Advertisement

Metabolic Studies with Natural and Synthetic Fatty Acids and Enantiomeric Acylglycerols

  • Patrick J. A. O’Doherty
Part of the Handbook of Lipid Research book series (HLRE, volume 1)

Abstract

Due to the concerted efforts of numerous investigators, the last 15 years has witnessed unprecedented advances in the elucidation of both the anabolism and catabolism of acylglycerols. The availability of synthetic substrates containing radioactive and stable isotope-labeled molecules, coupled with the development of chromatographic and spectroscopic methodologies, has heralded an era of intensified study of the metabolism of acylglycerols in the hope of increasing our understanding of the biological importance of the structure of these molecules. It is the purpose of this chapter to review the state of our current knowledge of metabolic studies with fatty acids and acylglycerols in animal tissues and to discuss some of the methods employed and difficulties encountered in these investigations.

Keywords

Phosphatidic Acid Ehrlich Ascites Tumor Cell Dihydroxyacetone Phosphate Diacylglycerol Acyltransferase Triacylglycerol Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aas, M., 1971, Organ and subcellular distribution of fatty acid activating enzymes in the rat, Biochim. Biophys. Acta 231:32.PubMedCrossRefGoogle Scholar
  2. About-Issa, H. M., and Cleland, W. W., 1969, Studies on the microsomal acylation of l-glycerol-3-phosphate. II. The specificity and properties of the rat liver enzyme, Biochim. Biophys. Acta 187:692.Google Scholar
  3. Adams, L. L., Webb, W. W., and Fallon, H. J., 1971, Inhibition of hepatic triglyceride formation by Clofibrate, J. Clin. Invest. 50:2339.PubMedCrossRefGoogle Scholar
  4. Agranoff, B. W., 1962, Hydrolysis of long chain alkyl phosphates and phosphatidic acid by an enzyme purified from pig brain, J. Lipid Res. 3:190.Google Scholar
  5. Agranoff, B. W., and Hajra, A. K., 1971, The acyl dihydroxyacetone phosphate pathway for glycerolipid biosynthesis in mouse liver and Ehrlich ascites tumor cells, Proc. Natl. Acad. Sci. (USA) 68:411.CrossRefGoogle Scholar
  6. Ailhaud, G. P., and Vagelos, P. R., 1966, Palmityl-acyl carrier protein as acyl donor for complex lipid biosynthesis in Escherichia coli, J. Biol. Chem. 241:3866.PubMedGoogle Scholar
  7. Ailhaud, G., Samuel, D., and Desnuelle, P., 1963, Localisation subcellulaire de l’acyl-CoA synthetase de la muqueuse intestinale, Biochim. Biophys. Acta 67:150.PubMedCrossRefGoogle Scholar
  8. Ailhaud, G., Samuel, D., Lazdunski, M., and Desnuelle, P., 1964, Quelques observations sur le mode d’action de la monoglyceride transacylase de la diglyceride transacylase de la muqueuse intestinale, Biochim. Biophys. Acta 84:643.PubMedGoogle Scholar
  9. Akesson, B., 1969, The acylation of diacylglycerols in pig liver, Eur. J. Biochem. 9:406.PubMedCrossRefGoogle Scholar
  10. Akesson, B., 1970, Initial esterification and conversion of intraportally injected [1-14C]linoleic acid in rat liver, Biochim. Biophys. Acta 218:57.PubMedCrossRefGoogle Scholar
  11. Akesson, B., Elovson, J., and Arvidson, G., 1970a, Initial incorporation into rat liver glycerolipids of intraportally injected [9,10-3H]palmitic acid, Biochim. Biophys. Acta 218:44.PubMedCrossRefGoogle Scholar
  12. Akesson, B., Elovson, J., and Arvidson, G., 1970b, Initial incorporation into rat liver glycerolipids of intraportally injected [3H]glycerol, Biochim. Biophys. Acta 210:15.PubMedCrossRefGoogle Scholar
  13. Akesson, B., Gronowitz, S., and Herslof, B., 1976, Stereospecificity of hepatic lipases, FEBS Lett. 71:241.PubMedCrossRefGoogle Scholar
  14. Anderson, R. E., Bottino, N. R., and Reiser, R., 1967, Pancreatic lipase hydrolysis as a source of diglycerides for the stereospecific analysis of triglycerides, Lipids 2:440.PubMedCrossRefGoogle Scholar
  15. Assmann, G., Kraus, R. M., Fredrickson, D. S., and Levy, R. I., 1973, Positional specificity of triglyceride lipases in postheparin plasma, J. Biol. Chem. 248:7184.PubMedGoogle Scholar
  16. Bailey, J. M., Howard, B. V., and Tillman, S. F., 1973, Lipid metabolism in cultured cells. XI. Utilization of serum triglycerides, J. Biol. Chem. 248:1240.PubMedGoogle Scholar
  17. Barden, R. E., and Cleland, W. W., 1969, 1-Acylglycerol 3-phosphate acyltransferase from rat liver, J. Biol. Chem. 244:3677.PubMedGoogle Scholar
  18. Baron, H., Stein, O., and Stein, Y., 1972, Multiple effects of cycloheximide on the metabolism of triglycerides in the liver of male and female rats, Biochim. Biophys. Acta 270:444.CrossRefGoogle Scholar
  19. Barrnett, R. J., and Rostgaard, J., 1965, Absorption of particulate lipid by intestinal microvilli, Ann. N.Y. Acad. Sci. 131:13.PubMedCrossRefGoogle Scholar
  20. Beifrage, P., 1964, Acylation of glycerol ethers and hydroxylated hydrocarbons in epididymal adipose tissue, Biochem. J. 92:41p.Google Scholar
  21. Bickerstaffe, A., and Annison, E. F., 1969, Triglyceride synthesis by the small intestinal epithelium of the pig, sheep and chicken, Biochem. J. 111:419.PubMedGoogle Scholar
  22. Bjorntorp, P., and Furman, R. H., 1962, Lipolytic activity in rat heart, Am. J. Physiol. 203:323.PubMedGoogle Scholar
  23. Bortz, W. M., and Lynen, F., 1963, Elevation of long chain acyl CoA derivatives in livers of fasted rats, Biochem. Z. 339:77.PubMedGoogle Scholar
  24. Bowley, M., Manning, R., and Brindley, D. N., 1973, The tritium isotope effect of sn-glycerol 3-phosphate oxidase and the effects of clofenapate and N-(2-benzoyloxyethyl) norfenfluramine on the esterification of glycerol phosphate and dihydroxyacetone phosphate by rat liver mitochondria, Biochem. J. 136:421.PubMedGoogle Scholar
  25. Breckenridge, W. C., and Kuksis, A., 1975, Diacylglycerol biosynthesis in everted sacs of rat intestinal mucosa, Can. J. Biochem. 53:1170.PubMedCrossRefGoogle Scholar
  26. Breckenridge, W. C., Yeung, S. K. F., and Kuksis, A., 1976a, Biosynthesis of triacylglycerols by rat intestinal mucosa in vivo, Can. J. Biochem. 54:145.PubMedCrossRefGoogle Scholar
  27. Breckenridge, W. C., Yeung, S. K. F., Kuksis, A., Myher, J. J., and Chan, M., 1976b, Biosynthesis of diacylglycerols by rat intestinal mucosa in vivo, Can. J. Biochem. 54:137.PubMedCrossRefGoogle Scholar
  28. Brindley, D. N., 1973, The relationship between palmitoyl-coenzyme A synthetase activity and esterification of sn-glycerol 3-phosphate by the microsomal fraction of guinea pig intestinal mucosa, Biochem. J. 132:707.PubMedGoogle Scholar
  29. Brindley, D. N., and Bowley, M., 1975, Drugs affecting the synthesis of glycerides and phospholipids in rat liver, Biochem. J. 148:461.PubMedGoogle Scholar
  30. Brindley, D. N., and Hübscher, G., 1965, The intracellular distribution of the enzymes catalyzing the biosynthesis of glycerides in the intestinal mucosa, Biochim. Biophys. Acta 106:495.PubMedCrossRefGoogle Scholar
  31. Brindley, D. N., Bowley, M., Brooks, R. J., and Malik, S. P., 1973, The effect of p-chlorophenoxy-isobutyrate, clofenapate, fenfluramine, the methane sulphanate of m-trifluoromethylphenyl-1[β(benzoyoxy)ethyl]amino-2-propane and amphetamine on the esterification of sn-glycerol 3-phosphate in human and rat liver, Abstr. 9th Int. Congr. Biochem. Stockholm, p. 416.Google Scholar
  32. Brockerhoff, H., 1968, Substrate specificity of pancreatic lipase, Biochim. Biophys. Acta 159:296.PubMedCrossRefGoogle Scholar
  33. Brockerhoff, H., and Jensen, R. G., 1974, in: Lipolytic Enzymes, pp. 1–330, Academic Press, New York.Google Scholar
  34. Brown, J. L., and Johnston, J. M., 1963, Distribution of fatty acids in triglycerides synthesized from monoglycerides, Biochim. Biophys. Acta 70:603.PubMedCrossRefGoogle Scholar
  35. Brown, J. L., and Johnston, J. M., 1964a, The mechanism of intestinal utilization of monoglycerides, Biochim. Biophys. Acta 84:264.PubMedGoogle Scholar
  36. Brown, J. L., and Johnston, J. M., 1964b, The utilization of 1-and 2-monoglycerides for intestinal triglyceride biosynthesis, Biochim. Biophys. Acta 84:448.PubMedGoogle Scholar
  37. Bublitz, C., and Kennedy, E. P., 1954, Synthesis of Phosphatides in isolated mitochondria. III. The enzymatic phosphorylation of glycerol, J. Biol. Chem. 211:951.PubMedGoogle Scholar
  38. Butcher, R. W., and Sutherland, E. W., 1967, The effects of the catecholamines, adrenergic blocking agents, Prostaglandin El and insulin on cyclic AMP levels in the rat epididymal fat pad in vitro, Ann. N. Y. Acad. Sci. 139:849.PubMedCrossRefGoogle Scholar
  39. Butcher, R. W., Ho, R. J., Meng, H., and Sutherland, E. W., 1965, Adenosine 3′,5′-monophosphate in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine, J. Biol. Chem. 240:4515.PubMedGoogle Scholar
  40. Cheniae, G. M., 1965, Phosphatidic acid and glyceride synthesis by particles from spinach leaves, Plant Physiol. 40:235.PubMedCrossRefGoogle Scholar
  41. Clark, B., and Hübscher, G., 1960, Biosynthesis of glycerides in the mucosa of the small intestine, Nature (London) 185:35.CrossRefGoogle Scholar
  42. Clark, B., and Hübscher, G., 1961, Biosynthesis of glycerides in subcellular fractions of intestinal mucosa, Biochim. Biophys. Acta 46:479.PubMedCrossRefGoogle Scholar
  43. Coleman, R., and Hübscher, G., 1962, Metabolism of phospholipids. V. Studies of phosphatidic acid Phosphatase, Biochim. Biophys. Acta 56:479.PubMedCrossRefGoogle Scholar
  44. Coleman, R., and Hübscher, G., 1963, Metabolism of phospholipids. VII. On the lipid requirement for phosphatidic acid Phosphatase activity, Biochim. Biophys. Acta 73:257.PubMedCrossRefGoogle Scholar
  45. Coniglio, J. G., and Cate, D. L., 1959, Intestinal absorption of C14-palmitic acid and C14-tripalmitin in the rat, Am. J. Clin. Nutr. 7:646.PubMedGoogle Scholar
  46. Craig, G. M., 1972, A comparison of Clofibrate and its derivative methyl Clofibrate, Atherosclerosis 15:265.PubMedCrossRefGoogle Scholar
  47. Daae, L. N. W., 1972, The acylation of glycerophosphate in rat liver mitochondria and microsomes as a function of fatty acid chain length, FEBS Lett. 27:46.PubMedCrossRefGoogle Scholar
  48. Daae, L. N. W., 1973, The acylation of glycerol 3-phosphate in different rat organs and in the liver of different species including man, Biochim. Biophys. Acta 306:186.PubMedCrossRefGoogle Scholar
  49. Daae, L. N. W., and Bremer, J., 1970, The acylation of glycerophosphate in rat liver: A new assay procedure for glycerophosphate acylation. Studies on its subcellular and submitochondrial localization and determination of the reaction products, Biochim. Biophys. Acta 210:92.PubMedCrossRefGoogle Scholar
  50. Dannenburg, W. N., Kardian, B. C., and Morrell, L. Y., 1973, Fenfluramine and triglyceride synthesis by microsomes of the intestinal mucosa in the rat, Arch. Int. Pharmacodyn. Ther. 201:115.PubMedGoogle Scholar
  51. DeKruyff, B., Van Golde, L. M. G., and Van Deenen, L. L. M., 1970, Utilization of diacylglycerol species by cholinephosphotransferase, ethanolaminephosphotransferase and diacylglycerol acyl-transferase in rat liver microsomes, Biochim. Biophys. Acta 210:425.CrossRefGoogle Scholar
  52. Dils, R., and Clark, B., 1962, Fatty acid esterification in lactating rat mammary gland, Biochem. J. 84:19p.Google Scholar
  53. Dimick, P., McCarthy, R. D., and Patton, S., 1965, Paths of palmitic acid incorporation into milk fat triglycerides, Biochim. Biophys. Acta 116:159.Google Scholar
  54. DiNella, R. R., Meng, H. C., and Park, C. R., 1960, Properties of intestinal lipase, J. Biol. Chem. 235:3076.PubMedGoogle Scholar
  55. Fallon, H. J., Barwick, J., Lamb, R. G., and Van den Bosch, H., 1975, Studies of rat liver microsomal diglyceride acyltransferase and cholinephosphotransferase using microsomal-bound substrate: Effects of high fructose intake, J. Lipid Res. 16:107.PubMedGoogle Scholar
  56. Flatt, J. P., and Ball, E. G., 1964, Studies on the metabolism of adipose tissue. XV. An evaluation of the major pathways of glucose catabolism as influenced by insulin and epinephrine, J. Biol. Chem. 239:675.PubMedGoogle Scholar
  57. Forstner, G. G., Riley, E. M., Daniels, S. J., and Isselbacher, K. J., 1965, Demonstration of glyceride synthesis by brush borders of intestinal epithelial cells, Biochem. Biophys. Res. Commun. 21:83.PubMedCrossRefGoogle Scholar
  58. Fredrickson, D. S., and Gordon, R. S., 1958, Transport of fatty acids, Physiol. Rev. 38:585.PubMedGoogle Scholar
  59. Friedmann, H. I., and Cardell, R. R., Jr., 1972, Effects of puromycin on the structure of rat intestinal epithelial cells during fat absorption, J. Cell Biol. 52:15.CrossRefGoogle Scholar
  60. Gallo, L., and Treadwell, C. R., 1970, Localization of the monoglyceride pathway in subcellular fractions of rat intestinal mucosa, Arch. Biochem. Biophys. 141:614.PubMedCrossRefGoogle Scholar
  61. Gallo, L., Vahouny, G. V., and Treadwell, C. R., 1968, The 1-and 2-octadecyl glyceryl ethers as model compounds for study of triglyceride resynthesis in cell fractions of intestinal mucosa, Proc. Soc. Exp. Biol. Med. 127:156.PubMedGoogle Scholar
  62. Garfinkel, D., and Hess, B., 1964, Metabolic control mechanisms. VII. A detailed computer model of the glycolytic pathway in ascites cells, J. Biol. Chem. 239:971.PubMedGoogle Scholar
  63. Goldfine, H., 1966, Acylation of glycerol 3-phosphate in bacterial extracts, J. Biol. Chem. 241:3864.PubMedGoogle Scholar
  64. Goldman, P., and Vagelos, P. R., 1961, The specificity of triglyceride synthesis from diglyceride in chicken adipose tissue, J. Biol. Chem. 236:2620.PubMedGoogle Scholar
  65. Gordon, R. S., and Cherkes, A., 1958, Production of unesterified fatty acids from isolated rat adipose tissue incubated in vitro, Proc. Soc. Exp. Biol. Med. 97:150.PubMedGoogle Scholar
  66. Gorin, E., and Shafrir, E. 1964, Lipolytic activity in adipose tissue homogenate toward tri-, di-and monoglyceride substrates, Biochim. Biophys. Acta 84:24.PubMedGoogle Scholar
  67. Greenbaum, A. L., Gumaa, K. A., and McLean, P., 1971, The distribution of hepatic metabolites and the control of the pathways of carbohydrate metabolism in animals of different dietary and hormonal status, Arch. Biochem. Biophys. 143:617.PubMedCrossRefGoogle Scholar
  68. Greten, H., Levy, R. I., Fales, H., and Fredrickson, D. S., 1970, Hydrolysis of diglyceride and glyceryl monoester diethers with lipoprotein lipase, Biochim. Biophys. Acta 210:39.PubMedCrossRefGoogle Scholar
  69. Gurr, M. I., Pover, W. F. R., Hawthorne, J. N., and Frazer, A. C., 1963, The phospholipid composition and turnover in rat intestinal mucosa during fat absorption, in: Biochemical Problems of Lipids, Vol. 1 (A. C. Frazer, ed.), pp. 236–243, Elsevier, Amsterdam.Google Scholar
  70. Hajra, A. K., 1968, Biosynthesis of acyl dihydroxyacetone phosphate in guinea pig liver mitochondria, J. Biol. Chem. 243:3458.PubMedGoogle Scholar
  71. Hajra, A. K., and Agranoff, B. W., 1968a, Acyl dihydroxyacetone phosphate: Characterization of a 32P-labeled lipid from guinea pig liver mitochondria, J. Biol. Chem. 243:1617.PubMedGoogle Scholar
  72. Hajra, A. K., and Agranoff, B. W., 1968b, Reduction of palmitoyl dihydroxyacetone phosphate by mitochondria, J. Biol. Chem. 243:3542.PubMedGoogle Scholar
  73. Hajra, A. K., Seguin, E. B., and Agranoff, B. W., 1968, Rapid labeling of mitochondrial lipids by labeled orthophosphate and adenosine triphosphate, J. Biol. Chem. 243:1609.PubMedGoogle Scholar
  74. Hamosh, M., and Scow, R. O., 1973, Lingual lipase and its role in the digestion of dietary fat, J. Clin. Invest. 52:88.PubMedCrossRefGoogle Scholar
  75. Hamosh, M., Klaeveman, H. L., Wolf, R. O., and Scow, R. O., 1975, Pharyngeal lipase and digestion of dietary triglyceride in man, J. Clin. Invest. 55:908.PubMedCrossRefGoogle Scholar
  76. Havel, R. J., and Kane, J. P., 1973, Drugs and lipid metabolism, Ann. Rev. Pharm. 13:287.CrossRefGoogle Scholar
  77. Hayashi, S., and Lin, E. C., 1967, Purification and properties of glycerol kinase from Escherichia coli, J. Biol. Chem. 242:10PubMedGoogle Scholar
  78. Higgins, J. A., and Barrnett, R. J., 1971, Fine structural localization of acyltransferases: The monoglyceride and α-glycerophosphate pathways in intestinal absorptive cells, J. Cell Biol. 50:102.PubMedCrossRefGoogle Scholar
  79. Hill, E. E., and Lands, W. E. M., 1968, Incorporation of long-chain and polyunsaturated acids into phosphatidate and phosphatidylcholine, Biochim. Biophys. Acta 152:645.PubMedCrossRefGoogle Scholar
  80. Hill, E. E., Husbands, D. R., and Lands, W. E. M., 1968, The selective incorporation of 14C-glycerol into different species of phosphatidic acid, phosphatidylethanolamine and phosphatidylcholine, J. Biol. Chem. 243:4440.PubMedGoogle Scholar
  81. Hohorst, H. L., Kreutz, F. H., and Bücher, T., 1959, Über Metabolitgehalte and Metabolitkonzentrationen in der Leber der Ratte, Biochem. Z. 332:18.PubMedGoogle Scholar
  82. Hokin, L. E., and Hokin, M. R., 1959, The synthesis of phosphatidic acid from diglyceride and adenosine triphosphate in extracts of brain microsomes, J. Biol. Chem. 234:1381.PubMedGoogle Scholar
  83. Hokin, L. E., and Hokin, M. R., 1961a, Diglyceride kinase and phosphatidic acid Phosphatase in erythrocyte membranes, Nature (London) 189:836.CrossRefGoogle Scholar
  84. Hokin, L. E., and Hokin, M. R., 1961b, Studies on the carrier function of phosphatidic acid in sodium transport. I. The turnover of phosphatidic acid and phosphoinositide in the avian salt gland on stimulation of secretion, J. Gen. Physiol. 44:61.CrossRefGoogle Scholar
  85. Hokin, L. E., and Hokin, M. R., 1963, Diglyceride kinase and other pathways for phosphatidic acid synthesis in the erythrocyte membrane, Biochim. Biophys. Acta 67:470.PubMedCrossRefGoogle Scholar
  86. Hokin, M. R., and Hokin, L. E., 1964, The synthesis of phosphatidic acid and protein bound phosphorylserine in salt glands homogenates, J. Biol. Chem. 239:2116.PubMedGoogle Scholar
  87. Hollenberg, C. H., Raben, M. S., and Astwood, E. B., 1961, The lipolytic response to corticotropin, Endocrinology 68:589.PubMedCrossRefGoogle Scholar
  88. Howard, B. V., and Howard, W. J., 1974, Lipid metabolism in cultured cells, Adv. Lipid Res. 12:51.PubMedGoogle Scholar
  89. Hübscher, G., 1961, Esterification of monoglycerides by soluble preparations from mammalian tissues, Biochim. Biophys. Acta 52:582.CrossRefGoogle Scholar
  90. Hübscher, G., 1970, Glyceride metabolism, in: Lipid Metabolism, (S. J. Wakil, ed.), pp. 279–370, Academic Press, New York.Google Scholar
  91. Husbands, D. R., and Lands, W. E. M., 1970, Phosphatidate synthesis by sn-glycerol-3-phosphate acyltransferase in pigeon liver particles, Biochim. Biophys. Acta 202:129.PubMedCrossRefGoogle Scholar
  92. Jezyk, P., and Lands, W. E. M., 1968, Specificity of acyl-CoA: Phospholipid acyltransferases: Solvent and temperature effects, J. Lipid Res. 9:525.PubMedGoogle Scholar
  93. Johnston, J. M., 1959, The absorption of fatty acids by the isolated intestine, J. Biol. Chem. 234:1065.PubMedGoogle Scholar
  94. Johnston, J. M., and Bearden, J. H., 1962, Intestinal phosphatidate Phosphatase, Biochim. Biophys. Acta 56:365.PubMedCrossRefGoogle Scholar
  95. Johnston, J. M., and Borgström, B., 1964, The intestinal absorption and metabolism of micellar solutions of lipids, Biochim. Biophys. Acta 84:412.PubMedGoogle Scholar
  96. Johnston, J. M., and Brown, J. L., 1962, The intestinal utilization of doubly labeled α-monopalmitin, Biochim. Biophys. Acta 59:500.PubMedCrossRefGoogle Scholar
  97. Johnston, J. M., and Paltauf, F., 1970, Lipid metabolism in inositol-deficient yeast, Saccharomycetes carlsbergensis. II. Incorporation of labeled precursors into lipids by whole cells and activities of some enzymes involved in lipid formation, Biochim. Biophys. Acta 218:431.PubMedCrossRefGoogle Scholar
  98. Johnston, J. M., Rao, G. A., and Reistad, R., 1965, Species difference in the synthesis of triglycerides from monoglycerides, Biochim. Biophys. Acta 98:432.PubMedCrossRefGoogle Scholar
  99. Johnston, J. M., Rao, G. A., Lowe, P. A., and Schwartz, B. E., 1967, The nature of the stimulatory role of the supernatant fraction on triglyceride synthesis by the α-glycerophosphate pathway, Lipids 2:14.PubMedCrossRefGoogle Scholar
  100. Johnston, J. M., Paltauf, F., Schiller, C. M., and Schultz, L. D., 1970, The utilization of the α-glycerophosphate and monoglyceride pathways for phosphatidylcholine biosynthesis in the intestine, Biochim. Biophys. Acta 218:124.PubMedCrossRefGoogle Scholar
  101. Jungas, R. L., 1966, Role of cyclic-3′,5′-AMP in the response of adipose tissue to insulin, Proc. Natl. Acad. Sci. (USA) 56:757.CrossRefGoogle Scholar
  102. Karnovsky, M. L., and Wolff, D., 1960, Studies on the stereospecificity of lipases, in: Biochemistry of Lipids (G. Popjak, ed.), pp. 53–59, Pergamon Press, New York.Google Scholar
  103. Kates, M., 1955, Hydrolysis of lecithin by plant plastid enzymes, Can. J. Biochem. Physiol. 33:575.PubMedCrossRefGoogle Scholar
  104. Katz, J., Landau, B. R., and Bartsch, G. E., 1966, The pentose cycle, triose phosphate isomerization and lipogenesis in rat adipose tissue, J. Biol. Chem. 241:727.PubMedGoogle Scholar
  105. Kern, F., and Borgström, B., 1965, Quantitative study of the pathways of triglyceride synthesis by hamster intestinal mucosa, Biochim. Biophys. Acta 98:520.PubMedCrossRefGoogle Scholar
  106. Korn, E. D., 1961, The fatty acid and positional specificities of lipoprotein lipase, J. Biol. Chem. 236:1638.PubMedGoogle Scholar
  107. Kornberg, A., and Pricer, W. E., 1953, Enzymatic esterification of l-glycerophosphate by long chain fatty acids, J. Biol. Chem. 204:345.PubMedGoogle Scholar
  108. Krebs, H. A., and Veech, R. L., 1970, Regulation of the redox state of the Pyridine nucleotides in rat liver, in: Pyridine Nucleotide-Dependent Dehydrogenases (H. Sund, ed.), pp. 413–434, Springer-Verlag, New York.CrossRefGoogle Scholar
  109. Kuhn, N. J., and Lynen, F., 1965, Phosphatidc acid synthesis in yeast, Biochem. J. 94:240.PubMedGoogle Scholar
  110. Kuksis, A., Myher, J. J., Marai, L., Yeung, S. K. F., Steiman, I., and Mookerjea, S., 1975a, Distribution of newly formed fatty acids among glycerolipids of isolated perfused rat liver, Can. J. Biochem. 53:509.PubMedCrossRefGoogle Scholar
  111. Kuksis, A., Myher, J. J., Marai, L., Yeung, S. K. F., Steiman, I., and Mookerjea, S., 1975b, Distribution of newly formed palmitate and stearate among molecular species of choline and ethanolamine Phosphatides, Can. J. Biochem. 53:519.PubMedGoogle Scholar
  112. Kupiecki, F. P., 1966, Partial purification of monoglyceride lipase from adipose tissue, J. Lipid Res. 7:230.PubMedGoogle Scholar
  113. La Belle, E. F., Jr., and Hajra, A. K., 1972, Enzymatic reduction of alkyl and acyl derivatives of dihydroxyacetone phosphate by reduced pyridine nucleotides, J. Biol. Chem. 247:5825.Google Scholar
  114. Lamb, R. G., and Fallon, H. J., 1970, The formation of monoacylglycerophosphate from sn-glycerol 3-phosphate by a rat liver particulate preparation, J. Biol. Chem. 245:3075.PubMedGoogle Scholar
  115. Lamb, R. G., and Fallon, H. J., 1972, Inhibition of monoacylglycerophosphate formation by chlorophenoxyisobutyrate and β-benzalbutyrate, J. Biol. Chem. 247:1281.PubMedGoogle Scholar
  116. Lands, W. E. M., 1960, Metabolism of Glycerolipids. II. The enzymatic acylation of lysolecithin, J. Biol. Chem. 235:2233.PubMedGoogle Scholar
  117. Lands, W. E. M., 1976, Selectivity of microsomal acyltransferases, in: The Essential Fatty Acids: Miles Symposium 1975 (W. W. Hawkins, ed.), Nutrition Society of Canada and Miles Laboratories, Toronto.Google Scholar
  118. Lands, W. E. M., and Hart, P., 1964, Metabolism of glycerolipids. V. Metabolism of phosphatidic acid, J. Lipid Res. 5:81.Google Scholar
  119. Lands, W. E. M., and Hart, P., 1965, Metabolism of glycerolipids. VI. Specificities of acyl coenzyme A: phospholipid acyltransferases, J. Biol. Chem. 240:1905.PubMedGoogle Scholar
  120. Lands, W. E. M., Blank, M. L., Nutter, L. J., and Privett, O. S., 1966a, A comparison of acyltransferase activities in vitro with the distribution of fatty acids in lecithins and triglycerides in vivo, Lipids 1:224.PubMedCrossRefGoogle Scholar
  121. Lands, W. E. M., Pieringer, R. A., Slakey, S. P. M., and Zschocke, A., 1966b, A micromethod for the stereospecific determination of triglyceride structure, Lipids 1:444.PubMedCrossRefGoogle Scholar
  122. Lapetina, E. G., and Hawthorne, J. N., 1971, The diglyceride kinase of rat cerebral cortex, Biochem. J. 122:171.PubMedGoogle Scholar
  123. Lea, M. A., and Walker, D. G., 1965, Factors affecting hepatic glycolysis and some changes that occur during development, Biochem. J. 94:655.PubMedGoogle Scholar
  124. Leal, R. S., and Greenbaum, A. L., 1961, The effect of pituitary growth hormone on phospholipid synthesis, Biochem. J. 80:27.PubMedGoogle Scholar
  125. Leat, W. M. F., and Cunningham, H. M., 1968, Pathways of lipid synthesis in the sheep intestine, Biochem. J. 109:38p.Google Scholar
  126. Lipkin, M., Sherlock, P., and Bell, B., 1963, Cell proliferation kinetics in the gastrointestinal tract of man. II. Cell renewal in stomach, ileum, colon and rectum, Gastroenterology 45:721.PubMedGoogle Scholar
  127. Lowry, O. H., Passonneau, J. V., Hasselberger, F. X., and Schultz, D. W., 1964, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem. 239:18.PubMedGoogle Scholar
  128. Lynch, R. D., and Geyer, R. P., 1972, Uptake of rac-glycerol 1-oleate and its utilization for glycerolipid synthesis by strain L fibroblasts, Biochim. Biophys. Acta 260:547.PubMedCrossRefGoogle Scholar
  129. Mangiapane, E. H., Lloyd-Davis, K. A., and Brindley, D. N., 1973, A study of some enzymes of glycerolipid biosynthesis in rat liver after subtotal hepatectomy, Biochem. J. 134:103.PubMedGoogle Scholar
  130. Manning, R., and Brindley, D. N., 1972, Tritium isotope effects in the measurement of the glycerol phosphate and dihydroxyacetone phosphate pathways of glycerolipid biosynthesis in rat liver, Biochem. J. 130:1003.PubMedGoogle Scholar
  131. Mansbach, C. M., II, 1973, Complex lipid synthesis in hamster intestine, Biochim. Biophys. Acta 296:386.PubMedCrossRefGoogle Scholar
  132. Mansbach, C. M., II, 1975, Effect of acute dietary alteration upon intestinal lipid synthesis, Lipids 10:318.PubMedCrossRefGoogle Scholar
  133. Maragoudakis, M. E., Hankin, H., and Wasvary, J. M., 1972, On the mode of action of lipid-lowering agents, J. Biol. Chem. 247:342.PubMedGoogle Scholar
