of cytochrome casa function of the evolution of species, Harvey Lect. 66:177.Google Scholar
  81. Margoliash, E., and Schejter, A., 1966, Cytochrome c, Adv. Protein Chem. 21:113.Google Scholar
  82. Meeks, J. C., 1974, Chlorophylls, in: Algal Physiology and Biochemistry (W. D. P. Stewart, ed.), pp. 161–175, University of California Press, Berkeley.Google Scholar
  83. Myers, J., and Kratz, W. A., 1955, Relations between pigment content and photosynthetic characteristics in a blue-green alga, J. Gen. Physiol. 39:11.Google Scholar
  84. Neufeld, G. J., 1966, Structural characterization of phycocyanin and phycoerythrin, Ph.D. thesis, University of Texas, Austin.Google Scholar
  85. Neufeld, G. J., and Riggs, A., 1969, Aggregation properties of C-phycocyanin from Anacystis nidulans, Biochim. Biophys. Acta 181:234.Google Scholar
  86. Neushul, M., 1970, A freeze-etching study of the red alga Porphyridium, Amer. J. Bot. 57:1231.Google Scholar
  87. Neushul, M., 1971, Uniformity of thylakoid structure in a red, a brown, and two blue-green algae, J. Ultrastruct. Res. 37:532.Google Scholar
  88. Nichols, K. E., and Bogorad, L., 1962, Action spectra studies of phycocyanin formation in a mutant of Cyanidium caldarium, Bot. Gaz. 124:85.Google Scholar
  89. Nolan, D. N., and O’hEocha, C., 1967, Determination of molecular weights of algal biliproteins by gel filtration, Biochem. J. 103:39.Google Scholar
  90. O’Carra, P., 1965, Purification and TV-terminal analyses of algal biliproteins, Biochem. J. 94:171.Google Scholar
  91. O’Carra, P., 1970, Algal biliproteins, Biochem. J. 119:2P.Google Scholar
  92. O’Carra, P., and Colleran, E., 1970, Separation and identification of biliverdin isomers and isomer analysis of phycobilins and bilirubin, J. Chromatog. 50:458.Google Scholar
  93. O’Carra, P., and Killilea, S. D., 1971, Subunit structures of C-phycocyanin and C-phycoerythrin, Biochem. Biophys. Res. Commun. 45:1192.Google Scholar
  94. O’hEocha, C., 1960, Chemical studies of phycoerythrins and phycocyanins, in: Comparative Biochemistry of Photoreactive Systems (M. B. Allen, ed.), p. 181, Academic, London.Google Scholar
  95. O’hEocha, C., 1962, Phycobilins, in: Physiology and Biochemistry of Algae (R. A. Lewin, ed.), pp. 421–435, Academic, New York.Google Scholar
  96. O’hEocha, C., 1965, Phycobilins, in: Chemistry and Biochemistry of Plant Pigments (T. W. Goodwin, ed.), pp. 175–196, Academic, London.Google Scholar
  97. O’hEocha, C., 1966, Biliproteins, in: Biochemistry of Chloroplasts (T. W. Goodwin, ed.), Vol. I, pp. 407–421, Academic, New York.Google Scholar
  98. O’hEocha, C., and Raftery, M., 1959, Phycoerythrins and phycocyanins of cryptomonads, Nature 184:1049.Google Scholar
  99. Pecci, J., and Fujimori, E., 1969, Mercurial induced circular dichroism changes of phycoerythrin and phycocyanin, Biochim. Biophys. Acta 188:230.Google Scholar
  100. Pettigrew, G. W., 1972, The amino acid sequence of a cytochrome c from a protozoan Crithidia oncopelti, FEBS Lett. 22:64.Google Scholar
  101. Pettigrew, G. W., 1973, The amino acid sequence of cytochrome c from Euglena gracilis, Nature 241:531.Google Scholar
  102. Rüdiger, W., 1970, Recent chemistry and biochemistry and bile pigments, Angew. Chem. (Int. Ed. Engl.) 9:473.Google Scholar
  103. Saito, T., Iso, N., and Mizuno, H., 1974, Solution properties of phycocyanin. I. Studies of dissociation-association by sedimentation measurement, Bull. Chem. Soc. Jap. 47:1375.Google Scholar
  104. Schopf, J. W., 1970, Precambrian micro-organisms and evolutionary events prior to the origin of vascular plants, Biol. Revs. 45:319.Google Scholar
