Stereospecific Synthesis of Enantiomeric Acylglycerols

  • Dmytro Buchnea
Part of the Handbook of Lipid Research book series (HLRE, volume 1)


The natural triacylglycerols are mixtures of glycerol esters containing one, two, or three different fatty acids per molecule. By means of stereospecific analysis of the mixed triacylglycerols, it has been possible to demonstrate that they are made up largely of asymmetrical or enantiomeric molecules. The isolation and identification of individual acylglycerols from such mixtures have proved extremely difficult because of the large variety of fatty acids represented and the great similarity in the physicochemical properties of their glycerol esters. With modern chromatographic methods, it has been possible to separate and identify natural triacylglycerols on the basis of their fatty acid composition, but a resolution of the positional isomers and enantiomers has not been achieved. Stereospecific chemical synthesis therefore remains the only means of obtaining pure enantiomeric triacylglycerols for physico-chemical and metabolic studies.


Protective Group Acyl Migration Cotton Effect Glycerol Molecule Stereospecific Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abderhalden, E., and Eichwald, E., 1914, Versuch über die Darstellung optisch aktiver Fette. I. Synthese optisch-aktiver Halogenglycerine, Berichte 47:1856.Google Scholar
  2. Abderhalden, E., and Eichwald, E., 1915, Darstellung von optisch-aktiver Dibromopropionsäure, Konfiguration der optisch-aktiver Glycerin-Derivative: Ihre Beziehung zur Glycerinsäure, Berichte 48:113.Google Scholar
  3. Åkesson, B., Gronowitz, S., and Herslöf, B., 1976, Stereospecificity of hepatic lipase, FEBS Lett. 51:241.CrossRefGoogle Scholar
  4. Anderson, E., and Sands, L., 1929, Crude mesquite gum β-l-aribinose, Organic Syntheses 8:18.Google Scholar
  5. André, E., and Bloch, A., 1935, Sur an nouveau groupe de lipides: Les ether—ester du glycerol (glycery-oxy-alcoyl diglycerides), Bull. Soc. Chim. Fr. 5(2):789.Google Scholar
  6. Angyal, S. J., and Hoskinson, R. M., 1962, l-Mannitol from l-inositol, in: Methods in Carbohydrate Chemistry, Vol. 1, p. 87, Academic Press, New York.Google Scholar
  7. Angyal, S. J., and MacDonald, C. G., 1952, Isopropylidene derivatives of inositol and quercitol: The structure of pinitol and quebrachitol, J. Chem. Soc. 1952:686.CrossRefGoogle Scholar
  8. Angyal, S. J., MacDonald, C. G., and Matheson, N. K., 1953, The structure of the di-O-isopropylidene derivatives of (—)-inositol and pinitol, J. Chem. Soc. 1953:3321.Google Scholar
  9. Anonymous, 1967, The nomenclature of lipids, J. Lipid Res. 8:523.Google Scholar
  10. Baer, E., 1945, 1,2,5,6-Diacetone d-mannitol and 1,2,5,6-diacetone l-mannitol, J. Am. Chem. Soc. 67:338.CrossRefGoogle Scholar
  11. Baer, E., 1952, l-α-Glycerophosphoric Acid (Barium Salt) Biochemical Preparation, Vol. 2 (E. G. Ball, ed.), p. 31, Wiley, New York.Google Scholar
  12. Baer, E., 1963, The synthesis of phospholipids, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 6 (R. T. Holman, W. O. Lundberg, T. Malkin, eds.), pp. 33–86, Pergamon Press, New York.Google Scholar
  13. Baer, E., 1965, From the trioses to the synthesis of natural phospholipids: A research trail of forty years, J. Am. Oil Chem. Soc. 42:257.PubMedCrossRefGoogle Scholar
  14. Baer, E., 1974, Alleged role of boric acid in detritylation of diacyl-triphenylmethyl-sn-glycerol ether by silicic acid, Lipids 9:833.PubMedCrossRefGoogle Scholar
  15. Baer, E., and Buchnea, D., 1958, Synthesis of unsaturated α,β-glycerides. I. d-α,β-diolein and l-α,β-diolein, J. Biol. Chem. 230:447.PubMedGoogle Scholar
  16. Baer, E., and Buchnea, D., 1959, Synthesis of l-α-(dioleoyl)-cephalin; with a comment on the stereo-chemical designation of glycerolphospholipides, J.Am. Chem. Soc. 81:1758.CrossRefGoogle Scholar
  17. Baer, E., and Fischer, H. O. L., 1939a, Studies on acetone-glyceraldehyde. VII. Preparation of 1-glyceraldehyde and 1(—)acetone glycerol, J. Am. Chem. Soc. 61:761.CrossRefGoogle Scholar
  18. Baer, E., and Fischer, H. O. L., 1939b, Studies on acetone-glyceraldehyde. IV. Preparation of d(+)acetone glycerol, J. Biol. Chem. 128:463.Google Scholar
  19. Baer, E., and Fischer, H. O. L., 1939c, Studies on acetone-glyceraldehyde. V. Synthesis of optically active glycerides from d(+)-acetone-glycerol, J. Biol. Chem. 128:475.Google Scholar
  20. Baer, E., and Fischer, H. O. L., 1941, Studies on acetone-glyceraldehyde, and optically active glycerides. IX. Configuration of natural batyl, chimyl, and selachyl alcohols, J. Biol. Chem. 140:397.Google Scholar
  21. Baer, E., and Fischer, H. O. L., 1945a, Synthesis of a homologous series of optically active normal aliphatic α-monoglycerides (l-series), J. Am. Chem. Soc. 67:2031.CrossRefGoogle Scholar
  22. Baer, E., and Fischer, H. O. L., 1945b, Conversion of d(+)acetone glycerol into its enantiomorph, J. Am. Chem. Soc. 67:944.CrossRefGoogle Scholar
  23. Baer, E., and Fischer, H. O. L., 1947, Naturally occurring glycerol ethers. III. Selachyl alcohol and its geometrical isomer, J. Biol. Chem. 170:337.Google Scholar
  24. Baer, E., and Mahadevan, V., 1959, Synthesis of l-α-lecithins containing shorter chain fatty acids, water-soluble glycerol-phosphatides, J. Am. Chem. Soc. 81:2494.CrossRefGoogle Scholar
  25. Baer, E., Rubin, L. J., and Fischer, H. O. L., 1944, Naturally occurring glycerol ethers. II. Synthesis of selachyl alcohol, J. Biol. Chem. 155:447.Google Scholar
  26. Baer, E., Buchnea, D., and Newcombe, A. G., 1956, Synthesis of unsaturated α-lecithins. I. l-α-(Dioleoyl)-lecithin, J. Am. Chem. Soc. 78:232.CrossRefGoogle Scholar
  27. Baggett, N., Dobinson, B., Foster, A. B., Homer, J., and Thomas, L. F., 1961, Proton magnetic resonance studies of some derivatives of 5-hydroxyl-1,3-dioxane(1,3-methylidene-glycerol), Chem. Ind. (London) 1961:106.Google Scholar
  28. Ballou, C. E., and Fischer, H. O. L., 1953, Derivatives of d-manno-hexodialdose (6-aldo-d-mannose), J. Am. Chem. Soc. 75:3673.CrossRefGoogle Scholar
  29. Baumann, W. J., 1972, The chemical syntheses of alkoxylipids in: Ether Lipids (F. Snyder, ed.), pp. 51–79, Academic Press, New York.Google Scholar
  30. Baumann, W. J., and Mangold, H. K., 1964, Reaction of aliphatic methanesulfonates. I. Syntheses of long-chain glycerol-(l) ethers, J. Org. Chem. 29:3055.CrossRefGoogle Scholar
  31. Baumann, W. J., and Mangold, H. K., 1966, Reaction of aliphatic methanesulfonates. II. Syntheses of long-chain di-and trialkyl glycerol ethers, J. Org. Chem. 31:498.CrossRefGoogle Scholar
  32. Baumann, W. J., and Ulshöfer, H. W., 1968, Characteristic absorption bands of naturally-occurring long-chain ethers, esters and ether esters of glycerol and various diols. Chem. Phys. Lipids 2:114.PubMedCrossRefGoogle Scholar
  33. Baumann, W. J., Mahadevan, V., and Mangold, H. K., 1966, Optisch aktive synthetische und naturliche O-Alkyl-glyceride, Hoppe-Seyler’s Physiol. Chem. 347:52.CrossRefGoogle Scholar
  34. Bergmann, L., 1957, Eine Apparatur zur Messung der Piezoelektrizität. Z. Instrumentenkd. 65:2.Google Scholar
  35. Bergmann, M., and Carter, N. M., 1930, Synthese von β-Glyceriden, Z. Physiol. Chem. 191:211.CrossRefGoogle Scholar
  36. Bergmann, M., and Sabetay, S., 1924, Über α-Monoglyceride Hochmolekularen Fettesäuren, Z. Physiol. Chem. 137:47.CrossRefGoogle Scholar
  37. Bergmann, M., Brand, E., and Dreyer, F., 1921, Synthese von α,β-Diglyceriden und unsymmetrische Triglyceriden, Berichte 54:936.Google Scholar
  38. Bligh, E. G., and Dyer, W. J., 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol. 37:911.PubMedCrossRefGoogle Scholar
  39. Borgström, B., 1952, Investigation on lipid separation methods: Separation of phospholipids from neutral fat and fatty acids, Acta Physiol. Scand. 25:101.PubMedCrossRefGoogle Scholar
  40. Bourne, E. J., Stacey, M., Tatlow, T. C., and Tedder, J. M., 1949, Studies on trifluoroacetic acid. I. Trifluoroacetic anhydride as promoter of ester formation between hydroxycompounds and carboxylic acids, J. Chem. Soc. 1949:2976.CrossRefGoogle Scholar
  41. Breckenridge, W. C., and Kuksis, A., 1968, Specific distribution of short-chain fatty acids in molecular distillates of bovine milk fat, J. Lipid Res. 9:388.PubMedGoogle Scholar
  42. Breckenridge, W. C., and Kuksis, A., 1969, Structure of bovine milk fat triglycerides. II. Long-chain length, Lipids 4:1.CrossRefGoogle Scholar
  43. Brockerhoff, H. J., 1965, Stereospecific analysis of triglycerides, J. Lipid Res. 6:10.PubMedGoogle Scholar
  44. Brockerhoff, H. J., 1967, Stereospecific analysis of triglycerides: An alternative method, J. Lipid Res. 8:167.PubMedGoogle Scholar
  45. Brockerhoff, H. J., Hoyle, R. J., and Wolmark, N., 1966, Positional distribution of fatty acids in triglycerides of animal depot fats, Biochim. Biophys. Acta 116:67.PubMedCrossRefGoogle Scholar
  46. Brockerhoff, H. J., Hoyle, R. J., Hwang, P. C., and Litchfield, C., 1968, Positional distribution of fatty acids in depot triglycerides of aquatic animals, Lipids 3:24.PubMedCrossRefGoogle Scholar
  47. Buchnea, D., 1967a, Synthesis and conversion of bis-glycerol ethers. III. Disproportionation of 1,2-isopropylidene-glycerol-3-glycerol ether to bis(1,2-isopropylidene-glycerol-3)-ether and bis-glycerol ether, Chem. Phys. Lipids 1:177.CrossRefGoogle Scholar
  48. Buchnea, D., 1967b, Synthesis and conversion of bis-glycerol ethers. IV. Mechanism of disproportion-ation of 1,2-isopropylidene-3-glycerol-3-glycerol ether to bis(1,2-isopropylidene-glycerol-3)-ether and bis-glycerol ether, Chem. Phys. Lipids 6:734.Google Scholar
  49. Buchnea, D., 1967c, Acyl migration in glycerides. I. A bimolecular resonant ion complex as intermediate in acyl migration of monoglycerides, Chem. Phys. Lipids 1:113.CrossRefGoogle Scholar
  50. Buchnea, D., 1971, Synthesis of C-18 mixed acid diacyl-sn-glycerol enantiomers, Lipids 6:734.CrossRefGoogle Scholar
  51. Buchnea, D., 1974, Detritylation by silicic acid and boric acid column chromatography, Lipids 9:55.CrossRefGoogle Scholar
  52. Buchnea, D., and Baer, E., 1960, Synthesis of enantiomeric mixed-acid α,β-diglycerides, J. Lipid Res. 1:405.Google Scholar
  53. Bus, J., Lok, C. M., and Groenewengen, A., 1976, Determination of enantiomeric purity of glycerides with PMR shift reagent, Chem. Phys. Lipids 16:123.PubMedCrossRefGoogle Scholar
  54. Cahn, R. S., Ingold, C. K., and Prelog, V., 1956, The specification of asymmetric configuration in organic chemistry, Experientia 12:81.CrossRefGoogle Scholar
  55. Cahn, R. S., Ingold, C. K., and Prelog, V., 1966, Specification of molecular chirality, Angew. Chem. Int. Ed. Engl. 5:385.CrossRefGoogle Scholar
  56. Chacko, G. M., and Hanahan, D. J., 1968, Chemical synthesis of 1-O(d) and 3-O(l) glycerol monoethers, diethers and derivatives: Glycerides, monoester phospholipids and diester phospholipids, Biochim. Biophys. Acta 164:252.PubMedCrossRefGoogle Scholar
  57. Chapman, D., 1965a, The Structure of Lipids by Spectroscopy and X-Ray Techniques, Methuen, London.Google Scholar
  58. Chapman, D., 1965b, Infra-red spectroscopy of lipids, J. Am. Oil Chem. Soc. 42:353.PubMedCrossRefGoogle Scholar
  59. Christie, W. W., and Moore, J. H., 1969, A semimicro method for the stereospecific analysis of triglycerides, Biochim. Biophys. Acta 176:445.PubMedCrossRefGoogle Scholar
  60. Coleman, M. H., and Fulton, W. C., 1961, The structural investigation of natural fats by the partial hydrolysis technique, in: Enzymes of Lipid Metabolism (P. Desnuelle, ed.), pp. 127–137, Pergamon Press, New York.Google Scholar
  61. Crabbe, P., 1965, An introduction to optical rotatory dispersion and circular dichroism in organic chemistry, in: Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry (G. Snatzke, ed.), Chap. 1, Heyde and Son, London.Google Scholar
  62. Crossley, A., Freeman, I. P., Hudson, B. J. F., and Pierce, J. H., 1959, Acyl migration in diglycerides, J. Chem. Soc. 152:760.CrossRefGoogle Scholar
  63. Cunningham, J., and Gigg, R., 1965, Glycerol 1,2-carbonate, J. Chem. Soc. 1965:1553.Google Scholar
  64. Daemen, F. J. M., 1967, A convenient synthesis of phosphatidylethanolamines, Chem. Phys. Lipids 1:476.CrossRefGoogle Scholar
  65. Daemen, F. J. M., de Haas, G. H., and van Deenen, L. L. M., 1963, An improved synthesis of mixed acid l-α-phosphatidylethanolamine containing a polyunsaturated fatty acid, Rec. Trav. Chim. Pays-Bas 82:487.CrossRefGoogle Scholar
  66. Daubert, B. F., 1940, Preparation of fatty acid β-monoglycerides, J. Am. Chem. Soc. 62:1713.CrossRefGoogle Scholar
  67. Daubert, B. F., and King, C. G., 1938, The relative stability of aromatic and aliphatic monoglycerides, J. Am. Chem. Soc. 60:3003.CrossRefGoogle Scholar
  68. Daubert, B. F., and King, C. G., 1941, Synthetic fatty acid glycerides of known constitution, Chem. Rev. 29:269.CrossRefGoogle Scholar
  69. Davies, W. H., Heilborn, I. M., and Jones, W. E., 1934, The unsaponifiable matter from the oil of elasmobranch fish. X. The structure of batyl alcohol and the synthesis of α-octadecyl glycerol ether, J. Chem. Soc. 1934:1232.CrossRefGoogle Scholar
  70. de Haas, G. H., and van Deenen, L. L. M., 1961, Synthesis of enantiomeric mixed-acid Phosphatides, Rec. Trav. Chim. Pays-Bas 80:951.CrossRefGoogle Scholar
  71. Fierz-David, H. E., and Kuster, W., 1939, Herstellung der Chloriden der Fattsäuren von der Propion-bis zur Nonadecansäure, Helv. Chim. Acta 22:82.CrossRefGoogle Scholar
  72. Fischer, E., 1890, Synthese der Mannose und Levulose (1-Mannit), Berichte 23:375.Google Scholar
  73. Fischer, E., and Brauns, F., 1914, Verwandlung der d-Isopropylmalonaminsäure in den optischen Antipoden durch Vertauschung von Carboxyl-und Säureamide-Grupe, Berichte 47:3181.Google Scholar
  74. Fischer, E., Bergmann, M., and Barwind, E., 1920, Neue Synthese von α-Monoglyceriden, Berichte 53:1589.Google Scholar
  75. Fischer, H. O. L., and Baer, E., 1930, Über Hydrozinoderivative des Glycerinaldehyds und Dioxy-Acetons, Berichte 63:1749.Google Scholar
  76. Fischer, H. O. L., and Baer, E., 1937, Synthese optisch-aktiver Glyceride, Naturwissenschaften 25(36):588.CrossRefGoogle Scholar
  77. Fischer, H. O. L., and Baer, E., 1941, Preparation and properties of optically active derivatives of glycerols, Chem. Rev. 29:287.CrossRefGoogle Scholar
  78. Fischer, H. O. L., and Taube, C., 1927, Über Acetonieren mit Zinkchlorid, Berchite 60:485.Google Scholar
  79. Fritz, J. S., and Schenk, E. H., 1959, Acid catalyzed acetylation of organic hydroxyl groups, Anal. Chem. 31:1808.CrossRefGoogle Scholar
  80. Gigg, J., and Gigg, R., 1967a, Preparation of unsymmetrical diglycerides, J. Chem. Soc. 1967:431.Google Scholar
  81. Gigg, J., and Gigg, R., 1967b, 1-O-Benzyl-l-glycerol and d-(glycerol 1,2-carbonate), J. Chem. Soc. 1967:1865.Google Scholar
  82. Gronowitz, S., Herslöf, B., Ohlson, R., and Toregard, B., 1975, ORD and CD studies of saturated glycerides, Chem. Phys. Lipids 14:174.PubMedCrossRefGoogle Scholar
  83. Grün, A., and Limpächer, R., 1927, Spaltung asymmetrischer Glyceride in die Antipoden. I. Über optisch aktiven Glycerid-Schwefelsäuren und die Thermolabilität des Drehungsvermögens ihrer Salze, Berichte 60:255.Google Scholar
  84. Gunstone, F. D., 1967, An Introduction to the Chemistry and Biochemistry of Fatty Acids and Their Glycerides, pp. 138–149, Chapman and Hall, London.Google Scholar
  85. Gupta, S. C., and Kummerow, F. A., 1959, An improved procedure for preparing glycerol ethers, J. Org. Chem. 24:409.CrossRefGoogle Scholar
  86. Hanahan, D. J., and Jayko, M. E., 1952, The isolation of dipalmitoleoyl-l-α-glycerylphosphorylcholine from yeast: A new route to (dipalmitoyl)-l-α-lecithin, J. Am. Chem. Soc. 74:5070.CrossRefGoogle Scholar
  87. Hartman, L., 1958, Advances in the synthesis of glycerides of fatty acids, Chem. Rev. 58:845.CrossRefGoogle Scholar
  88. Hartman, L., 1959, Hydrolysis of isopropylidene esters of fatty acids, J. Chem. Soc. 1959:4134.Google Scholar
  89. Haverkate, F., and van Deenen, L. L. M., 1965, Isolation and chemical characterization of phosphatidyl glycerol from spinach leaves, Biochim. Biophys. Acta 106:78.PubMedCrossRefGoogle Scholar
  90. Helferich, B., and Sieber, H., 1927, Zur Synthese partiall acylierter Glyceride, Z. Physiol. Chem. 170:31.CrossRefGoogle Scholar
  91. Helferich, B., and Sieber, H., 1928, Zur Synthese partiall acylierter Glyceride, Z. Physiol. Chem. 175:311.CrossRefGoogle Scholar
  92. Hibbert, H., and Carter, N. M., 1929, Mechanism of organic reactions. I. Wandering of acyl groups in glycerol esters, J. Am. Chem. Soc. 51:1601.CrossRefGoogle Scholar
  93. Hill, E. E., and Lands, W. E. M., 1970, Phospholipid metabolism, in: Lipid Metabolism (S. J. Wakil, ed.), pp. 185–277, Academic Press, New York.Google Scholar
  94. Hirschmann, H., 1960, The nature of substrate asymmetry in stereoselective reactions, J. Biol. Chem. 235:2762.PubMedGoogle Scholar
  95. Hopkins, C. Y., 1965, Nuclear magnetic resonance of fatty acids and lipids, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 8 (R. T. Holman, W. O. Lundberg, and T. Malkin, eds.), p. 213, Pergamon Press, New York.Google Scholar
  96. Howe, R. J., and Malkin, T., 1951, An X-ray and thermal examination of glycerides. XL The 1:2-diglycerides and further observations on 1:3-diglycerides, J. Chem. Soc. 1951:2663.CrossRefGoogle Scholar
  97. Ingold, C. K., 1973, Kinetics of nucleophilic aliphatic substitution: Second-order and first-order reaction, in: Organic Chemistry, 3rd ed. (R. T. Morrison and R. N. Boyd, eds.), pp. 459–460, Allyn and Bacon, Boston.Google Scholar
  98. Irvine, J. C., Mac Donald, J., and Soutar, C. W., 1915, Condensation of acetone and benzylidene with glycerol: Preparation of α-methyl ether, J. Chem. Soc. 1915:335.Google Scholar
  99. Jensen, R. G., 1972, Synthetic glycerides, in: Topics in Lipid Chemistry, Vol. 3 (F. G. Gunstone, ed.), pp. 1–35, Wiley, New York.Google Scholar
  100. Jensen, R. G., and Gordon, D. T., 1972, The synthesis of phosphoglycerides, Lipids 7:621.Google Scholar
  101. Jensen, R. G., and Pitas, R. E., 1976, Synthesis of some acyl-glycerols and phospholipids, in: Advances in Lipid Research, Vol. 14 (R. Paoletti and D. Kritchevsy, eds.), pp. 213–247, Academic Press, New York.Google Scholar
  102. Jensen, R. G., Quinn, J. G., and Sampugna, J., 1970, Pancreatic lipolysis of enantiomeric triglycerides, Lipids 5:580.PubMedCrossRefGoogle Scholar
  103. Karnovsky, M. L., and Hauser, G., 1960, The synthesis and metabolism of enantiomeric forms of glycerol-1-C14, J. Biol. Chem. 226:881.Google Scholar
  104. Karnovsky, M. L., and Wolff, D., 1960, Studies on the stereospecificity of lipids, in: Fifth International Conference on Biochemistry of Lipids (G. Popjak, ed.), Pergamon Press, New York.Google Scholar
  105. Kates, M., 1972, Techniques of lipidology, in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 3, pp. 267–600, American Elsevier, New York.CrossRefGoogle Scholar
  106. Kates, M., Chan, T. H., and Stanacev, N. Z., 1963, Aliphatic diether analogs of glyceride-derived lipids. I. Synthesis of d-α,β-dialkyl glycerol ethers, Biochemistry 2:394.PubMedCrossRefGoogle Scholar
  107. Kaufmann, H. P., and Förster, N., 1960, Über Fettsäurenester des Diglycerins, Fette Seifen Anstrichm. 62:796.CrossRefGoogle Scholar