  134. Marchis-Mouren, G., Sarda, L., and Desnuelle, P., 1959, Purification of hog pancreatic lipase, Arch. Biochem. Biophys. 83:309.PubMedCrossRefGoogle Scholar
  135. Marchis-Mouren, G., Sarda, L., and Desnuelle, P., 1960, Purification de la lipase a portir du sac pancreatique de porc, Biochim. Biophys. Acta 41:358.PubMedCrossRefGoogle Scholar
  136. Marsh, J. B., and Bizzi, A., 1972, Effects of amphetamine and fenfluramine on the net release of triglycerides of very low density lipoproteins by slices of rat liver, Biochem. Pharmacol. 21:1143.PubMedCrossRefGoogle Scholar
  137. Martensson, E., and Kanfer, J., 1968, The conversion of α-glycerol-14C-3-phosphate into phosphatidic acid by solubilized preparation from rat brain, J. Biol. Chem. 243:497.PubMedGoogle Scholar
  138. Mattson, F. H., and Volpenhein, R. A., 1962, Rearrangement of glyceride fatty acids during digestion and absorption, J. Biol. Chem. 237:53.PubMedGoogle Scholar
  139. Mattson, F. H., and Volpenhein, R. A., 1964, The digestion and absorption of triglycerides, J. Biol. Chem. 239:2772.PubMedGoogle Scholar
  140. McBride, O. W., and Korn, E. D., 1964, Acceptors of fatty acid for glyceride synthesis in guinea pig mammary gland, J. Lipid Res. 5:448.PubMedGoogle Scholar
  141. McCaman, R. E., Smith, M., and Cook, K., 1965, Intermediary metabolism of phospholipids in brain tissue. II. Phosphatidic acid Phosphatase, J. Biol. Chem. 240:3513.PubMedGoogle Scholar
  142. McMurray, W. C., Strickland, K. P., Berry, J. F., and Rossiter, R. J., 1957, Incorporation of 32P-labeled intermediates into the phospholipids of cell-free preparations of rat brain, Biochem. J. 66:634.PubMedGoogle Scholar
  143. Merkl, I., and Lands, W. E. M., 1963, Metabolism of glycerolipids. IV. Synthesis of phosphatidyl-ethanolamine, J. Biol. Chem. 238:905.PubMedGoogle Scholar
  144. Mishkin, S., and Turcotte, R., 1974, Stimulation of monoacylglycerophosphate formation by Z protein, Biochem. Biophys. Res. Commun. 60:376.PubMedCrossRefGoogle Scholar
  145. Mishkin, S., Stein, L., Gatmanan, Z., and Arias, I. M., 1972, The binding of fatty acids to cytoplasmic proteins: Binding to Z protein in liver and other tissues of the rat, Biochem. Biophys. Res. Commun. 47:997.PubMedCrossRefGoogle Scholar
  146. Mitchell, M. P., Brindley, D. N., and Hübscher, G., 1971, Properties of phosphatidate phospho-hydrolase, Eur. J. Biochem. 18:214.PubMedCrossRefGoogle Scholar
  147. Monroy, G., Rola, F. H., and Pullman, M. E., 1972, A substrate-and position-specific acylation of sn-glycerol 3-phosphate by rat liver mitochondria, J. Biol. Chem. 247:6884.PubMedGoogle Scholar
  148. Monroy, G., Chroboczek-Kelker, H., and Pullman, M. E., 1973, Partial purification and properties of an acyl coenzyme A: sn-glycerol 3-phosphate acyltransferase from rat liver mitochondria, J. Biol. Chem. 248:2845.PubMedGoogle Scholar
  149. Morley, N., and Kuksis, A., 1972, Positional specificity of lipoprotein lipase, J. Biol. Chem. 247:6389.PubMedGoogle Scholar
  150. Morley, N., and Kuksis, A., 1977, Lack of fatty acid specificity in the lipolysis of oligo-and poly-unsaturated triacylglycerols by milk lipoprotein lipase, Biochim. Biophys. Acta 487:332.PubMedCrossRefGoogle Scholar
  151. Morley, N. H., Kuksis, A., and Buchnea, D., 1974, Hydrolysis of synthetic triacylglycerols by pancreatic and lipoprotein lipase, Lipids 9:481.PubMedCrossRefGoogle Scholar
  152. Morley, N. H., Kuksis, A., Buchnea, D., and Myher, J. J., 1975, Hydrolysis of diacylglycerols by lipoprotein lipase, J. Biol. Chem. 250:3414.PubMedGoogle Scholar
  153. Morley, N., Kuksis, A., Hoffman, G. A. D., and Kakis, G., 1977, Preferential in vivo accumulation of sn-2,3-diacylglycerols in postheparin plasma of rats, Can. J. Biochem. 55:1075.PubMedCrossRefGoogle Scholar
  154. Negrel, R., and Ailhaud, G., 1975, Localization of the monoglyceride pathway enzymes in the villus tips of intestinal cells and their absence from the brush-border, FEBS Lett. 54:183.PubMedCrossRefGoogle Scholar
  155. Neptune, E. M., Sudduth, H. C., Brigance, W. H., and Brown, J. D., 1963, Lipid glyceride synthesis by rat skeletal muscle, Am. J. Physiol. 204:933.Google Scholar
  156. Nilsson-Ehle, P., Belfrage, P., and Borgström, B., 1971, Purified human lipoprotein lipase: Positional specificity, Biochim. Biophys. Acta 248:114.PubMedCrossRefGoogle Scholar
  157. Numa, S., and Yamashita, S., 1974, Regulation of lipogenesis in animal tissues, in: Current Topics in Cellular Regulation, Vol. 8 (B. L. Horecker and E. R. Stadtman, eds.), p. 197, Academic Press, New York.Google Scholar
  158. Ockner, R. K., Manning, J. A., Poppenhausen, R. B., and Ho, W. K. L., 1972, A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium and other tissues, Science 177:56.PubMedCrossRefGoogle Scholar
  159. O’Doherty, P. J. A., 1974, Studies on the control of triacylglycerol synthesis and release by rat intestine, thesis, University of Toronto, pp. 1-261.Google Scholar
  160. O’Doherty, P. J. A., and Kuksis, A., 1974a, Differential effect of puromycin on triacylglycerol and phosphatidylcholine synthesis in rat mucosal microsomes, Can. J. Biochem. 52:170.PubMedCrossRefGoogle Scholar
  161. O’Doherty, P. J. A., and Kuksis, A., 1974b, Microsomal synthesis of di-and tri-acylglycerols in rat liver and Ehrlich ascites cells, Can. J. Biochem. 52:514.PubMedCrossRefGoogle Scholar
  162. O’Doherty, P. J. A., and Kuksis, A., 1975a, Effect of puromycin in vitro on protein and glycerolipid biosynthesis in isolated epithelial cells of rat intestine, Int. J. Biochem. 6:435.CrossRefGoogle Scholar
  163. O’Doherty, P. J. A., and Kuksis, A., 1975b, Glycerolipid biosynthesis in isolated rat intestinal epithelial cells, Can. J. Biochem. 53:1010.PubMedCrossRefGoogle Scholar
  164. O’Doherty, P. J. A., and Kuksis, A., 1975c, Stimulation of triacylglycerol synthesis by Z protein in rat liver and intestinal mucosa, FEBS Lett. 60:256.PubMedCrossRefGoogle Scholar
  165. O’Doherty, P. J. A., Kuksis, A., and Buchnea, D., 1972a, Enantiomeric diglycerides as stereospecific probes in triglyceride synthesis in vitro, Can. J. Biochem. 50:881.PubMedCrossRefGoogle Scholar
  166. O’Doherty, P. J. A., Yousef, I. M., and Kuksis, A., 1972b, Glyceride metabolism in isolated mucosal cells, J. Am. Oil Chem. Soc. 49:306A.Google Scholar
  167. O’Doherty, P. J. A., Yousef, I. M., and Kuksis, A., 1972c, Differential effect of puromycin on triglyceride and phospholipid biosynthesis in isolated mucosal cells, Fed. Proc. Fed. Am. Soc. Exp. Biol. 31:2739.Google Scholar