  105. Schopf, J. W., Oehler, D. Z., Horodynski, R. J., and Kvenvolden, K. A., 1971, Biogenicity and significance of the oldest known stromatolites, J. Paleontol. 45:477.Google Scholar
  106. Schram, B. L., and Kroes, H. H., 1971, Structure of phycocyanobilin, Eur. J. Biochem. 19:581.Google Scholar
  107. Scott, E., and Berns, D. S., 1965, Protein-protein interaction. The phycocyanin system, Biochem. 4:2597.Google Scholar
  108. Seckbach, J., and Ikan, R., 1972, Sterols and chloroplast structure of Cyanidium caldarium, Plant Physiol. 49:457.Google Scholar
  109. Siegelman, H. W., Chapman, D. J., and Cole, W. J., 1968, The bile pigments of plants, Biochem. Soc. Symp. 28:107.Google Scholar
  110. Stanier, R. Y., Kunisawa, R., Mandel, M., and Cohen-Bazire, G., 1971, Purification and properties of unicellular blue-green algae (Order Chroococcales), Bacieriol. Rev. 35:171.Google Scholar
  111. Strain, H. H., Svec, W. A., Aitzetmuller, K., Grandolfo, M. C., Katz, J. J., Kjøsen, H., Norgard, S., Liaaen-Jensen, S., Haxo, F. T., Wegfahrt, P., and Rapoport, H., 1971, The structure of peridinin, the characteristic dinoflagellate carotenoid, J. Amer. Chem. Soc. 93:1823.Google Scholar
  112. Stryer, L., and Haugland, R. P., 1967, Energy transfer: a spectroscopic ruler, Proc. Natl. Acad. Sci. USA 58:719.Google Scholar
  113. Svedberg, T., and Katsurai, T., 1929, The molecular weights of phycocyanin and of phycoerythrin from Porphyra tenera and of phycocyanin from Aphanizomenon flosaquae, J. Amer. Chem. Soc. 51:3573.Google Scholar
  114. Svedberg, T., and Lewis, N. D., 1928, Molecular weights of phycoerythrin and phycocyan, J. Amer. Chem. Soc. 50:525.Google Scholar
  115. Takano, T., Kallai, O. B., Swanson, R., and Dickerson, R. E., 1973, The structure of ferrocytochrome c at 2.45-A resolution, J. Biol. Chem. 248:5234.Google Scholar
  116. Teale, F. W. J., and Dale, R. E. 1970, Isolation and spectral characterization of phycobiliproteins, Biochem. J. 116:161.Google Scholar
  117. Tilden, J. E., 1935, The Algae and Their Life Relations, University of Minnesota Press, Minneapolis.Google Scholar
  118. Tomita, G., and Rabinowitch, E., 1962, Excitation energy transfer between pigments in photosynthetic cells, Biophys. J. 2:483.Google Scholar
  119. Torjesen, P. A., and Sletten, K., 1972, C-Phycocyanin from Oscillatoria agardhii. I. Some molecular properties, Biochim. Biophys. Acta 263:258.Google Scholar
  120. Troxler, R. F., Brown, A., Foster, J. A., and Franzblau, C., 1974, Properties and partial amino acid sequences of the α and ß subunits of phycocyanin from the alga, Cyanidium caldarium, Fed. Proc. 33:1258 (Abstr.)Google Scholar
  121. Troxler, R. F., Foster, J. A., Brown, A. S., and Franzblau, C., 1975, The α and ß subunits of Cyanidium caldarium phycocyanin: Properties and amino acid sequences at the amino terminus Biochem 14:268.Google Scholar
  122. Vaughan, M. H., Jr., 1964, Structural and comparative studies of the algal protein phycoerythrin, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge.Google Scholar
  123. Volk, S. I., and Bishop, N. I., 1968, Photosynthetic efficiency of a phycocyaninless mutant of Cyanidium, Photochem. Photobiol. 8:213.Google Scholar
  124. Wildman, R. B., and Bowen, C. C., 1974, Phycobilisomes in blue-green algae, J. Bacteriol. 117:866.Google Scholar
  125. Willims, V. P., Freidenreich, P., and Glazer, A. N., 1974, Homology of aminoterminal regions of C-phycocyanins from a prokaryote and a eukaryote, Biochem. Biophys. Res. Commun. 59:462.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Alexander N. Glazer
    • 1
  1. 1.Department of Biological Chemistry, UCLA School of Medicine, and the Molecular Biology InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations