Advertisement

Self-Consciousness and Intentionality

A Model Based on an Experimental Analysis of the Brain Mechanisms Involved in the Jamesian Theory of Motivation and Emotion
  • Karl H. Pribram

Abstract

The recent revolution in psychology has readmitted cognition and consciousness as legitimate areas of scientific investigation. The study of cognitive processes has made rapid strides by taking as its model brain mechanisms assumed to be similar to those of the digital computer (Miller, Galanter, and Pribram, 1960) and by utilizing reaction- time data investigations of memory for verbally coded materials. The currently projected volumes on consciousness and self-regulation presuppose that equally effective strides can be made in our research on, and understanding of, consciousness. The title of the series, in fact, suggests that data on self-regulation, utilizing biofeedback procedures, will provide the substance upon which such strides will be based.

Keywords

Motor Cortex Galvanic Skin Response Brain Process Bodily Change Emotional Feeling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, N. S., and Fitts, P. M. Amount of information gained during brief exposures of numerals and colors. Journal of Experimental Psychology, 1958, 56, 362–369.PubMedCrossRefGoogle Scholar
  2. Ashby, W. R. Design for a brain: The origin of adaptive behavior ( 2nd ed. ). New York: Wiley, 1960.CrossRefGoogle Scholar
  3. Ashby, W. R. An introduction to cybernetics. New York: Wiley, 1963.Google Scholar
  4. Bagshaw, M. H., and Benzies, S. Multiple measures of the orienting reaction and their dissociation after amygalectomy in monkeys. Experimental Neurology, 1968, 20, 175– 187.Google Scholar
  5. Bagshaw, M. H., and Coppock, H. W. Galvanic skin response conditioning deficit in amygdalectomized monkeys. Experimental Neurology, 1968, 20, 188–196.PubMedCrossRefGoogle Scholar
  6. Bagshaw, M. H., Kimble, D. P., and Pribram, K. H The GSR on monkeys during orienting and habituation and after ablation of the amygdala, hippocampus and inferotemporal cortex. Neuropsychologia, 1965, 3, 111–119.CrossRefGoogle Scholar
  7. Bagshaw, M. H., and Pribram, J. D. Effect of amygdalectomy on stimulus threshold of the monkey. Experimental Neurology, 1968, 20, 197–202.PubMedCrossRefGoogle Scholar
  8. Bagshaw, M. H., and Pribram, K. H. Effect of amygdalectomy on transfer of training in monkeys. Journal of Comparative and Physiological Psychology, 1965, 59, 118–121.PubMedCrossRefGoogle Scholar
  9. Bailey, P., and Sweet, W. H. Effects on respiration, blood pressure and gastric motility of stimulation of orbital surface of frontal lobe. Journal of Neurophysiology, 1940, 3, 276–281.Google Scholar
  10. Bailey, P., von Bonin, G., and McCulloch, W. S. The isocortex of the chimpanzee. Urbana: The University of Illinois Press, 1950.Google Scholar
  11. Beebe-Center, J. G. The psychology of feeling. In Encyclopedia Brittanica, (Volume 9). Chicago: Benton, 1971 edition.Google Scholar
  12. Bernstein, N. The co-ordination and regulation of movements. New York: Pergamon, 1967.Google Scholar
  13. Blum, J. S., Chow, K. L., and Pribram, K. H. A behavioral analysis of the organization of the parieto-temporo-preoccipital cortex. Journal of Comparative Neurology, 1950, 93, 53–100.PubMedCrossRefGoogle Scholar
  14. Brentano, F. Psychologie vom empirischen Stanpunkt (3rd ed.). Leipzig: 1925.Google Scholar
  15. Bretano, F. The distinction between mental and physical phenomena. In R. M. Chisholm (Ed.), Realism and the background of phenomenology. New York: Free Press, 1960, pp. 39–61.Google Scholar
  16. Brillouin, L. Science and information theory ( 2nd ed. ). New York: Academic Press, 1962.Google Scholar
  17. Brobeck, J. R. Review and synthesis. In M. A. B. Brazier (Ed.), Brain and behavior (Vol. 2 ). Washington: American Institute of Biological Sciences, 1963, pp. 389–409.Google Scholar
  18. Bucy, P. C., and Pribram, K. H. Localized sweating as part of a localized convulsive seizure. Archives of Neurology and Psychiatry, 1943, 50, 456–461.Google Scholar
  19. Butter, C. M. The effect of discrimination training on pattern equivalence in monkeys with inferotemporal and lateral striate lesions. Neuropsychologia, 1968, 6, 27–40.CrossRefGoogle Scholar
  20. Butter, C. M. Impairments in selective attention to visual stimuli in monkeys with infero-temporal and lateral striate lesions. Brain Research, 1969, 22, 374–383.CrossRefGoogle Scholar
  21. Cannon, W. B. The James-Lange theory of emotions: A critical examination and an alternative theory. American Journal of Psychology, 1927, 34, 106–124.CrossRefGoogle Scholar
  22. Chow, K. L. Effects of partial extirpations of the posterior association cortex on visually mediated behavior. Comparative Psychology Monographs, 1951, 20, 187–217.Google Scholar
  23. Chow, K. L. Integrative functions of the thalamocortical visual system of cat. In K. H. Pribram and D. Broadbent (Eds.), Biology of memory. New York: Academic Press, 1970, pp. 273–292.Google Scholar
  24. Cowan, W. M., Adamson, L., and Powell, T. P. S. An experimental study of the avian visual system. Journal of Anatomy (London), 1961, 95, 545–563.Google Scholar
  25. Cowan, W. M., Gottlieb, A. E., Hendrickson, J. L., Price, J. L., and Woolsey, T. A. The autoradiographic deminstration of axonal connection in the central nervous system. Brain Research, 1972, 37, 21–51.PubMedCrossRefGoogle Scholar
  26. Dell, P. J. Correlations entre le système végétatif et le système de la vie de relation; mésencéphale, diencéphale et cortex cérébral. Journal de Physiologie (Paris), 1952, 44, 471–557.Google Scholar
  27. Eccles, J. C. Postsynaptic inhibition in the central nervous system. In G. C. Quarton, T. Melnechuk, and F. O. Schmitt (Eds.), The neurosciences. New York: Rockefeller University Press, 1967, pp. 408–427.Google Scholar
  28. Evarts, E. V. Representation of movements and muscles by pyramidal tract neurons of the precentral motor cortex. In M. D. Yahr and D. P. Purpura (Eds.), Neurophysiological basis of normal and abnormal motor activities. Hewlett, N.Y.: Raven Press, 1967, pp. 215–254.Google Scholar
  29. Fibiger, H. C., Phillips, A. G., and Clouston, R. A. Regulatory deficits after unilateral electrolytic or 6-OHDA lesions of the substantia nigra. American Journal of Physiology, 1973, 225 (6), 1282–1287.PubMedGoogle Scholar
  30. Fulton, J. F. Frontal Labotomy and Affective Behavior: A Neurophysiological Analysis. New York: Norton, 1951.Google Scholar
  31. Galambos, R., Norton, T. T., and Frommer, C. P. Optic tract lesions sparing pattern vision in cats. Experimental Neurology, 1967, 18, 8–25.PubMedCrossRefGoogle Scholar
  32. Garner, W. R. Uncertainty and Structure as Psychological Concepts. New York: Wiley, 1962.Google Scholar
  33. Hearst, E., and Pribram, K. H. Appetitive and aversive generalization gradients in amygdalectomized monkeys. Journal of Comparative Physiological Psychology, 1964a, 58, 296–298.CrossRefGoogle Scholar
  34. Hearst, E., and Pribram, K. H. Facilitation of avoidance behavior by unavoidable shocks in normal and amygdalectomized monkeys. Psychological Reports, 1964b, 14, 39–42.CrossRefGoogle Scholar
  35. Husserl, E. Logische Untersuchungen (4th ed.). Halle, 1928.Google Scholar
  36. James, W. Principles of psychology (Vols. 1 and 2 complete). New York: Dover, 1950.Google Scholar
  37. Johansson, G. Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 1973, 14 (2), 201–211.CrossRefGoogle Scholar
  38. Kaada, B. R. Somato-motor, autonomic and electro-corticographic responses to electrical stimulation of “rhinencephalic” and other structures in primates, cat and dog. Acta Physiologica Scandinavica, 1951, 23 (Suppl. 83), 285.Google Scholar
  39. Kaada, B. R., Pribram, K. H., and Epstein, J. A. Respiratory and vascular responses in monkeys from temporal pole, insula, orbital surface and singulate gyrus: A preliminary report. Journal of Neurophysiology, 1949, 12, 347–356.PubMedGoogle Scholar