  168. O’Doherty, P. J. A., Yousef, I. M., and Kuksis, A., 1973, Effect of puromycin on protein and glycerolipid biosynthesis in isolated mucosal cells, Arch. Biochem. Biophys. 156:586.PubMedCrossRefGoogle Scholar
  169. O’Doherty, P. J. A., Kuksis, A., and Buchnea, D., 1974a, Utilization of acyl-sn-glycerol cyclic phosphodiesters in glycerolipid synthesis, J. Am. Oil Chem. Soc. 51:504A.Google Scholar
  170. O’Doherty, P. J. A., Yousef, I. M., and Kuksis, A., 1974b, Effect of phosphatidylcholine on triacylglycerol synthesis in rat intestinal mucosa, Can. J. Biochem. 52:726.PubMedCrossRefGoogle Scholar
  171. O’Doherty, P. J. A., Yousef, I. M., Kakis, G., and Kuksis, A., 1975, Protein and glycerolipid biosynthesis in isolated intestinal epithelial cells of normal and bile fistula rats, Arch. Biochem. Biophys. 169:252.PubMedCrossRefGoogle Scholar
  172. Okuyama, H., and Lands, W. E. M., 1970, A test for the dihydroxyacetone phosphate pathway, Biochim. Biophys. Acta 218:376.CrossRefGoogle Scholar
  173. Okuyama, H., and Lands, W. E. M., 1972, Variable selectivities of acyl coenzyme A: monoacyl-glycerophate acyltransferase in rat liver, J. Biol. Chem. 247:1414.PubMedGoogle Scholar
  174. Okuyama, H., Lands, W. E. M., Christie, W. W., and Gunstone, F. D., 1969, Selective transfer of cyclopropane acids by acyl coenzyme A: phospholipid acyltransferase, J. Biol. Chem. 244:6514.PubMedGoogle Scholar
  175. Paltauf, F., and Johnston, J. M., 1971, The metabolism in vitro of enantiomeric 1-O-alkyl glycerols and 1,2-and 1,3-alkyl glycerols in the intestinal mucosa, Biochim. Biophys. Acta 239:47.PubMedCrossRefGoogle Scholar
  176. Paltauf, F., and Wagner, E., 1976, Stereospecificity of lipases, enzymatic hydrolysis of enantiomeric alkyldiacyl-and dialkylacylglycerols by lipoprotein lipase, Biochim. Biophys. Acta 431:359.PubMedCrossRefGoogle Scholar
  177. Paltauf, F., Esfandi, F., and Holasek, A., 1974, Stereospecificity of lipases: Enzymic hydrolysis of enantiomeric alkyl diacylglycerols by lipoprotein lipase, lingual lipase and pancreatic lipase, FEBS Lett. 40:119.PubMedCrossRefGoogle Scholar
  178. Paris, R., and Clement, G., 1965, Differences de comportement des acides oleique et palmitique au cours de la synthese de triglycerides a partir de l-monopalmitine par la muqueuse intestinale de rat, Biochim. Biophys. Acta 106:634.PubMedCrossRefGoogle Scholar
  179. Paris, R., and Clement, G., 1968, Biosynthese de triglycerides a partir de 2-monopalmitine doublement marquee dans la muqueuse intestinale de rat, Biochim. Biophys. Acta 152:63.PubMedCrossRefGoogle Scholar
  180. Paris, R., and Clement, G., 1969, Biosynthesis of lysophosphatidic acid from ATP and 1-mono-olein by subcellular particles of intestinal mucosa, Proc. Soc. Exp. Biol. Med. 131:363.PubMedGoogle Scholar
  181. Peled, Y., and Tietz, A., 1974, Acylation of monoglycerides by locus fat-body microsomes, FEBS Lett. 41:65.PubMedCrossRefGoogle Scholar
  182. Pereira, J. N., and Holland, G. F., 1970, Studies of the mechanism of action of p-chlorophenoxy-isobutyrate, in: Atherosclerosis: Proceedings of the Second International Symposium, pp. 549–554, Springer-Verlag, New York.Google Scholar
  183. Pestka, S., 1971, Inhibitors of ribosome functions, Ann. Rev. Biochem. 40:697.CrossRefGoogle Scholar
  184. Pieringer, R. A., and Hokin, L. E., 1962, Biosynthesis of lysophosphatidic acid from monoglyceride and adenosine triphosphate, J. Biol Chem. 237:653.PubMedGoogle Scholar
  185. Plackett, P., and Rodwell, A. W., 1970, Glycerolipid biosynthesis by Mycoplasma strain Y, Biochim. Biophys.Acta 210:230.PubMedCrossRefGoogle Scholar
  186. Polheim, D., David, J. S. K., Schultz, F. M., Wylie, M. B., and Johnston, J. M., 1973, Regulation of triglyceride biosynthesis in adipose and intestinal tissue, J. Lipid Res. 14:415.PubMedGoogle Scholar
  187. Pollock, R. J., Hajra, A. K., and Agranoff, B. W., 1975a, The relative utilization of the acyl dihydroxy-acetone phosphate and glycerol phosphate pathways for synthesis of glycerolipids in various tumors and normal tissues, Biochim. Biophys. Acta 380:421.PubMedCrossRefGoogle Scholar
  188. Pollock, R. J., Hajra, A. K., Folk, W. R., and Agranoff, B. W., 1975b, Use of [1 or 3-3H, U-14C]glucose to estimate the synthesis of glycerolipids via acyl dihydroxyacetone phosphate, Biochem. Biophys. Res. Commun. 65:658.Google Scholar
  189. Pope, J. L., McPherson, J. C., and Tidwell, H. C., 1966, A study of a monoglyceride-hydrolyzing enzyme of intestinal mucosa, J. Biol. Chem. 241:2306.PubMedGoogle Scholar
  190. Possmayer, F., Scherphof, G. L., Dubbelman, T. M. A. R., Van Golde, L. M. G., and Van Deenen, L. L. M., 1969, Positional specificity of saturated and unsaturated fatty acids in phosphatidic acid from rat liver, Biochim. Biophys. Acta 176:95.PubMedCrossRefGoogle Scholar
  191. Powell, G. K., and McElveen, M. A., 1974, Effect of prolonged fasting on fatty acid re-esterification in rat intestinal mucosa, Biochim. Biophys. Acta 369:8.PubMedCrossRefGoogle Scholar
  192. Prottey, C., and Hawthorne, J. N., 1967, The biosynthesis of phosphatidic acid and phosphatidyl-inositol in mammalian pancreas, Biochem. J. 105:379.PubMedGoogle Scholar
  193. Pynadath, T. I., and Kumar, S., 1964, Incorporation of short-and long-chain fatty acids into glycerides by lactating goat mammary tissue, Biochim. Biophys. Acta 84:251.PubMedGoogle Scholar
  194. Raghavan, S. S., and Ganguly, J., 1969, Studies on the positional integrity of glyceride fatty acids during digestion and absorption in rats, Biochem. J. 113:81.PubMedGoogle Scholar
  195. Rao, G. A., and Abraham, S., 1973, Deα-Glycerolphosphate dehydrogenase activity and levels of glyceride-glycerol precursors in mouse mammary tissues, Lipids 8:232.PubMedCrossRefGoogle Scholar
  196. Rao, G. A., and Johnston, J. M., 1966, Purification and properties of triglycerides synthetase from the intestinal mucosa, Biochim. Biophys. Acta 125:465.PubMedCrossRefGoogle Scholar
  197. Rapoport, S., Leva, E., and Guest, G. M., 1943, The distribution of acid-soluble phosphorus in the livers of rats, fed and fasting, J. Biol. Chem. 149:57.Google Scholar
  198. Reitz, R. C., Lands, W. E. M., Christie, W. W., and Holman, R. T., 1968, Effects of ethylenic bond position upon acyltransferase activity with isomeric cis,cis-octadecadienoyl coenzyme A thiol-esters, J. Bol. Chem. 243:2241.Google Scholar
  199. Reitz, R. C., El-Shiekh, M., Lands, W. E. M., Ismail, I. A., and Gunstone, F. D., 1969, Effects of ethylenic bond position upon acyltransferase activity with isomeric cis-octadecenoyl coenzyme A thiol esters, Biochim. Biophys. Acta 176:480.PubMedCrossRefGoogle Scholar
