Advertisement

The C4 Pathway of Photosynthesis: Ein Kranz-Typ Wirtschaftswunder?

  • David G. Bishop
  • Malcolm L. Reed

Abstract

The continued dependence of man on the productivity of plants for food and structural needs necessitates a serious appraisal of the conditions under which plant productivity will be sufficient for future requirements. The need for maximum plant productivity for food has been long appreciated, and reforestation of logged areas is an accepted practice for the production of paper and structural timber. However, plants are now seen to be important, not only as sources of food and shelter, but also as sources of raw energy and starting materials for synthetic processes, and indeed for the maintenance of an adequate O2: CO2 balance in the atmosphere. They are also, for the time being, the only significant harvesters of solar energy. The climatic conditions under which plants are cultivated vary enormously, and the careful selection of a crop which will produce the maximum yield in a given environment is a criterion of ever increasing significance.

Keywords

Mesophyll Cell Crassulacean Acid Metabolism Bundle Sheath Bundle Sheath Cell Crassulacean Acid Metabolism Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, P. H., and Hoering, T. C., 1961, Carbon isotope fractionation in formation of amino acids by photosynthetic organisms, Proc. Natl. Acad. Sci. USA 5:623.Google Scholar
  2. Akazawa, T., 1970, The structure and function of fraction-I protein, in: Progress in Phytochemistry (L. Reinhold and Y. Liwschitz, eds.), pp. 107–141, Interscience, New York.Google Scholar
  3. Akin, D. E., and Burdick, D., 1973, Microanatomical differences of warm-season grasses revealed by light and electron microscopy, Agron, J. 65:533.Google Scholar
  4. Akita, S., and Moss, D. N., 1972, Differential stomatal response between C3 and C4 species to atmospheric CO2 concentration and light, Crop Sci. 12:789.Google Scholar
  5. Allaway, W. G., Austin, B., and Slatyer, R. O., 1974, Carbon dioxide and water vapour exchange parameters of photosynthesis in a Crassulacean plant, Kalanchoë diagremontiana, A ustrai J. Plant Physiol. 1:397.Google Scholar
  6. Amesz, J., 1973, The function of plastoquinone in photosynthetic electron transport, Biochim. Biophys. Acta 301:35.Google Scholar
  7. Andersen, K. S., Bain, J. M., Bishop, D. G., and Smillie, R. M., 1972, Photosystem II activity in agranal bundle sheath chloroplasts from Zea mays, Plant Physiol. 49:461.Google Scholar
  8. Anderson, J. M., and Smillie, R. M. 1973, Localization of low potential cytochrome b 559 in photosystem I, FEBS Lett. 32:157.Google Scholar
  9. Anderson, J. M., and Levine, R. P., 1974, Membrane polypeptides of some higher plant chloroplasts, Biochim. Biophys. Acta 333:378.Google Scholar
  10. Anderson, J. M. Smillie, R. M.., and Spencer, D., 1971a, Phosphorylation by intact bundle sheath chloroplasts from maize, Biochim. Biophys. Acta 245:253.Google Scholar
  11. Anderson, J. M., Woo, K. C., and Smillie, R. M., 1971b, Photochemical properties of mesophyll and bundle sheath chloroplasts from C4 plants, in: Photosynthesis and Photorespiration (M. D. Hatch, C. B. Osmond, and R. O. Slatyer, eds.), pp. 353–360, Wiley-Interscience, New York.Google Scholar
  12. Anderson, J. M., Woo, K. C., and Smillie, R. M., 1971c, Photochemical systems in mesophyll and bundle sheath chloroplasts of C4 plants, Biochim. Biophys. Acta 245:398.Google Scholar
  13. Anderson, J. M., Woo, K. C., and Smillie, R. M., 1972, Deficiency of photosystem II in agranal bundle sheath chloroplasts of Sorghum bicolor and Zea mays, in: Proceedings of the Second International Congress on Photosynthetic Research (G. Forti, M. Avron, and A. Melandri, eds.), Vol. 1, pp. 611–619, W. Junk, N. V., The Hague.Google Scholar
  14. Andrews, T. J., Lorimer, G. H., and Tolbert, N. E., 1973, Ribulose diphosphate oxygenase. I. Synthesis of phosphoglycolate by fraction-I protein of leaves, Biochem. 12:11.Google Scholar
  15. Arntzen, C. J., Dilley, R. A., and Neumann, J., 1971, Localization of photophosphorylation and proton transport activities in various regions of the chloroplast lamellae, Biochim. Biophys. Acta 245:409.Google Scholar
  16. Arntzen, C. J., Dilley, R. A., Peters, G. A., and Shaw, E. R., 1972, Photochemical activity and structural studies of photosystems derived from chloroplast grana and stroma lamellae, Biochim. Biophys. Acta 256:85.Google Scholar
  17. Avron, M. 1971, Biochemistry of photophosphorylation, in: Structure and Function of Chloroplasts (M. Gibbs, ed.), pp. 149–167, Springer-Verlag, Berlin.Google Scholar
  18. Badger, M. R., and Andrews, T. J., 1974, Effects of CO2, O2 and temperature on a high-affinity form of ribulose diphosphate carboxylase-oxygenase from spinach, Biochem. Biophys. Res. Commun. 60:204.Google Scholar
  19. Bahr, J. T., and Jensen, R. G., 1974, Ribulose diphosphate carboxylase from freshly ruptured spinach chloroplasts having an in vivo Km [CO2], Plant Physiol. 53:39.Google Scholar
  20. Bailey, R. W., 1973, Water in herbage, in: Chemistry and Biochemistry of Herbage (G. W. Butler and R. W. Bailey, eds.), Vol. 2, pp. 13–24, Academic, New York.Google Scholar
  21. Baldry, C. W., Bucke, C., Coombs, J., and Gross, D., 1970, Phenols, phenoloxidase, and photosynthetic activity of chloroplasts isolated from sugar cane and spinach, Planta 94:107.Google Scholar
  22. Ballantine, J. E. M., and Forde, B. J., 1970, The effect of light intensity and temperature on plant growth and chloroplast ultrastructure in soybean, Amer. J. Bot. 57:1150.Google Scholar
  23. Bassham, J. A., 1971, The control of photosynthetic carbon metabolism, Science 172:526.Google Scholar
  24. Bazzaz, M. B., and Govindjee, 1973, Photochemical properties of mesophyll and bundle sheath chloroplasts of maize, Plant Physiol. 52:257.Google Scholar
  25. Bazzaz, M. B., Govindjee, and Paolillo, D. J., 1974, Biochemical, spectral and structural study of olive necrotic 8147 mutant of Zea mays L., Z. Pflanzenphysiol. 72:181.Google Scholar
  26. Bendall, D. S., and Sofrová, D., 1971, Reactions at 77° K in photosystem 2 of green plants, Biochim. Biophys. Acta 234:371.Google Scholar
  27. Bender, M. M., 1971, Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation, Phytochem. 10:1239.Google Scholar
  28. Ben-Hayyim, G., 1974, Light-induced absorbance changes of the high-potential cytochrome b 559 in chloroplasts, Eur. J. Biochem. 41:191. Google Scholar
  29. Bishop, D. G., 1973, Inhibition of photosynthetic electron transfer by amphotericin B, Biochem. Biophys. Res. Commun. 54:816.Google Scholar
  30. Bishop, D. G., 1974, Lamellar structure and composition of chloroplasts in relation to photosynthetic electron transfer, Photochem. Photobiol. 20:281.Google Scholar
  31. Bishop, D. G., and Nolan, W. G., 1975, Inhibition by dibromothymoquinone of photosynthetic electron transfer in chloroplasts of differing ultrastructure, Arch. Biochem. Biophys. 168:594.Google Scholar
  32. Bishop, D. G., Andersen, K. S., and Smillie, R. M., 1971, Lamellar structure and composition in relation to photochemical activity, in: Photosynthesis and Photorespiration (M. D. Hatch, C. B. Osmond, and R. O. Slatyer, eds.), pp. 372–381, Wiley-Interscience, New York.Google Scholar
  33. Bishop, D. G., Andersen, K. S., and Smillie, R. M., 1972, pH dependence and cofactor requirements of photochemical reactions in maize chloroplasts, Plant Physiol. 50:774.Google Scholar
  34. Bishop, N. I., 1971, Photosynthesis: the electron transport system of green plants, Annu. Rev. Biochem. 40:197.Google Scholar
  35. Björkman, O., 1971, Comparative photosynthetic CO2 exchange in higher plants, in: Photosynthesis and Photorespiration (M. D. Hatch, C. B. Osmond, and R. O. Slatyer, eds.), pp. 18–32, Wiley-Interscience, New York.Google Scholar
  36. Björkman, O., Hiesey, W. M., Nobs, M. A., Nicholson, F., and Hart, R. W., 1967, Effect of oxygen concentration on dry matter production in higher plants, Carnegie Inst. Wash. Yearh. 66:228.Google Scholar
  37. Björkman, O., Gauhl, E., Hiesey, W. M., Nicholson, F., and Nobs, M. A., 1968, Growth of Mimulus, Marchantia and Zea under different oxygen and carbon dioxide levels, Carnegie Inst. Wash. Yearh. 61:417.Google Scholar
  38. Björkman, O., Nobs, M., Pearcy, R., Boynton, J., and Berry, J., 1971, Characteristics of hybrids between C3 and C4 species of A triplex, in: Photosynthesis and Photorespiration (M. D. Hatch, C. B. Osmond, and R. O. Slatyer, eds.), pp. 105–119, Wiley-Interscience, New York.Google Scholar
  39. Björkman, O., Smillie, R. M., Anderson, J. M., Thorne, S. W., Goodchild, D. J., and Pyliotis, N. A., 1972, Effect of light intensity during growth of A triplex patula on the capacity of photosynthetic reactions, chloroplast components and structure, Carnegie Inst. Wash. Yearb. 71:115.Google Scholar
  40. Black, C. C., 1971, Ecological implications of dividing plants into groups with distinct photosynthetic production capacities, Adv. Ecological Res. 7:87.Google Scholar
  41. Black, C. C., 1973, Photosynthetic carbon fixation in relation to net CO2 uptake, Annu. Rev. Plant. Physiol. 24:253.Google Scholar
  42. Black, C. C., and Mayne, B. C., 1970, P700 activity and chlorophyll content of plants with different photosynthetic carbon dioxide fixation cycles, Plant Physiol. 45:738.Google Scholar
  43. Black, C. C., Chen, T. M., and Brown, R. H., 1969, Biochemical basis for plant competition, Weed Sci. 17:338.Google Scholar
  44. Bmillie, R. M., 1970, Physical separation of the photosynthetic photochemical systems, Annu. Rev. Plant Physiol. 21:115.Google Scholar
  45. Bmillie, R. M., 1971, The photochemical systems in C3 and C4 plants, in: Photosynthesis and Photorespiration (M. D. Hatch, C. B. Osmond, and R. O. Slatyer, eds.), pp. 309–322, Wiley-Interscience, New York.Google Scholar
  46. Boardman, N. K., 1972, Photochemical properties of a photosystem II subchloroplast fragment, Biochim. Biophys. Acta 283:469.Google Scholar
  47. Boardman, N. K., Anderson, J. M., and Hiller, R. G., 1971, Photoxidation of cytochromes in leaves and chloroplasts at liquid-nitrogen temperature, Biochim. Biophys. Acta 234:126.Google Scholar
  48. Bogdan, A. V., 1969, Rhodes grass, Herbage Abstr. 39:1.Google Scholar
  49. Böhme, H., and Cramer, W. A., 1972, The role of cytochrome b 6 in cyclic electron transport: evidence for an energy-coupling site in the pathway of cytochrome b 6 oxidation in spinach chloroplasts, Biochim. Biophys. Acta 283:302.Google Scholar
  50. Böhme, H., Reimer, S., and Trebst, A., 1971, The effect of dibromothymoquinone, an antagonist of plastoquinone, on non-cyclic and cyclic electron flow systems in isolated chloroplasts, Z. Naturforsch. 26b:341.Google Scholar
  51. Bowes, G., Ogren, W. L., and Hageman, R. H., 1971, Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase, Biochem. Biophys. Res. Commun. 45:716.Google Scholar
  52. Boyer, J. S., 1970, Differing sensitivity of photosynthesis to low leaf water potentials in corn and soybean, Plant Physiol. 46:236.Google Scholar
  53. Brand, J., Baszynski, T., Crane, F. L., and Krogmann, D. W., 1972, Selective inhibition of photosynthetic reactions by polycations, J. Biol. Chem. 247:2814.Google Scholar
  54. Brangeon, J., 1973, Effect of irradiance on granal configurations of Zea mays bundle sheath chloroplasts, Photosynthetica 7:365.Google Scholar
  55. Brooking, I. R., and Taylor, A. O., 1973, Plants under climatic stress. V. Chilling and light effects on radiocarbon exchange between photosynthetic intermediates of Sorghum, Plant Physiol. 52:180.Google Scholar
  56. Brown, W. V., and Smith, B. N., 1972, Grass evolution, the Kranz syndrome, 13C/12C ratios and continental drift, Nature 239:345.Google Scholar
  57. Brownell, P. F., and Crossland, C. J., 1972, The requirement for sodium as a micronutrient by species having the C4 dicarboxylic photosynthetic pathway, Plant Physiol. 49:794.Google Scholar
  58. Bucke, C., and Long, S. P., 1971, Release of carboxylating enzymes from maize and sugar cane leaf tissue during progressive grinding, Planta 99:199.Google Scholar
  59. Carlson, G. E., Hart, R. H., Hanson, C. H., and Pearce, R. B., 1970, Overcoming barriers to higher forage yields through breeding for physiological and morphological characteristics, in: Proceedings of the Eleventh International Grassland Congress (M. J. T. Norman, ed.), pp. 248–251, University of Queensland Press, St. Lucia, Australia.Google Scholar
  60. Carolin, R. C., Jacobs, S. W. L., and Vesk, M., 1973, The structure of the cells of the mesophyll and parenchymatous bundle sheath of the Gramineae, Bot. J. Linnean Soc. 66:259.Google Scholar
  61. Carolin, R. C., Jacobs, S. W. L., and Vesk, M. 1975, Leaf structure in Chenopodiaceae, Eng. Bot. Jb. 95:226.Google Scholar
  62. Caswell, H., Reed, F., Stephenson, S. N., and Werner, P. A., 1973, Photosynthetic pathways and selective herbivory: a hypothesis, Amer. Nat. 107:465.Google Scholar
  63. Catchpoole, V. R., and Henzell, E. F., 1971, Silage and silage-making from tropical herbage species, Herbage Abstr. 41:213.Google Scholar
  64. Chapman, E. A., Bain, J. M., and Gove, D. W., 1975, Mitochondria and chloroplast peripheral reticulum in the C4 plants Amaranthus edulis and A triplex spongiosa, Austral. J. Plant Physiol. 2:207.Google Scholar
  65. Chen, T. M., Brown, R. H., and Black, C. C., 1969. Photosynthetic activity of chloroplasts isolated from bermudagrass (Cynodon dactylon L.), a species with a high photosynthetic capacity, Plant Physiol. 44:649.Google Scholar
  66. Chen, T. M., Campbell, W. H., Dittrich, P., and Black, C. C., 1973, Distribution of carboxylation and decarboxylation enzymes in isolated mesophyll cells and bundle sheath strands of C4 plants, Biochem. Biophys. Res. Commun. 51:461.Google Scholar
  67. hen, T. M., Dittrich, P., Campbell, W. H., and Black, C. C., 1974, Metabolism of epidermal tissues, mesophyll cells, and bundle sheath strands resolved from mature nutsedge leaves, Arch. Biochem. Biophys. 163:246.Google Scholar
  68. Chollet, R., 1974, 14CO2 fixation and glycolate metabolism in the dark in isolated maize (Zea mays L.) bundle sheath strands, Arch. Biochem. Biophys. 163:521.Google Scholar
  69. Chollet, R., and Ogren, W. L., 1972a, Oxygen inhibits maize bundle sheath photosynthesis, Biochem. Biophys. Res. Commun. 46:2062.Google Scholar
  70. Chollet, R., and Ogren, W. L., 1972, The Warburg effect in maize bundle sheath photosynthesis, Biochem. Biophys. Res. Commun. 48:684.Google Scholar
  71. Coombs, J., and Baldry, C. W., 1972, C-4 pathway in Pennisetum purpureum, Nat. New Biol. 238:268.Google Scholar