  40. Kahneman, D. Attention and effort. Englewood Cliffs, N.J: Prentice-Hall, 1973,Google Scholar
  41. Kimble, D. P., Bagshaw, M. H., and Pribram, K. H. The GSR of monkeys during orienting and habituation after selective partial ablations of the cingulate and frontal cortex. Neuropsychologia, 1965, 3, 121–128.CrossRefGoogle Scholar
  42. Kluver, H. Behavior mechanisms in monkeys. Chicago: University of Chicago Press, 1933.Google Scholar
  43. Kluver, H., and Bucy, P. C. “Psychic blindness” and other symptoms following bilateral temporal lobectomy in rhesus monkeys. American Journal of Physiology, 1937, 119, 352–353.Google Scholar
  44. Lashley, K. S. Brain mechanisms and intelligence. Chicago: University of Chicago Press, 1929.CrossRefGoogle Scholar
  45. Lindsay, P. H. Multichannel processing in perception. In D. I. Mostofsky (Ed.), Attention: Contemporary theory and analysis. New York: Appleton-Century-Crofts, 1970, pp. 149–171.Google Scholar
  46. Livingston, R. B., Fulton, J. F., Delgado, J. M., Sachs, E., Jr., Brendler, S. J., and Davis, G. Stimulation and regional ablation of orbital surface of frontal lobe. Research Publications Association for Research in Nervous and Mental Disease, 1948, 27, 405–420.PubMedGoogle Scholar
  47. Mackay, D. M. Information, Mechanism and Meaning. Cambridge, Mass.: Mit Press, 1969.Google Scholar
  48. Maclean, P. D. Psychosomatic disease and the “visceral brain”: Recent developments bearing on the Papez theory of emotion. Psychosomatic Medicine, 1949, 11, 338–353.PubMedGoogle Scholar
  49. Maclean, P. D., and Pribram, K. H. A neuronography analysis of the medial and basal cerebral cortex: I. Cat. Journal of Neurophysiology, 1953, 16, 312–323.PubMedGoogle Scholar
  50. Malis, L. I., Pribram, K. H., and Kruger, L. Action potentials in “motor” cortex evoked by peripheral nerve stimulation. Journal of Neurophysiology, 1953, 16, 161–167.PubMedGoogle Scholar
  51. Mandler, G. The conditions for emotional behavior. In D. C. Glass (Ed.), Neurophysiology and emotion. New York: Rockefeller University Press and Russell Sage Foundation, 1967, pp. 96–102.Google Scholar
  52. Marshall, J. F., and Teitelbaum, P. Further analysis of sensory inattention following lateral hypothalamic damage in rats. Journal of Comparative and Physiological Psychology, 1974, 86 (3), 375–395.PubMedCrossRefGoogle Scholar
  53. Mcfarland, D. J. Feedback Mechanisms in Animal Behavior. New York: Academic Press, 1971.Google Scholar
  54. Mettler, A., and Mclardy, T. Posterior cuts in prefrontal leucotomy: A clinical- pathological study. Journal Mental Science, 1948, 94, 555–564.Google Scholar
  55. Miller, G. A. The magical number seven, plus or minus two, or, some limits on our capacity for processing information. Psychological Review, 1956, 63 (2), 81–97.PubMedCrossRefGoogle Scholar
  56. Miller, G. A., Galanter, E. H., and Pribram, K. H. Plans and the Structure of Behavior. 1960.Google Scholar
  57. Miller, N. E., Bailey, C. J., and Stevenson, J. A. Decreased “hunger” but increased food intake resulting from hypothalamic lesions. Science, 1950, 112: 256–259.PubMedCrossRefGoogle Scholar
  58. Mishkin, M., and Pribram, K. H. Visual discrimination performance following partial ablations of the temporal lobe: I. Ventral vs. lateral. Journal of Comparative Physiological Psychology, 1954, 47, 14–20.Google Scholar
  59. Mishkin, M., and Pribram, K. H. Analysis of the effects of frontal lesions in monkey: I. Variations of delayed alternation. Journal of Comparative and Physiological Psychology, 1955, 48, 492–495.PubMedCrossRefGoogle Scholar
  60. Mittelstaedt, H. Discussion. In D. P. Kimble (Ed.), Experience and capacity. New York: The New York Academy of Sciences, Interdisciplinary Communications Program, 1968, pp. 46–49.Google Scholar