  200. Rizack, M. A., 1961, An epinephrine-sensitive lipolytic activity in adipose tissue, J. Biol. Chem. 236:657.Google Scholar
  201. Rizack, M. A., 1964, Activation of an epinephrine-sensitive lipolytic activity from adipose tissue by adenosine 3′,5′-phosphate, J. Biol. Chem. 239:392.PubMedGoogle Scholar
  202. Rizack, M. A., 1965, Mechanism of hormonal control of adipose tissue lipase, Ann. N.Y. Acad. Sci. 131:250.PubMedCrossRefGoogle Scholar
  203. Robinson, D. S., 1963, The clearing factor lipase and its action in the transport of fatty acids between the blood and the tissues, Adv. Lipid Res. 1:133.PubMedGoogle Scholar
  204. Rodgers, J. B., 1970, Lipid absorption and lipid-reesterifying enzyme activity in small bowel of the protein-deficient rat, Am. J. Clin. Nutr. 23:1331.PubMedGoogle Scholar
  205. Rodgers, J. B., Riley, E. M., Drummey, G. D., and Isselbacher, K. J., 1967, Lipid absorption in adrenalectomized rats: The role of altered enzyme activity in the intestinal mucosa, Gastro-enterology 53:547.Google Scholar
  206. Rognstad, R., Clark, D. G., and Katz, J., 1974, Pathways of glyceride glycerol synthesis, Biochem. J. 140:249.PubMedGoogle Scholar
  207. Roncari, D. A. K., and Hollenberg, C. H., 1967, Esterification of free fatty acids by subcellular preparations of rat adipose tissue, Biochim. Biophys. Acta 137:446.PubMedCrossRefGoogle Scholar
  208. Roncari, D. A. K., and Murthy, V. K., 1975, Effects of thyroid hormones on enzymes involved in fatty acid and glycerolipid synthesis, J. Biol Chem. 250:4134.PubMedGoogle Scholar
  209. Rossiter, R. J., and Strickland, K. P., 1958, Biogenesis of Phosphatides and triglycerides, Ann. N.Y. Acad. Sci. 72:790.CrossRefGoogle Scholar
  210. Sanchez de Jimenez, E., and Cleland, W. W., 1969, Studies on the microsomal acylation of l-glycerol-3-phosphate. I. The specificity of the rat brain enzyme, Biochim. Biophys. Acta 176:685.PubMedCrossRefGoogle Scholar
  211. Sarda, L., Marchis-Mouren, G., and Desnuelle, P., 1957, Sur les interactions de la lipase pancréatique avec triglycerides, Biochim. Biophys. Acta 24:425.PubMedCrossRefGoogle Scholar
  212. Sarda, L., Marchis-Mouren, G., and Desnuelle, P., 1958, Nouveaux essais de purification de la lipase pancréatique de porc, Biochim. Biophys. Acta 30:224.PubMedCrossRefGoogle Scholar
  213. Sarzala, M. G., Van Golde, L. M. G., De Kruyff, B., and Van Deenen, L. L. M., 1970, The intramitochondrial distribution of some enzymes involved in the biosynthesis of rat liver phospholipids, Biochim. Biophys. Acta 202:106.PubMedCrossRefGoogle Scholar
  214. Sastry, P. S., and Hokin, L. E., 1966, Studies on the role of phospholipids in phagocytosis, J. Biol. Chem. 241:3354.PubMedGoogle Scholar
  215. Sastry, P. S., and Kates, M., 1966, Biosynthesis of lipids in plants. II. Incorporation of glycero-phosphate-32P into Phosphatides by cell-free preparations from spinach leaves, Can. J. Biochem. 44:459.PubMedCrossRefGoogle Scholar
  216. Savary, P., Constantin, M. J., and Desnuelle, P., 1961, Sur la structure des triglycerides des chylomicrons lymphatiques du rat, Biochim. Biophys. Acta 48:562.PubMedCrossRefGoogle Scholar
  217. Schiller, C. M., 1970, Purification and properties of triglyceride synthetase, thesis, University of Texas, pp. 1-122.Google Scholar
  218. Schultz, F. M., and Johnston, J. M., 1971, The synthesis of higher glycerides via the monoglyceride pathway in hamster adipose tissues, J. Lipid Res. 12:132.PubMedGoogle Scholar
  219. Sedgwick, B., and Hübscher, G., 1965, Metabolism of phospholipids. IX. Phosphatidate phosphohydrolase in rat liver, Biochim. Biophys. Acta 106:63.PubMedCrossRefGoogle Scholar
  220. Sedgwick, B., and Hübscher, G., 1967, Metabolism of phospholipids. X. Partial purification and properties of a soluble phosphatidate phosphohydrolase from rat liver, Biochim. Biophys. Acta 144:397.PubMedCrossRefGoogle Scholar
  221. Senior, J. R., and Isselbacher, K. J., 1962, Direct esterification of monoglycerides with palmityl coenzyme A by intestinal epithelial subcellular fractions, J. Biol. Chem. 237:1454.PubMedGoogle Scholar
  222. Senior, J. R., and Isselbacher, K. J., 1963, Demonstration of an intestinal monoglyceride lipase: An enzyme with a possible role in the intracellular completion of fat absorption, J. Clin. Invest. 42:187.PubMedCrossRefGoogle Scholar
  223. Shapiro, B., Statter, M., and Rose, G., 1960, Pathways of triglyceride formation in adipose tissue, Biochim. Biophys. Acta 44:373.CrossRefGoogle Scholar
  224. Sherr, S. A., and Treadwell, C. R., 1965, Triglyceride biosynthesis from monoglycerides in isolated segments of intestinal mucosa: Utilization of an ether analogue of 2-monostearin, Biochim. Biophys. Acta 98:539.PubMedCrossRefGoogle Scholar
  225. Short, V. J., Brindley, D. N., and Dils, R., 1974, A new assay procedure for monoglyceride acyltransferase, Biochem. J. 141:407.PubMedGoogle Scholar
  226. Singh, A., Balint, J. A., Edmonds, R. G., and Rodgers, J. B., 1972, Adaptive changes of the rat small intestine in response to a high fat diet, Biochim. Biophys. Acta 260:708.PubMedCrossRefGoogle Scholar
  227. Skipski, V. P., Morehouse, M. G., and Deuel, H. J., Jr., 1959, The absorption in the rat of a 1,3-dioleoyl-2-deuteriostearyl glyceride-C14 and a 1-monodeutiostearyl glyceride-C14, Arch. Biochem. Biophys. 81:93.PubMedCrossRefGoogle Scholar
  228. Smith, M. E., Sedgwick, B., Brindley, D. N., and Hübscher, G., 1967, The role of phosphatidate phosphohydrolase in glyceride biosynthesis, Eur. J. Biochem. 3:70.PubMedCrossRefGoogle Scholar
  229. Snyder, F. L., 1972, Ether Lipids: Chemistry and Biology, Academic Press, New York.Google Scholar
  230. Snyder, F., Piantodosi, C., and Malone, B., 1970, The participation of 1-and 2-isomers of O-alkylglycerols as acyl acceptors in cell-free systems, Biochim. Biophys. Acta 202:244.PubMedCrossRefGoogle Scholar
  231. Srivastava, L. M., and Hübscher, G., 1966, Glucose metabolism in the mucosa of the small intestine, Biochem. J. 100:458.PubMedGoogle Scholar
  232. Stein, Y., and Shapiro, B., 1958, Glyceride synthesis by microsome fractions of rat liver, Biochim. Biophys. Acta 30:271.PubMedCrossRefGoogle Scholar
  233. Stein, Y., Stein, O., and Shapiro, B., 1963, Enzymic pathways of glyceride and phospholipid synthesis in aortic homogenates, Biochim. Biophys. Acta 70:33.PubMedCrossRefGoogle Scholar
  234. Steinberg, D., Vaughan, M., and Margolis, S., 1961, Studies of triglyceride biosynthesis in homogenates of adipose tissue, J. Biol. Chem. 236:1631.Google Scholar