  72. Coombs, J., Baldry, C. W., and Bucke, C., 1973a, The C4 pathway in Pennisetum purpureum. I. The allosteric nature of PEP carboxylase, Planta 110:95.Google Scholar
  73. Coombs, J., Baldry, C. W., and Bucke, C., 1973b, The C4 pathway in Pennisetum purpureum. II. Malate dehydrogenase and malic enzyme, Planta 110:109.Google Scholar
  74. Coombs, J., Baldry, C. W., and Brown, J. E., 1973c, The C4 pathway in Pennisetum purpureum. III. Structure and photosynthesis, Planta 110:121.Google Scholar
  75. Cooper, J. P., 1970, Potential production and energy conversion in temperate and tropical grasses, Herbage Abstr. 40:1.Google Scholar
  76. Cowan, I. R., and Troughton, J. H., 1971, The relative role of stomata in transpiration and assimilation, Planta 97:325.Google Scholar
  77. Cox, R. P., and Bendall, D. S., 1972, The effects on cytochrome 6559-HP and P546 of treatments that inhibit oxygen evolution by chloroplasts, Biochim. Biophys. Acta 283:124.Google Scholar
  78. Cox, R. P., and Bendall, D. S., 1974, The functions of plastoquinone and β-carotene in photosystem II of chloroplasts, Biochim. Biophys. Acta 347:49.Google Scholar
  79. Craig, H., and Keeling, C. D., 1963, The effects of atmospheric NO2 on the measured isotropic composition of atmospheric CO2, Geochim. Cosmochim. Acta 27:549.Google Scholar
  80. Crookston, R. K., and Moss, D. N., 1974, Interveinal distance for carbohydrate transport in leaves of C3 and C4 grasses. Crop Sci. 14:123.Google Scholar
  81. Decker, J. P., 1955, A rapid postillumination deceleration of respiration in green leaves, Plant Physiol. 30:82.Google Scholar
  82. Decker, J. P., 1959, Comparative responses of carbon dioxide outburst and uptake in tobacco, Plant Physiol. 34:100.Google Scholar
  83. Dittrich, P., Campbell, W. H., and Black, C. C., 1973. Phosphoenolpyruvate carboxykinase in plants exhibiting Crassulacean acid metabolism, Plant Physiol. 52:357.Google Scholar
  84. Downes, R. W., 1969, Differences in transpiration rates between tropical and temperate grasses under controlled conditions, Planta 88:261.Google Scholar
  85. Downes, R. W., 1972, Effect of temperature on the phenology and grain yield of Sorghum bicolor, Austral. J. Agric. Res. 23:585.Google Scholar
  86. Downes, R. W., Christian, K. R., and Freer, M., 1974, Nutritive value of oats and sudan grass grown at controlled temperatures, Austral. J. Agric. Res. 25:89.Google Scholar
  87. Downton, W. J. S., 1971, Adaptive and evolutionary aspects of C4 photosynthesis, in: Photosynthesis and Photorespiration (M. D. Hatch, C. B. Osmond, and R. O. Slatyer, eds.), pp. 3–17, Wiley-Interscience, New York.Google Scholar
  88. Downton, W. J. S., 1975, The occurrence of C4 photosynthesis among plants, Photosynthetica 9:96.Google Scholar
  89. Downton, W. J. S., and Pyliotis, N. A., 1971, Loss of photosystem II during ontogeny of sorghum bundle sheath chloroplasts, Can. J. Bot. 49:179.Google Scholar
  90. Downton, W. J. S., and Tregunna, E. B., 1968, Carbon dioxide compensation—its relation to photosynthetic carboxylation reactions, systematics of the Gramineae, and leaf anatomy, Can. J. Bot. 46:207.Google Scholar
  91. Downton, W. J. S., Berry, J. A., and Tregunna, E. B., 1970, C4-photosynthesis:non-cyclic electron flow and grana development in bundle-sheath chloroplasts, Z. Pflanzenphysiol. 63:194.Google Scholar
  92. Edwards, G. E., and Black, C. C., 1971a, Isolation of mesophyll cells and bundle sheath cells from Digitaria sanguinalis (L.) Scop. leaves and a scanning microscopy study of the internal leaf cell morphology, Plant Physiol. 47:149.Google Scholar
  93. Edwards, G. E., and Black, C. C., 1971b, Photosynthesis in mesophyll cells and bundle-sheath cells isolated from Digitaria sanguinalis (L.) Scop. leaves, in: Photosynthesis and Photorespiration (M. D. Hatch, C. B. Osmond, and R. O. Slatyer, eds.), pp. 153–168, Wiley-Interscience, New York.Google Scholar
  94. Edwards, G. E., Kanai, R., and Black, C. C., 1971, Phosphoenolpyruvate carboxykinase in leaves of certain plants which fix CO2 by the C4-dicarboxylic acid cycle of photosynthesis, Biochem. Biophys. Res. Commun. 45:278.Google Scholar
  95. El-Sharkawy, M., and Hesketh, J., 1965, Photosynthesis among species in relation to characteristics of leaf anatomy and CO2 diffusion resistances, Crop Sci. 5:517.Google Scholar
  96. Erixon, K., and Butler, W. L., 1971, The relationship between Q, C550 and cytochrome b 559 in photoreactions at -196° in chloroplasts, Biochim. Biophys. Acta 234:381.Google Scholar
  97. Esau, K., 1965, Plant Anatomy 2nd ed., Wiley, New York.Google Scholar
  98. Evans, G. R., and Tisdale, E. W., 1972, Ecological characteristics of Aristida longiseta and Agropyron spicatum in west-central Idaho, Ecology 53:137.Google Scholar
  99. Evans, L. T., and Dunstone, R. L., 1970, Some physiological aspects of evolution in wheat, Austral. J. Biol. Sci. 23:725.Google Scholar
  100. Ford, C. W., 1973, In vivo digestibility of cell-wall polysaccharides of Setaria splendida and Loliumperenne cv. Kangaroo Valley, Austral. J. Biol. Sci. 26:1225.Google Scholar
  101. Frederick, S. E., and Newcomb, E. H., 1971, Ultrastructure and distribution of microbodies in leaves of grasses with and without CO2-photorespiration, Planta 96:152.Google Scholar
  102. French, C. S., and Berry, J. A., 1971, Curve analysis of low-temperature spectra of mesophyll and bundle sheath chloroplasts of Sorghum sudanense in comparison to naturally and artificially separated pigment systems of higher plants, Carnegie Inst. Wash. Yearb. 70:495.Google Scholar
  103. Friend, D. J. C., Helson, V. A., and Fisher, J. E., 1962, The rate of dry wheat accumulation in Marquis wheat as affected by temperature and light intensity, Can. J. Bot. 40:939.Google Scholar
  104. Gifford, R. M., 1974, A comparison of potential photosynthesis, productivity and yield of plant species with differing photosynthetic metabolism, Austral. J. Plant Physiol. 1:107.Google Scholar
  105. Giles, K. L., Beardsell, M. F., and Cohen, D., 1974, Cellular and ultrastructural changes in mesophyll and bundle sheath cells of maize in response to water stress, Plant Physiol. 54:208.Google Scholar
  106. Goatly, M. B., and Smith, H., 1974, Differential properties of phosphoenolpyruvate carboxylase from etiolated and green sugar cane, Planta 117:67.Google Scholar
  107. Goldsworthy, A., and Day, P. R., 1970, A simple technique for the rapid determination of plant CO2 compensation points, Plant Physiol. 46:850.Google Scholar
  108. Goodchild, D. J., and Park, R. B., 1971, Further evidence for stroma lamellae as a source of photosystem I fractions from spinach chloroplasts, Biochim. Biophys. Acta 226:393.Google Scholar
  109. Goodin, J. R., and McKell, C. M., 1971, Shrub productivity, a reappraisal of arid lands, in: Food Fibre and the Arid Lands (W. G. McGinnies, B. J. Goldman, and P. Paylore, eds.), pp. 235–246, University of Arizona Press, Tuscon.Google Scholar
  110. Gooding, L. R., Ray, H., and Jagendorf, A. T., 1973, Immunological identification of nascent subunits of wheat ribulose diphosphate carboxylase on ribosomes of both chloroplast and cytoplasmic origin, Arch. Biochem. Biophys. 159:324.Google Scholar