  61. Neisser, U. Cognitive psychology. New York: Appleton-Century-Crofts, 1967.Google Scholar
  62. Ornstein, R. E. The Psychology of Consciousness. San Francisco: Freeman, 1972.Google Scholar
  63. Ornstein, R. E. The Nature of Human Consciousness: A Book of Readings. San Francisco: Freeman, 1973.Google Scholar
  64. Pattee, H. H. Physical theories of biological coordination. Quarterly Review of Biophysics, 1971, 4, 2, & 3, 255–276.Google Scholar
  65. Pribram, K. H. Toward a science of neurophysiology: (Method and data). In R. A. Patton (Ed.), Current trends in psychology and the behavioral sciences. Pittsburgh: The University of Pittsburgh Press, 19542.Google Scholar
  66. Pribram, K. H. Comparative neurology and the evolution of behavior. In A. Roe and G. G. Simpson (Eds.), Behavior and evolution. New Haven, Conn: Yale University Press, 19584.Google Scholar
  67. Pribram, K. H. A review of theory in physiological psychology. In Annual Review of Psychology (Vol. 11 ). Palo Alto, Calif.: Annual Reviews, Inc., 10.Google Scholar
  68. Pribram, K. H. Emotion: Steps toward a neuropsychological theory. In D. C. Glass Ed.), Neurophysiology and emotion. New York: Rockefeller University Press and the Russell Sage Foundation, 199.Google Scholar
  69. Pribram, K. H. Memory and the organization of attention. In D. B. Lindsley and A. A. Lumsdaine (Eds.), Brain Function (Vol. 4 ). Berkeley: University of California Press, 19672.Google Scholar
  70. Pribram, K. H. The new neurology and the biology of emotion. American Psychologist, 1967c, 10, 830–838.CrossRefGoogle Scholar
  71. Pribram, K. H. The amnestic syndromes: Disturbances in coding? In G. A. Talland and N. C. Waugh (Eds.), Pathology of memory. New York: Academic Press, 1969,7.Google Scholar
  72. Pribram, K. H. Languages of the Brain: Experimental Paradoxes and Principles in neuropsychology. Englewood Cliffs, N.J.:1.Google Scholar
  73. Pribram, K. H. How is it that sensing so much we can do so little? In F. O. Schmitt and F. G. Worden (Eds.), The Neurosciences Study Program, III. Cambridge, Mass.: MIT Press, 19741.Google Scholar
  74. Pribram, K. H. The isocortex. In D. A. Hamburg and H. K. H. Brodie (Eds.), American handbook of psychiatry (Vol. 6 ). New York: Basic Books, 1975, pp. 107–129.Google Scholar
  75. Pribram, K. H. Holonomy and Structure in the Organization of Perception. in Proceedings of the Conference on Images, Perception and Knowledge, University of Western Ontario, 1967a.Google Scholar
  76. Pribram, K. H. Problems concerning the structure of consciousness. In G. Globus, G. Maxwell and I. Savodnik (Eds.), Consciousness and the Brain. New York:b.Google Scholar
  77. Pribram, K. H., and Bagshaw, M. H. Further analysis of the temporal lobe syndrome utilizing frontotemporal ablations in monkeys. Journal of Comparative Neurology, 19535.PubMedCrossRefGoogle Scholar
  78. Pribram, K. H., Kruger, L., Robinson, R., and Berman, A. J. The effects of precentral lesions on the behavior of monkeys. Yale Journal of Biology and Medicine, 1955–563.Google Scholar
  79. Pribram, K. H., Lennox, M. A., and Dunsmore, R. H. Some connections of the orbitofronto-temporal, limbic and hippocampal areas of Macaca mulatta. Journal of Neurophysiology, 19505.Google Scholar
  80. Pribram, K. H., Lim, H., Poppen, R., and Bagshaw, M. H. Limbic lesions and the temporal structure of redundancy. Journal of Comparative and Physiological Psychology, 19663.CrossRefGoogle Scholar
  81. Pribram, K. H., and Maclean, P. D. A neuronography analysis of the medial and basal cerebral cortex: II. Monkey. Journal of Neurophysiology, 19530.PubMedGoogle Scholar
  82. Pribram, K. H., and Mcguinness, D. Arousal, activation and effort in the control of attention. Psychological Review, 1975, 82, 116–149.PubMedCrossRefGoogle Scholar
  83. Pribram, K. H., and Tubbs, W. E. Short-term memory, parsing, arid the primate frontal cortex. Science, 1967, 256, 1765–176CrossRefGoogle Scholar