  235. Stoffel, W., Schiefer, H. G., and Wolf, G. D., 1966, Untersuchunger über die Biosynthese von Membranphospholipoiden: Acylierung des Lysolecithins und der Lysophosphatidsäure durch Polyenfettsäuren, Z. Physiol. Chem. 347:102.CrossRefGoogle Scholar
  236. Stoffel, W., Tomas, M. E. D., and Schiefer, H. G., 1967, Die enzymatische Acylierung von Lysophosphatidsäure, gesättigtem und ungesättigtem Lysolecithin, Z. Physiol. Chem. 348:882.CrossRefGoogle Scholar
  237. Strickland, K. P., Subrahmanyam, D., Pritchard, E. T., Thompson, W., and Rossiter, R. J., 1963, Biosynthesis of lecithin in brain: Participation of cytidine diphosphate choline and phosphatidic acid, Biochem. J. 87:128.PubMedGoogle Scholar
  238. Sundler, R., and Akesson, B., 1970, The acylation of monoacylglycerol isomers by pig liver microsomes, Biochim. Biophys. Acta 218:89.PubMedCrossRefGoogle Scholar
  239. Sundler, R., Akesson, B., and Nilsson, A., 1974, Effect of different fatty acids on glycerolipid synthesis in isolated rat hepatocytes, J. Biol. Chem. 249:5102.PubMedGoogle Scholar
  240. Tamai, Y., Lands, W. E. M., Barve, J. A., and Gunstone, F. D., 1973, Selective transfer of acetylenic acids to form lecithins, Biochim. Biophys. Acta 296:563.PubMedCrossRefGoogle Scholar
  241. Tattrie, N. H., Bailey, R. A., and Kates, M., 1958, The action of pancreatic lipase on stereoisomeric triglycerides, Arch. Biochem. Biophys. 78:319.PubMedCrossRefGoogle Scholar
  242. Terner, C., and Korsh, G., 1962, The biosynthesis of C14-labeled lipids by isolated bull spermatozoa, Biochemistry 1:367.PubMedCrossRefGoogle Scholar
  243. Tidwell, H. C., and Johnston, J. M., 1960, An in vitro study of glyceride absorption, Arch. Biochem. Biophys. 89:79.PubMedCrossRefGoogle Scholar
  244. Tidwell, H. C., Pope, J. L., Askins, R. E., and McPherson, J. C., 1963, Specificity of a lipase of the intestinal mucosa, in: Biochemical Problems of Lipids, Vol. 1 (A. C. Frazer, ed.), pp. 217–222, Elsevier, Amsterdam.Google Scholar
  245. Tzur, R., Tal, E., and Shapiro, B, 1964, α-Glycerophosphate as regulatory factor in fatty acid esterification, Biochim. Biophys. Acta 84:18.PubMedGoogle Scholar
  246. Van den Bosch, H., Van Golde, L. M. G., Eibl, H., and Van Deenen, L. L. M., 1967, The acylation of acylglycero-3-phosphorylcholines by rat liver microsomes, Biochim. Biophys. Acta 144:613.PubMedCrossRefGoogle Scholar
  247. Van den Bosch, H., Van Golde, L. M. G., and Van Deenen, L. L. M., 1972, Dynamics of phosphoglycerides, Rev. Physiol. 66:13.Google Scholar
  248. Vaughan, M., 1961, Effect of hormones on glucose metabolism in adipose tissue, J. Biol. Chem. 236:2196.PubMedGoogle Scholar
  249. Vaughan, M., Berger, J. E., and Steinberg, D., 1964, Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue, J. Biol Chem. 239:401.PubMedGoogle Scholar
  250. Verdino, B., Blank, M. L., and Privett, O. S., 1965, Endogenous lipid composition of the intestinal lymph of rats raised on a fat-free lard or corn oil diet. J. Lipid Res. 6:356.PubMedGoogle Scholar
  251. Waite, M., and Sisson, P., 1976, Mode of action of the plasmalemma phospholipase from rat liver, in: Lipids, Vol. 1 (R. Paoletti, G. Porcellati, and G. Jacini, eds.), pp. 127–139, Raven Press, New York.Google Scholar
  252. Weiss, S. B., and Kennedy, E. P., 1956, The enzymatic synthesis of triglycerides, J. Am. Chem. Soc. 78:3550.CrossRefGoogle Scholar
  253. Weiss, S. B., Smith, S. W., and Kennedy, E. P., 1956, Net synthesis of lecithin in an isolated enzyme system, Nature (London) 178:594.CrossRefGoogle Scholar
  254. Weiss, S. B., Kennedy, E. P., and Kiyasu, J. Y., 1960, The enzymatic synthesis of triglycerides, J. Biol. Chem. 235:40.PubMedGoogle Scholar
  255. Westerfeld, W. W., Richert, D. A., and Ruegamer, W. R., 1968, The role of the thyroid hormone in the effect of p-chlorophenoxyisobutyrate in rats, Biochem. Pharmacol. 17:1003.PubMedCrossRefGoogle Scholar
  256. Wichert, P. V., 1962, Enzymatische Bestimmung von α-2-Glycerophosphat in normalen und belasteten Wormblüterorganën, Biochem. Z. 336:49.Google Scholar
  257. Wieland, O., and Suyter, M., 1958, Glycerokinase; Isolierung und eigenschaften des Enzymes, Biochem. Z. 329:320.Google Scholar
  258. Wilgram, G. F., and Kennedy, E. P., 1963, Intracellular distribution of some enzymes catalyzing reactions in the biosynthesis of complex lipids, J. Biol. Chem. 238:2615.PubMedGoogle Scholar
  259. Wills, E. D., 1960, The relation of metals and-SH groups to the activity of pancreatic lipase, Biochim. Biophys. Acta 40:481.PubMedCrossRefGoogle Scholar
  260. Wilson, J. S. D., and Galton, D. J., 1971, The effect of drugs on lipogenesis from glucose and palmitate in human adipose tissue, Horm. Metab. Res. 3:262.PubMedCrossRefGoogle Scholar
  261. Yamashita, S., and Numa, S., 1972, Partial purification and properties of glycerophosphate acyltransferase from rat liver, Eur. J. Biochem. 31:565.PubMedCrossRefGoogle Scholar
  262. Yamashita, S., Hosaka, K., and Numa, S., 1972, Resolution and reconstitution of the phosphatidate-synthesizing system of rat liver microsomes, Proc. Natl. Acad. Sci. (USA) 69:3490.CrossRefGoogle Scholar
  263. Yamashita, S., Hosaka, K., and Numa, S., 1973, Acyl-donor specificities of partially purified 1-acylglycerophosphate acyltransferase, 2-acylglycerophosphate acyltransferase and 1-acylglycerophosphoryl-choline acyltransferase from rat liver microsomes, Eur. J. Biochem. 38:25.PubMedCrossRefGoogle Scholar
  264. Yamashita, S., Nakaya, N., Miki, Y., and Numa, S., 1975, Separation of 1-acylglycerolphosphate acyltransferase and 1-acylglycerolphosphorylcholine acyltransferase of rat liver microsomes, Proc. Natl. Acad. Sci. (USA) 72:600.CrossRefGoogle Scholar
  265. Young, D. L., and Lynen, F., 1969, Enzymatic regulation of 3-sn-phosphatidylcholine and triacyl-glycerol synthesis in states of altered lipid metabolism, J. Biol. Chem. 244:377.PubMedGoogle Scholar
  266. Yousef, I. M., O’Doherty, P. J. A., and Kuksis, A., 1973, Ribosome profiles of mucosal cells of normal, bile fistula and puromycin treated rats, J. Nutr. 103:27.Google Scholar
  267. Zahler, W. L., and Cleland, W. W., 1969, Studies on the microsomal acylation of l-glycerol 3-phosphate. III. Time course of the reaction, Biochim. Biophys. Acta 176:699.PubMedCrossRefGoogle Scholar
  268. Zakim, D., Paradini, R. S., and Herman, R. H., 1970, Effect of Clofibrate (ethyl-chlorophenoxy-isobutyrate) feeding on glycolytic and lipogenic enzymes and hepatic glycogen synthesis in the rat, Biochem. Pharmacol. 19:305.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Patrick J. A. O’Doherty
    • 1
  1. 1.G. F. Strong Laboratory, Department of MedicineThe University of British ColumbiaVancouverCanada

Personalised recommendations