  111. Graham, D., Hatch, M. D., Slack, C. R., and Smillie, R. M., 1970, Light-induced formation of enzymes of the C4-dicarboxylic acid pathway of photosynthesis in detached leaves, Phytochem. 9:521.Google Scholar
  112. Grahl, H., and Wild, A., 1972, Die Variabilität der Grösse der Photosyntheseeinheit bei Licht und Schattenpflanzen. Untersuchungen zur Photosynthese von experimentell induzierten Licht-und Schattentypen von Sinapis alba, Z. Pflanzenphysiol. 67:443.Google Scholar
  113. Grahl, H., and Wild, A., 1973, Lichtinduzierte Veränderungen im Photosynthese-Apparat von Sinapis alba, Ber. Deut. Bot. Ges. 86:341.Google Scholar
  114. Grishina, G. S., Maleszewski, S., Frankiewicz, A., Voskresenskaya, N. P., and Poskuta, J., 1974, Comparative study of the effects of red and blue light on 14CO2 uptake and carbon metabolism of maize leaves in air and oxygen, Z. Pflanz enphysiol. 73:189.Google Scholar
  115. Gutierrez, M., Gracen, V. C., and Edwards, G. E., 1974a, Biochemical and cytological relationships in C4 plants, Planta 119:279.Google Scholar
  116. Gutierrez, M., Kanai, R., Huber, S. C., Ku, S. B., and Edwards, G. E., 1974, Photosynthesis in mesophyll protoplasts and bundle sheath cells of various types of C4 plants. I. Carboxylases and CO2 fixation studies, Z. Pflanz enphysiol. 72:305.Google Scholar
  117. Haberlandt, G., 1914, Physiological Plant Anatomy, translated from 4th German edition, Today and Tomorrow’s Book Agency, New Delhi, 1965.Google Scholar
  118. Hagan, R. M., Haise, H. R., and Edminster, T. W., eds. 1967, Irrigation of agricultural Lands, American Society of Agronomy, Madison.Google Scholar
  119. Hageman, R. H., Leng, E. R., and Dudley, J. W., 1967, A biochemical approach to corn breeding, Adv. Agron. 19:45.Google Scholar
  120. Hall, A. E., 1972, Photosynthesis in the genus Beta, Crop Sci. 12:701.Google Scholar
  121. Hanson, W. D., 1971, Selection for differential productivity among juvenile maize plants: associated net photosynthetic rate and leaf area changes, Crop Sci. 11:334.Google Scholar
  122. Hanson, W. D., and Grier, R. E., 1973, Rates of electron transfer and of non-cyclic photophosphorylation for chloroplasts isolated from maize populations selected for differences in juvenile productivity and in leaf widths, Genetics 75:247.Google Scholar
  123. Hartley, W., 1950, The global distribution of tribes of the Gramineae in relation to historical and environmental factors, Austral. J. Agric. Res. 1:355.Google Scholar
  124. Hartley, W., 1958, Studies on the origin, evolution, and distribution of the Gramineae. II. The tribe Paniceae, Austral. J. Bot. 6:343.Google Scholar
  125. Hatch, M. D., 1971, Mechanism and function of the C4 pathway of photosynthesis, in: Photosynthesis and Photorespiration (M. D. Hatch, C. B. Osmond, and R. O. Slatyer, eds.), pp. 139–152, Wiley-Interscience, New York.Google Scholar
  126. Hatch, M. D., 1973, Separation and properties of leaf aspartate aminotransferase and alanine aminotransferase isoenzymes operative in the C4 pathway of photosynthesis, Arch. Biochem. Biophys. 156:207.Google Scholar
  127. Hatch, M. D., 1975, Photosynthesis: the path of carbon, in: Plant Biochemistry (J. Bonner and J. E. Varner, eds.), 2nd ed., Academic, New York.Google Scholar
  128. Hatch, M. D., and Kagawa, T., 1973, Enzymes and functional capacities of mesophyll chloroplasts from plants with C4-pathway photosynthesis, Arch. Biochem. Biophys. 159:842.Google Scholar
  129. Hatch, M. D., and Kagawa, T., 1974a, NAD malic enzyme in leaves with C4-pathway photosynthesis and its role in C4 acid decarboxylation, Arch. Biochem. Biophys. 160:346.Google Scholar
  130. Hatch, M. D. and Kagawa, T., 1974b, Activity, location and role of NAD malic enzyme in leaves with C4-pathway photosynthesis, Austral. J. Plant Physiol. 1:357.Google Scholar
  131. Hatch, M. D., and Mau, S-L, 1973, Activity, location, and role of aspartate aminotransferase and alanine aminotransferase isoenzymes in leaves with C4 pathway photosynthesis, Arch. Biochem. Biophys. 156:195.Google Scholar
  132. Hatch, M. D. and Slack, C. R., 1968, A new enzyme for the interconversion of pyruvate and phosphopyruvate and its role in the C4 dicarboxylic acid pathway of photosynthesis, Biochem. J. 106:141.Google Scholar
  133. Hatch, M. D., and Slack, C. R., 1970a, Photosynthetic CO2-fixation pathways, Annu. Rev. Plant Physiol. 21:141.Google Scholar
  134. Hatch, M. D., and Slack, C. R., 1970b, The C4-dicarboxylic acid pathway of photosynthesis, in: Progress in Phytochemistry (L. Reinhold and Y. Liwschitz, eds.), pp. 35–106, Interscience, New York.Google Scholar
  135. Hatch, M. D., Slack, C. R. and Bull, T. A., 1969, Light-induced changes in the content of some enzymes of the C4-dicarboxylic acid pathway of photosynthesis and its effect on other characteristics of photosynthesis, Phytochem. 8:697.Google Scholar
  136. Hatch, M. D., Osmond, C. B., and Slatyer, R. O., eds., 1971, Photosynthesis and Photorespiration, Wiley-Interscience, New York.Google Scholar
  137. Hatch, M. D., Mau, S-L., and Kagawa, T., 1974, Properties of leaf NAD malic enzyme from plants with C4 pathway photosynthesis, Arch. Biochem. Biophys. 165:188.Google Scholar
  138. Heber, U., 1974, Metabolite exchange between chloroplasts and cytoplasm, Annu. Rev. Plant Physiol. 25:393.Google Scholar
  139. Heichel, G. H., 1973, Screening for slow photorespiration in Nicotiana tabacum L., Plant Physiol. 51S:42.Google Scholar
  140. Henningsen, K. W., and Smillie, R. M., 1973, Development of photochemical activity and the appearance of the high potential form of cytochrome b 559 in greening barley seedlings, Plant Physiol 51:1117.Google Scholar
  141. Hesketh, J., and Baker, D., 1967, Light and carbon assimilation by plant communities, Crop Sci. 7:285.Google Scholar
  142. Hesketh, J. D., and Moss, D. N., 1963, Variation in the response of photosynthesis to light, Crop Sci. 3:107.Google Scholar
  143. Hiller, R. G., Anderson, J. M., and Smillie, R. M., 1971, Photooxidation of cytochrome b 559 in leaves and chloroplasts at room temperature, Biochim. Biophys. Acta 245:439.Google Scholar
  144. Hilliard, J. H., and West, S. H., 1970, Starch accumulation associated with growth reduction at low temperatures in a tropical plant. Science 168:494.Google Scholar
  145. Hilliard, J. H., Gracen, V. E., and West, S. H., 1971, Leaf microbodies (peroxisomes) and catalase localization in plants differing in their photosynthetic carbon pathways, Planta 97:93.Google Scholar
  146. Hodge, A. J., McLean, J. D., and Mercer, F. V., 1955, Ultrastructure of the lamellae and grana in the chloroplasts of Zea mays L., J. Biophys. Biochem. Cytol. 1:605.Google Scholar
  147. Hofstra, G., and Nelson, C. D., 1969a, The translocation of photosynthetically assimilated 14C in corn, Can. J. Bot. 47:1435.Google Scholar
  148. Hofstra, G., and Nelson, C. D., 1969b, A comparative study of translocation of assimilated 14C from leaves of different species, Planta 88:103.Google Scholar
  149. Holden, M., 1973, Chloroplast pigments in plants with the C4-dicarboxylic acid pathway of photosynthesis, Photosynthetica 7:41.Google Scholar
  150. Huber, S. C., Kanai, R., and Edwards, G. E., 1973, Decarboxylation of malate by isolated bundle sheath cells of certain plants having the C4-dicarboxylic acid cycle of photosynthesis, Planta 113:53.Google Scholar