  84. Pribram, K. H., and Weiskraniz, L. A comparison of the effects of medial and lateral cerebral resections an conditioned avoidance behavior of monkeys. Journal of Comparative and Phogy, 1957, 50, 74–80CrossRefGoogle Scholar
  85. Roberts, W. W. Are hypothalamic motivational mechanisms functionally and anatomically specific? Brain, ion, 1969, 2, 317–34CrossRefGoogle Scholar
  86. Rosvold, H. E., Mirsky, A. F., and Pribram, K. H. Influence of amygdalectomy on social interaction in a monkey group. Journal of Comparative and Phygy, 1954, 47, 173–17PubMedCrossRefGoogle Scholar
  87. Ruch, T. C., and Shenkin, H. A. The relation of area 13 on orbital surface of frontal lobes to hyperactivity and hyperphagia in monkeys. Jourogy, 1943, 6, 349–36Google Scholar
  88. Schachter, S. Cognitive effects on bodily functioning: Studies of obesity and eating. In D. Glass (Ed.), Neurophysiology and emotion. New York: Rockefeller University Pge Foundation, 1967, pp. 117–14Google Scholar
  89. Schwartzbaum, J. S. Changes in reinforcing properties of stimuli following ablation of the amygdaloid complex in monkeys. Journal of Comparative Physiological Psychology, 1960a, 53, 388–395.CrossRefGoogle Scholar
  90. Schwartzbaum, J. S. Response to changes in reinforcing conditions of bar-pressing after ablation of the amygdaloid complex in monkeys. Psychological Reports, 1960b, 6, 215–222Google Scholar
  91. Schwartzbaum, J. S. Some characteristics of amygdaloid hyperphagia in monkeys. American gy, 1961, 74, 252–25PubMedCrossRefGoogle Scholar
  92. Schwartzbaum, J. S., and Pribram, K. H. The effects of amygdalectomy in monkeys on transposition along a brightness continuum. Journal of Comparative and Phygy, 1960, 53, 396–39PubMedCrossRefGoogle Scholar
  93. Schwartzbaum, J. S., Wilson, W. A., Jr., and Morrissette, J. R. The effects of amygdalectomy on locomotor activity in monkeys. Journal of Comparative and Physiol, 1961, 54 (3), 334–33PubMedCrossRefGoogle Scholar
  94. Simon, H. A. How big is a chunk? Science, 1974, 183, 482–488.Google Scholar
  95. Spinelli, D. N., and Pribram, K. H. Changes in visual recovery functions produced by temporal lobe stimulation in monkeys. Electroencephalographophysiology, 1966, 20, 44Google Scholar
  96. Spinelli, D. N., and Pribram, K. H. Changes in visual recovery functions and unit activity produced by frontal and temporal cortex stimulation. Electroencephalography and Cligy, 1967, 22, 143–14PubMedCrossRefGoogle Scholar
  97. Teitelbaum, P. Sensory control of hypothalamic hyperphagia. Journal of Comparatal Psychology, 1955, 48, 156–16PubMedCrossRefGoogle Scholar
  98. Ungerstedt, U. Brain dopamine neurons and behavior. In F. G. Schmitt and F. O. Worder (Eds.), The Neurosciences Study Program, s.: MIT Press, 1974, pp. 695–70Google Scholar
  99. Valenstein, E. S. Stability and plasticity of motivation systems. In G. C. Quarton, T. Melnechuk, and G. Adelman (Eds.), The neurosciences. New Yorersity Press, 1970, pp. 207–217Google Scholar
  100. Valenstein, E. S., Cox, V. C., and Kakolewski, J. W. The hypothalamus and motivated behavior. In. J. T. TAPP (Ed.), Reinforcement and behavior Academic Press, 1969, pp. 242–285Google Scholar
  101. von Forester, H. Memory without record. In D. P. Kimble (Ed.), The anatomy of memory. Palo Alto, Caihavior Books, 1965, pp. 388–433Google Scholar
  102. Wall, P. D., and Pribram, K. H., Trigeminal neurotomy and blood pressure responses from stimulation of lateral cerebral cortex of Macaca mulatta. Journay, 1950, 13, 409–412PubMedGoogle Scholar
  103. Ward, A. A., Jr. The cingular gyrus: Area 24. Jourogy, 1948, 11, 13–23PubMedGoogle Scholar
  104. Wilson, M. Inferotemporal cortex and the processing of visual information in monkeys. Neuropsychologia, 1968, 6, 135–140.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Karl H. Pribram
    • 1
  1. 1.Department of PsychologyStanford UniversityStanfordUSA

Personalised recommendations