  151. Huzisige, H., Usiyama, H., Kikuti, T., and Azi, T., 1969, Purification and properties of the photoactive particle corresponding to photosystem II, Plant Cell Physiol. 10:441.Google Scholar
  152. Izawa, S., and Good, N. E., 1972, Inhibition of photosynthetic electron transport and photophosphorylation, in: Methods in Enzymology (A. San Pietro, ed.), vol. XXIVB, pp. 355–377. Academic, New York.Google Scholar
  153. Izawa, S., Gould, J. M., Ort, D. R., Felker, P., and Good, N. E., 1973, Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. III. A dibromothymoquinone-insensitive phosphorylation reaction associated with photosystem II. Biochim. Biophys. Acta 305:119.Google Scholar
  154. Jackson, W. A., and Volk, R. J., 1970, Photorespiration, Annu. Rev. Plant Physiol. 21:385.Google Scholar
  155. Jacobs, S., 1971, Systematic position of the genera Triodia R. BR. and Plectrachne Henr. (Gramineae), Proc. Linnean Soc. N.S. W. 96:175.Google Scholar
  156. Johnson, H. S., and Hatch, M. D., 1970, Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and “malic” enzyme in plants with the C4-dicarboxylic acid pathway of photosynthesis, Biochem. J. 119:273.Google Scholar
  157. Johnson, S. C., and Brown, W. V., 1973, Grass leaf ultrastructural variations, Amer. J. Bot. 60:727.Google Scholar
  158. Jones, R., 1969, The Biology of Atriplex, Division of Plant Industry, CSIRO, Canberra.Google Scholar
  159. Kagawa, T., and Hatch, M. D., 1974a, Light-dependent metabolism of carbon compounds by mesophyll chloroplasts from plants with the C4 pathway of photosynthesis, Austral. J. Plant Physiol. 1:51.Google Scholar
  160. Kagawa, T., and Hatch, M. D., 1974b, C4-acids as the source of carbon dioxide for Calvin cycle photosynthesis by bundle sheath cells of the C4-pathway species, A triplex spongiosa, Biochem. Biophys. Res. Commun. 59:1326.Google Scholar
  161. Kanai, R., and Edwards, G. E., 1973a, Separation of mesophyll protoplasts and bundle sheath cells from maize leaves for photosynthetic studies, Plant Physiol. 51:1133.Google Scholar
  162. Kanai, R., and Edwards, G. E., 1973b, Enzymatic separation of mesophyll protoplasts and bundle sheath cells from C4 plants, Naturwiss. 60:157.Google Scholar
  163. Kanai, R., and Edwards, G. E., 1973c, Purification of enzymatically isolated mesophyll protoplasts from C3, C4, and Crassulacean acid metabolism plants using an aqueous dextran-polyethylene glycol two-phase system. Plant Physiol. 52:484.Google Scholar
  164. Ke, B., 1973, The primary electron acceptor of photosystem I, Biochim. Biophys. Acta 301:1.Google Scholar
  165. Ke, B., and Beinert, H., 1973, Evidence for the identity of P430 of photosystem I and chloro-plast-bound iron-sulfur protein, Biochim. Biophys. Acta 305:689.Google Scholar
  166. Ke, B., and Shaw, E. R., 1972, Reconstitution of photosystems I and II using spinach subchlo-roplast fragments fractionated by Triton treatment, Biochim. Biophys. Acta 275:192.Google Scholar
  167. Ke, B., Sahu, S., Shaw, E., and Beinert, H., 1974, Further characterization of a photosystem-II particle isolated from spinach chloroplasts by Triton treatment: the reaction-center components, Biochim. Biophys. Acta 347:36.Google Scholar
  168. Kenagy, G. J., 1973, Adaptations for leaf eating in the Great Basin Kangaroo rat, Dipodomys microps, Oecologia 12:383.Google Scholar
  169. Kennedy, R. A., and Laetsch, W. M., 1973, Relationship between leaf development and primary photosynthetic products in the C4 plant, Portulaca oleracea L., Planta 115:113.Google Scholar
  170. Kennedy, R. A., and Laetsch, W. M., 1974, Plant species intermediate for C3, C4 photosynthesis, Science 184:1087.Google Scholar
  171. Khanna, R., and Sinha, S. K., 1973, Change in the predominance from C4 to C3 pathway following anthesis in Sorghum, Biochem. Biophys. Res. Commun. 52:121.Google Scholar
  172. Kisaki, T., Yano, N., and Hirabayashi, S., 1972, Photorespiration: stimulation of glycine decarboxylation by oxygen in tobacco leaf discs and corn leaf segments, Plant Cell Physiol. 13:581.Google Scholar
  173. Klob, W., Kandier, O., and Tanner, W., 1973, The role of cyclic photophosphorylation in vivo, Plant Physiol. 51:825.Google Scholar
  174. Kluge, M., and Osmond, C. B., 1971, Pyruvate P1 dikinase in Crassulacean acid metabolism, Naturwiss. 58:414.Google Scholar
  175. Knaff, D. B., and Arnon, D. I., 1969, Spectral evidence for a new photoreactive component of the oxygen-evolving system in photosynthesis, Proc. Natl. Acad. Sci. USA 63:963.Google Scholar
  176. Knaff, D. B., and Malkin, R., 1973, The oxidation-reduction potentials of electron carriers in chloroplast photosystem I fragments, Arch. Biochem. Biophys. 159:555.Google Scholar
  177. Kortschak, H. P., Hartt, C. E., and Burr, G. O., 1965, Carbon dioxide fixation in sugarcane leaves, Plant Physiol. 40:209.Google Scholar
  178. Krenzer, E. G., and Moss, D. N., 1969, Carbon dioxide compensation in grasses, Crop Sci. 9:619.Google Scholar
  179. Kriedemann, P. E., Loveys, B. R., Fuller, G. L., and Leopold, A. C., 1972, Abscisic acid and stomatal regulation, Plant Physiol. 49:842.Google Scholar
  180. Ku, S. B., Guttierez, M., and Edwards, G. E., 1974a, Localization of the C4 and C3 pathways of photosynthesis in the leaves of Pennisetum purpureum and other C4 species. Insignificance of phenol oxidase, Planta 119:267.Google Scholar
  181. Ku, S. B., Gutierrez, M., Kanai, R., and Edwards, G. E., 1974b, Photosynthesis in mesophyll protoplasts and bundle sheath cells of various types of C4 plants. II. Chlorophyll and Hill reaction studies, Z. Pflanzenphysiol. 72:320.Google Scholar
  182. Laber, L. J., Latzko, E., and Gibbs, M., 1974, Photosynthetic path of carbon dioxide in spinach and corn leaves, J. Biol. Chem. 249:3436.Google Scholar
  183. Laetsch, W. M., 1971, Chloroplast structural relationships in leaves of C4 plants, in: Photosynthesis and Photorespiration (M. D. Hatch, C. B. Osmond, and R. O. Slatyer, eds.), pp. 323–349, Wiley-Interscience, New York.Google Scholar
  184. Laetsch, W. M., 1974, The C4 syndrome: a structural analysis, Annu. Rev. Plant Physiol. 25:27.Google Scholar
  185. Laetsch, W. M., and Price, I., 1969, Development of the dimorphic chloroplasts of sugar cane, Amer. J. Bot. 56:77.Google Scholar
  186. Laing, W. A., and Forde, B. J., 1971, Comparative photorespiration in Amaranthus, soybean and corn, Planta 98:221.Google Scholar
  187. Lapina, L. P., and Bikmukhametova, S. A., 1973, Effect of sodium chloride and sodium sulphate on the functional activity of the photosynthetic apparatus of corn, Fiziol Rast. 20:789.Google Scholar
  188. Larque-Saavedra, A., and Wain, R. L., 1974, Abscisic acid levels in relation to drought tolerance in varieties of Zea mays L., Nature 251:716.Google Scholar
  189. Lerman, J. C., and Queiroz, O., 1974, Carbon fixation and isotope discrimination by a Crassulacean plant: dependence on the photoperiod, Science 183:1207.Google Scholar
  190. Lexander, K., Carlsson, R., Schalen, V., Simonsson, A., and Lundborg, T., 1970, Quantities and qualities of leaf protein concentrates from wild species and crop species grown under controlled conditions, Ann. Appl. Biol. 66:193.Google Scholar
  191. Liu, A. Y., and Black, C. C., 1972, Glycolate metabolism in mesophyll cells and bundle sheath cells isolated from crabgrass, Digitaria sanguinalis (L.) Scop., leaves, Arch. Biochem. Biophys. 149:269.Google Scholar
  192. Loomis, R. S., Williams, W. A., and Hall, A. E., 1971, Agricultural productivity, Annu. Rev. Plant Physiol. 22:431.Google Scholar
  193. Lorimer, G. H., Andrews, T. J., and Tolbert, N. E., 1973, Ribulose diphosphate oxygenase. II. Further proof of reaction products and mechanism of action, Biochem. 12:18.Google Scholar
  194. Ludlow, M. M., and Wilson, G. L., 1971a, Photosynthesis of tropical pasture plants. I. Illuminance, carbon dioxide concentration, leaf temperature, and leaf-air vapour pressure difference, Austral. J. Biol. Sci., 24:449.Google Scholar
  195. Ludlow, M. M., and Wilson, G. L., 1971b, Photosynthesis of tropical pasture plants. II. Temperature and illuminance history, Austral. J. Biol. Sci. 24:1065.Google Scholar
  196. Lush, W. M., and Evans, L. T., 1974, Translocation of photosynthetic assimilate from grass leaves, as influenced by environment and species, Austral. J. Plant. Physiol. VAU. Google Scholar
  197. Lüttge, U., Ball, E., and von Willert, K., 1971, A comparative study of the coupling of ion uptake to light reactions in leaves of higher plant species having the C3- and C4-pathway of photosynthesis, Z. Pflanzenphysiol. 65:336.Google Scholar
  198. Lyttleton, J. W., Ballantine, J. E. M., and Forde, B. J., 1971, Development and environment studies on chloroplasts of Amaranthus lividus, in: Autonomy and Biogenesis of Mitochondria and Chloroplasts (N. K. Boardman, A. W. Linnane, and R. M. Smillie, eds.), pp. 447–452, North-Holland, Amsterdam.Google Scholar
  199. Magomedov, I. M., and Kovaleva, L. B., 1973, Localization of photosynthetic phosphoenolpyruvate carboxylase in corn leaves, Doklady Akad. Nauk SSSR 209:1467.Google Scholar
  200. Maksimov, N. A., 1929, The Plant in Relation to Water; a Study of the Physiological Basis of Drought Resistance, English transl., Allen and Unwin, London.Google Scholar
  201. Malcolm, C. V., 1969, Use of halophytes for forage production on saline wastelands, J. Austral. Inst. Agric. Res. 35:38.Google Scholar
  202. Malkin, R., Aparicio, P. J., and Arnon, D. I., 1974, The isolation and characterization of a new iron-sulfur protein from photosynthetic membranes, Proc. Natl. Acad. Sci. USA 71:2362.Google Scholar
  203. Marx, J. L., 1973, Photorespiration: key to increasing plant productivity, Science 179:365.Google Scholar
  204. Mayne, B. C., Edwards, G. E., and Black, C. C., 1971, Spectral, physical and electron transport activities in the photosynthetic apparatus of mesophyll cells and bundle sheath cells of Digitaria sanguinalis (L.) Scop., Plant Physiol. 47:600.Google Scholar
  205. McFadden, B. A., 1974, The oxygenase activity of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum, Biochem. Biophys. Res. Commun. 60:312.Google Scholar
  206. McFadden, B. A. and Tabita, F. R., 1974, D-Ribulose-1,5-diphosphate carboxylase and the evolution of autrophy, Biosystems 6:93.Google Scholar
  207. McNaughton, S. J., and Fullem, L. W., 1970, Photosynthesis and photorespiration in Typha latifolia, Plant Physiol. 45:703.Google Scholar
  208. McWilliam, J. R., and Mison, K., 1974, Significance of the C4 pathway in Triodia irritans (Spinifex), a grass adapted to arid environments, Austral. J. Plant Physiol. 1:171.Google Scholar
  209. McWilliam, J. R., and Naylor, A. W., 1967, Temperature and plant adaptation. I. Interaction of temperature and light in the synthesis of chlorophyll in corn, Plant Physiol. 42:1711.Google Scholar
  210. Mehlhorn, R. J., and Keith, A. D., 1972, Spin labeling of biological membranes, in:Membrane Molecular Biology (C. F. Fox and A. D. Keith, eds.), pp. 192–227, Sinauer Associates, Stamford.Google Scholar
  211. Metcalfe, C. R., 1971, Anatomy of the Monocotyledons. V. Cyperaceae, Oxford University Press, London.Google Scholar
  212. Michel, J. M., and Michel-Wolwertz, M-R., 1970, Fractionation and photochemical activities of photosystems isolated from broken spinach chloroplasts by sucrose-density gradient centrifugation, Photosynthetica 4:146.Google Scholar
  213. Milthorpe, F. L., and Moorby, J., 1974, An Introduction to Crop Physiology, Cambridge University Press, London.Google Scholar
  214. Mokronosov, A. T., Bagautdinova, R. I., Bubnova, E. A., and Kobeleva, I. V., 1973, Photosynthetic metabolism in palisade and spongy tissues of the leaf, Fiziol. Rast. 20:1191.Google Scholar
  215. Moss, D. N., 1970, Laboratory measurements and breeding for photosynthetic efficiency, in: Prediction and Measurement of Photosynthetic Productivity (I. Šetlík, ed.), pp. 323–330, Center for Agricultural Publishing and Documentation, Wageningen.Google Scholar
  216. Moss, D. N., and Rasmussen, H. P., 1969, Cellular localization of CO2 fixation and translocation of metabolites, Plant Physiol. 44:1063.Google Scholar
  217. Mugerwa, J. S., and Bwabye, R., 1974, Yield, composition and in vitro digestibility of Amaranthus hybridus subspecies incurvatus, Trop. Grass 8:49.Google Scholar
  218. Neales, T. F., 1973, The effect of night temperature on CO2 assimilation, transpiration, and water use efficiency in Agave americana L., Austral. J. Biol. Sci. 26:705.Google Scholar
  219. Neales, T. F., and Incoll, L. D., 1968, The control of leaf photosynthesis rate by the level of assimilate concentration in the leaf: a review of the hypothesis, Bot. Rev. 34:107.Google Scholar
  220. Newcomb, E. H., and Frederick, S. E., 1971, Distribution and structure of plant microbodies (peroxisomes), in: Photosynthesis and Photorespiration (M. D. Hatch, C. B. Osmond, and R. O. Slatyer, eds.), pp. 442–457, Wiley-Interscience, New York.Google Scholar
  221. Nichiporovich, A. A., Chmora, G. A., Slobodskaya, G. A., and Avdeeva, T. A., 1973, Photosynthetic exchange of carbon dioxide in the leaves of beet and maize and its relationship to types of phytocenoses, Fiziol. Rast. 20:300.Google Scholar
  222. Nishikido, T., and Wada, T., 1974, Comparative studies of NADP-malic enzyme from C4- and C3-plants, Biochem. Biophys. Res. Commun. 61:243.Google Scholar
  223. Nolan, W. G., and Bishop, D. G., 1975, The site of inhibition of photosynthetic electron transfer by amphotericin B, Arch. Biochem. Biophys., 166:323.Google Scholar
  224. Ogren, W. L., and Bowes, G., 1971, Ribulose diphosphate carboxylase regulates soybean photorespiration, Nat. New Biol. 230:159.Google Scholar
  225. Ogunkanmi, A. B., Wellburn, A. R., and Mansfield, T. A., 1974, Detection and preliminary identification of endogenous antitranspirants in water-stressed Sorghum plants, Planta 117:293.Google Scholar
  226. Okayama, S., and Butler, W. L., 1972, Extraction and reconstitution of photosystem II, Plant Physiol. 49:769.Google Scholar
  227. Ort, D. R., Izawa, S., Good, N. E., and Krogmann, D. W., 1973, Effects of the plastocyanin antagonists KCN and poly-L-lysine on partial reactions in isolated chloroplasts, FEBS Lett. 31:119.Google Scholar
  228. Osmond, C. B., 1971, Metabolite transport in C4 photosynthesis, Austral. J. Biol. Sci. 24:159.Google Scholar
  229. Osmond, C. B., 1974, Carbon reduction and photosystem II deficiency in leaves of C4 plants, Austral. J. Plant Physiol. 1:41.Google Scholar
  230. Osmond, C. B., Allaway, W. G., Sutton, B. G. Troughton, J. H. Queiroz, O., Liittge, U., and Winter, K., 1973, Carbon isotope discrimination in photosynthesis of CAM plants, Nature 246:41.Google Scholar
  231. Ouitrakul, R., and Izawa, S., 1973, Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. II. Acceptor-specific inhibition by KCN, Biochim. Biophys. Acta 305:105.Google Scholar
  232. Park, R., and Epstein, S., 1961, Metabolic fractionation of C13 and C12 in plants, Plant Physiol. 36:133.Google Scholar
  233. Park, R. B., and Sane, P. V., 1971, Distribution of function and structure in chloroplast lamellae, Annu. Rev. Plant. Physiol. 22:395.Google Scholar
  234. Pearcy, R. W., and Harrison, A. T., 1974, Comparative photosynthetic and respiratory gas exchange characteristics of A triplex lentiformis (Torr.) Wats, in coastal and desert habitats, Ecology 55:1104.Google Scholar
  235. Pearcy, R. W., Björkman, O., Harrison, A. T., and Mooney, H. A., 1971, Photosynthetic performance of two desert species with C4 photosynthesis in Death Valley, California, Carnegie Inst. Wash. Yearb. 70:540.Google Scholar
  236. Perry, R. A., 1970, Arid shrublands and grasslands, in: Australian Grasslands (R. M. Moore, ed.), pp. 246–259, Australian National University Press, Canberra.Google Scholar
  237. Phillips, P. J., and McWilliam, J. R., 1971, Thermal responses of the primary carboxylating enzymes from C3 and C4 plants adapted to contrasting environments, in: Photosynthesis and Photorespiration (M. D. Hatch, C. B. Osmond, and R. O. Slatyer, eds.), pp. 97–104, Wiley-Interscience, New York.Google Scholar
  238. Phung Nhu Hung, S., 1974, Absence of correlation between the high potential cytochrome b 559 and photosystem II activity, Z. Pflanzenphysiol. 72:389.Google Scholar
  239. Pirie, N. W., 1969, The production and use of leaf protein, Proc. Nutrit. Soc. 28:85.Google Scholar
  240. Plesnicar, M., and Bendall, D. S., 1972, The development of photochemical activities during greening of etiolated barley in: Proceedings of the Second International Congress on Photosynthetic Research (G. Forti, M. Avron, and A. Melandri, eds.), Vol. 3, pp. 2367–2374, W. Junk, N. V., The Hague.Google Scholar
  241. Plesnicar, M., and Bendall, D. S., 1973, The photochemical activities and electron carriers of developing barley leaves, Biochem. J. 136:803.Google Scholar
  242. Polya, G. M., and Osmond, C. B., 1972, Photophosphorylation by mesophyll and bundle-sheath chloroplasts of C4 plants, Plant Physiol. 49:267.Google Scholar
  243. Prasad, M. V. R., 1973, Some considerations on plant types for dryland agriculture, Ann. Arid Zone 12:125.Google Scholar
  244. Raison, J. K., 1973, Temperature-induced phase changes in membrane lipids and their influence on metabolic regulation, in: Rate Control of Biological Processes, (D. D. Davies, ed.), pp. 485–512, Cambridge University Press, Cambridge.Google Scholar
  245. Raison, J. K., and Chapman, E. A., 1976, Phase changes in membranes of mung bean and their significance to growth, Austral. J. Plant Physiol., 3; in press.Google Scholar
  246. Raison, J. K., Lyons, J. M., Mehlhorn, R. J., and Keith, A. D., 1971, Temperature-induced phase changes in mitochondrial membranes detected by spin labeling, J. Biol. Chem. 246:4036.Google Scholar
  247. Rath, S. P., and Patnaik, S. N., 1974, Cytological studies in Cyperaceae with special reference to its taxonomy, Cytologia 39:341.Google Scholar
  248. Reeves, S. G., and Hall, D. O., 1973, The stoichiometry (ATP/2e- ratio) of non-cyclic photophosphorylation in isolated spinach chloroplasts, Biochim. Biophys. Acta 314:66.Google Scholar
  249. Rosado-Alberio, J., Weier, T. E., and Stocking, C. R., 1968, Continuity of the chloroplast membrane systems in Zea mays L., Plant Physiol. 43:1325.Google Scholar
  250. Ryan, F. J., Jolly, S. O., and Tolbert, N. E., 1974, Ribulose diphosphate oxygenase. V. Presence in ribulose diphosphate carboxylase from Rhodospirillum rubrum, Biochem. Biophys. Res. Commun. 59:1233.Google Scholar
  251. Salin, M. L., Campbell, W. H., and Black, C. C., 1973, Oxalacetate as the Hill oxidant in mesophyll cells of plants possessing the C4-dicarboxylic acid cycle of leaf photosynthesis, Proc. Natl. Acad. Sci. USA 70:3730.Google Scholar
  252. Salter, P. J., and Goode, J. E., 1967, Crop responses to water at different stages of growth, Research Review No. 2, Commonwealth Agricultural Bureaux, Farnham Royal, Bucks., England.Google Scholar
  253. Sane, P. V., Goodchild, D. J. and Park, R. B., 1970, Characterization of chloroplast photosystems 1 and 2 separated by a non-detergent method, Biochim. Biophys. Acta 216:162.Google Scholar
  254. Shantz, H. L., and Piemeisel, L. N., 1927, The water requirement of plants at Akron, Colorado, J. Agric. Res. 34:1093.Google Scholar
  255. Shimshick, E. J., and McConnell, H. M., 1973, Lateral phase separation in phospholipid membranes, Biochem. 12:2351.Google Scholar
  256. Shneyour, A., Raison, J. K., and Smillie, R. M., 1973, The effect of temperature on the rate of photosynthetic electron transfer in chloroplasts of chilling-sensitive and chilling-resistant plants, Biochim. Biophys. Acta 292:152.Google Scholar
  257. Shomer-Ilan, A., and Waisel, Y., 1973, The effect of sodium chloride on the balance between the C3- and C4-carbon fixation pathways, Physiol. Plant 29:190.Google Scholar
  258. Shumway, L. K., and Weier, T. E., 1967, The chloroplast structure of iojap maize, Amer. J. Bot. 54:773.Google Scholar
  259. Siegel, M. I., and Lane, M. D., 1973, Chemical and enzymatic evidence for the participation of a 2-carboxy-3-ketoribitol-1,5-diphosphate intermediate in the carboxylation of ribulose 1,5-diphosphate, J. Biol. Chem. 248:5486.Google Scholar
  260. Slack, C. R., Hatch, M. D., and Goodchild, D. J., 1969, Distribution of enzymes in mesophyll and parenchyma-sheath chloroplasts of maize leaves in relation to the C4-dicarboxylic acid pathway of photosynthesis, Biochem. J. 114:489.Google Scholar
  261. Slack, C. R., Roughan, P. G., and Bassett, H. C. M., 1974, Selective inhibition of mesophyll chloroplast development in some C4-species by low night temperature, Planta 118:57.Google Scholar
  262. Slatyer, R. O., 1967, Plant-Water Relationships, Academic, London.Google Scholar
  263. Slatyer, R. O., 1970, Comparative photosynthesis, growth and transpiration of two species of Atriplex, Planta 93:175.Google Scholar
  264. Smillie, R. M., Bishop, D. G., and Andersen, K. S., 1972a, The photosynthetic electron transfer system in agranal chloroplasts in: Proceedings of the Second International Congress on Photosynthetic Research (G. Forti, M. Avron, A. Melandri, eds.), Vol. 1, pp. 779–788, W. Junk, N. V., The Hague.Google Scholar
  265. Smillie, R. M., Andersen, K. S., Tobin, N. F., Entsch, B., and Bishop, D. G., 19726, Nicotinamide adenine dinucleotide phosphate reduction from water by agranal chloroplasts isolated from bundle sheath cells of maize, Plant Physiol. 49:471.Google Scholar
  266. Smith, B. N., and Brown, W. V., 1973, The Kranz syndrome in the Gramineae as indicated by carbon isotopic ratios, Amer. J. Bot. 60:505.Google Scholar
  267. Smith, B. N., and Epstein, S., 1971, Two categories of 13C/12C ratios for higher plants, Plant Physiol. 47:380.Google Scholar
  268. Stewart, G. A., 1970, High potential productivity of the tropics for cereal crops, grass forage crops, and beef, J. Austral. Inst. Agric. Sci. 36:85.Google Scholar
  269. Stobbs, T. H., 1973, The effect of plant structure on the intake of tropical pastures. I. Variations in the bite size of grazing cattle, Austral. J. Agric. Res. 24:809.Google Scholar
  270. Taylor, A. O., and Craig, A. S., 1971, Plants under climatic stress. II. Low temperature, high light effects on chloroplast ultrastructure, Plant Physiol. 47:719.Google Scholar
  271. Taylor, A. O., and Rowley, J. A., 1971, Plants under climatic stress. I. Low temperature, high light effects on photosynthesis, Plant Physiol. 47:713.Google Scholar
  272. Taylor, A. O., Slack, C. R., and McPherson, H. G., 1974, Plants under climatic stress. VI. Chilling and light effects on photosynthetic enzymes of sorghum and maize, Plant Physiol. 54:696.Google Scholar
  273. Ting, I. P., and Osmond, C. B., 1973a, Photosynthetic phosphoenolpyruvate carboxylases. Characteristics of alloenzymes from leaves of C3 and C4 plants, Plant Physiol. 51:439.Google Scholar
  274. Ting, I. P., and Osmond, C. B., 19736, Multiple forms of plant phosphoenolpyruvate carboxylase associated with different metabolic pathways, Plant Physiol. 51:448.Google Scholar
  275. Tolbert, N. E., 1971a, Microbodies—peroxisomes and glyoxysomes, Annu. Rev. Plant Physiol. 22:45.Google Scholar
  276. Tolbert, N. E., 1971b, Leaf peroxisomes and photorespiration, in: Photosynthesis and Photorespiration (M. D. Hatch, C. B. Osmond, and R. O. Slatyer, eds.), pp. 458–471, Wiley-Interscience, New York.Google Scholar
  277. Trebst, A., 1972, Measurement of Hill reactions and photoreduction, in:Methods in Enzymology (A. San Pietro, ed.), Vol. XXIVB, pp. 146–165, Academic, New York.Google Scholar
  278. Trebst, A., 1974, Energy conservation in photosynthetic electron transport of chloroplasts, Annu. Rev. Plant. Physiol. 25:423.Google Scholar
  279. Trebst, A., and Reimer, S., 1973, Properties of photoreductions by photosystem II in isolated chloroplasts. An energy-conserving step in the photoreduction of benzoquinones byGoogle Scholar
  280. photosystem II in the presence of dibromothymoquinone, Biochim. Biophys. Acta 305:129.Google Scholar
  281. Troughton, J. H., 1971, Aspects of the evolution of the photosynthetic carboxylation reaction in plants, in: Photosynthesis and Photorespiration (M. D. Hatch, C. B. Osmond, and R. O. Slatyer, eds.), pp. 124–129, Wiley-Interscience, New York.Google Scholar
  282. Troughton, J. H., Wells, P. V., and Mooney, H. A., 1974, Photosynthetic mechanisms and paleoecology from carbon isotope ratios in ancient specimens of C4 and CAM plants, Science 185:610.Google Scholar
  283. Turner, N. C., and Begg, J. E., 1973, Stomatal behaviour and water status of maize, sorghum and tobacco under field conditions. I. At high soil water potential, Plant Physiol. 51:31.Google Scholar
  284. Uchijima, Z., 1970, Carbon dioxide environment and flux within a corn crop canopy, in: Prediction and Measurement of Photosynthetic Productivity (I. Šetlík, ed.), pp. 179–196, Center for Agricultural Publishing and Documentation, Wageningen.Google Scholar
  285. Van Gorkom, H. J., 1974, Identification of the reduced primary electron acceptor of photosystem II as a bound semiquinone anion, Biochim. Biophys. Acta 347:439.Google Scholar
  286. Vernon, L. P., Shaw, E. R., Ogawa, T., and Raveed, D., 1971, Structure of photosystem I and photosystem II of plant chloroplasts, Photochem. Photobiol. 14:343.Google Scholar
  287. Waisel, Y., 1972, Biology of Halophytes Academic, New York.Google Scholar
  288. Wallace, D. H., Ozbun, J. L., and Munger, H. M., 1972, Physiological genetics of crop yield, Adv. Agron. 24:97.Google Scholar
  289. Warburg, O., 1920, Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. II. Biochem. Z. 103:188.Google Scholar
  290. Wessels, J. S. C., van Alphen-van Waveren, O., and Voorn, G., 1973, Isolation and properties of particles containing the reaction center complex of photosystem II from spinach chloroplasts, Biochim. Biophys. Acta 292:741.Google Scholar
  291. West, K. R., and Wiskich, J. T., 1973, Evidence for two phosphorylation sites associated with the electron transport chain of chloroplasts, Biochim. Biophys. Acta 292:197.Google Scholar
  292. Wild, A., and Müllenbeck, E., 1973, Untersuchung zur Photosyntheseleistung von Zea mays nach Anzucht unter verschieden Lichtintensitäten, Z. Pflanzenphysiol. 70:235.Google Scholar
  293. Wild, A., Ke, B., and Shaw, E. R., 1973, The effect of light intensity during growth of Sinapis alba on the electron transport components, Z. Pflanz enphysiol. 69:344.Google Scholar
  294. Wildman, S. G., Kawashima, N., Bourque, D. P., Wong, F., Singh, S., Chan, P. H., Kwok, S. Y., Sakano, K., Kung, S. D., and Thornber, J. P., 1973, Location of DNAs coding for various kinds of chloroplast proteins, in: The Biochemistry of Gene Expression in Higher Organisms (J. K. Pollak and J. W. Lee, eds.), pp. 443–456, A.N.Z., Sydney.Google Scholar
  295. Williams, G. J., 1974, Photosynthetic adaptation to temperature in C3 and C4 grasses. A possible ecological role in the shortgrass prairie, Plant Physiol. 54:709.Google Scholar
  296. Wilson, J. R., and Ford, C. W., 1973, Temperature influences on the in vitro digestibility and soluble carbohydrate accumulation of tropical and temperate grasses. Austral. J. Agric. Res. 24:187.Google Scholar
  297. Witt, K., 1973, Further evidence of X-320 as a primary acceptor of photosystem II in photosynthesis, FEBS Lett. 38:116.Google Scholar
  298. Woo, K. C., Anderson, J. M., Smillie, R. M., Downton, W. J. S., Osmond, C. B., and Thorne, S. W., 1970, Deficient photosystem II in agranal bundle sheath chloroplasts of C4 plants, Proc. Natl. Acad. Sci. USA 67:18.Google Scholar
  299. Woo, K. C., Pyliotis, N. A., and Downton, W. J. S., 1971, Thylakoid aggregation and chlorophyll a/chlorophyll b ratio in C4-plants, Z. Pflanz enphysiol. 64:400.Google Scholar
  300. Yaron, B., Danfors, E., and Vaadia, Y. (eds.), 1973, Arid Zone Irrigation (Ecological Studies, Vol. 5), Springer-Verlag, Berlin.Google Scholar
  301. Yoshida, S., 1972, Physiological aspects of grain yield, Annu. Rev. Plant. Physiol. 23:437.Google Scholar
  302. Zelitch, I., 1972, The photooxidation of glyoxylate by envelope-free spinach chloroplasts and its relation to photorespiration, Arch. Biochem. Biophys. 150:698.Google Scholar
  303. Zelitch, I., 1973a, Alternate pathways of glycolate synthesis in tobacco and maize leaves in relation to rates of photorespiration, Plant Physiol. 51:299.Google Scholar
  304. Zelitch, I., 1973b, The biochemistry of photorespiration, Current Adv. Plant Sci.; Commun. Plant Sci. 3:44.Google Scholar
  305. Zelitch, I., 1974, The effect of glycidate, an inhibitor of glycolate synthesis, on photorespiration and net photosynthesis, Arch. Biochem. Biophys. 163:367.Google Scholar
  306. Zelitch, I., and Day, P. R., 1973, The effect on net photosynthesis of pedigree selection for low and high rates of photorespiration in tobacco, Plant Physiol. 52:33.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • David G. Bishop
    • 1
  • Malcolm L. Reed
    • 1
  1. 1.Plant Physiology Unit, CSIRO Division of Food Research, and School of Biological SciencesMacquarie UniversitySydneyAustralia

Personalised recommendations