  108. Kennedy, E. P., and Weiss, S. B., 1956, The function of cytidine coenzymes in the biosynthesis of phospholipides, J. Biol. Chem. 222:193.PubMedGoogle Scholar
  109. Kiliani, H., 1887, Über das Doppellakon des Metazuckersäure, Berichte 20:2710.Google Scholar
  110. Kiliani, H., 1922, Darstellung von l-Mannonsäure und l-Glykonsäure, Berichte 55:100.Google Scholar
  111. Kiliani, H., 1925, Darstellung von l-Mannonsäure und l-Glykonsäure, Berichte 58:2349.Google Scholar
  112. Lands, W. E. M., and Zschocke, A., 1965, New synthesis of (l)-1-O-benzylglycerol, J. Lipid Res. 6:324.PubMedGoogle Scholar
  113. Lands, W. E. M., Pieringer, R. A., Slakey, S. P. M., and Zschocke, A., 1966, A micromethod for the stereospecific determination of triglyceride structure, Lipids 1:444.PubMedCrossRefGoogle Scholar
  114. Lok, C. M., Ward, J. P., and van Dorp, D. A., 1976, The synthesis of chiral glycerides starting from d-and l-serine, Chem. Phys. Lipids 16:115.PubMedCrossRefGoogle Scholar
  115. Maier, R., and Holman, R. T., 1964, Naturally occurring triglycerides possessing optical activity in the glycerol moiety, Biochemistry 3:270.PubMedCrossRefGoogle Scholar
  116. Malkin, T., and Bevan, T. H., 1957, The synthesis of glycerides, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 4 (R. T. Holman, W. O. Lundberg, and T. Malkin, eds.), pp. 63–77, Pergamon Press, New York.Google Scholar
  117. Mangold, H. K., and Malins, D. C., 1960, Fractionation of fats, oil and waxes, J. Am. Oil Chem. Soc. 37:383.CrossRefGoogle Scholar
  118. Mank, A. P. J., Ward, J. P., and van Dorp, D. A., 1976, A versatile, flexible synthesis of 1,3-diglycerides and triglycerides, Chem. Phys. Lipids 16:107.PubMedCrossRefGoogle Scholar
  119. Martin, J. B., 1953, Preparation of saturated and unsaturated symmetrical monoglycerides, J. Am. Chem. Soc. 75:5482.CrossRefGoogle Scholar
  120. Mattson, F. H., and Volpenhein, R. A., 1962, Synthesis and properties of glycerides, J. Lipid Res. 3:281.Google Scholar
  121. Mattson, F. H., Volpenhein, R. A., and Martin, J. B., 1964, Esterification of hydroxy compounds by fatty acid anhydride, J. Lipid Res. 5:374.PubMedGoogle Scholar
  122. Morley, N. H., Kuksis, A., and Buchnea, D., 1974, Hydrolysis of triacylglycerols by pancreatic and lipoprotein lipase, Lipids 9:481.PubMedCrossRefGoogle Scholar
  123. Morley, N. H., Kuksis, A., Buchnea, D., and Myher, J. J., 1975, Hydrolysis of diacylglycerols by lipoprotein lipase, J. Biol. Chem. 250:3414.PubMedGoogle Scholar
  124. Morris, L. J., 1965a, The detection of optical activity in natural asymmetric triglycerides, Biochem. Biophys. Res. Commun. 20:340.PubMedCrossRefGoogle Scholar
  125. Morris, L. J., 1965b, A synthetic optically active trialiphatic triglyceride and a method for the detection of optical activity in natural asymmetric triglycerides, Biochem. Biophys. Res. Commun. 18:495.PubMedCrossRefGoogle Scholar
  126. Ness, A. T., Hann, R. M., and Hudson, C. S., 1943, The acetolysis of trimethylene-d-mannitol: 2,5-Methylene-d-mannitol, J. Am. Chem. Soc. 65:2215.CrossRefGoogle Scholar
  127. O’Connor, R. T., 1961, Recent progress in application of infra-red absorption spectroscopy to lipid chemistry, J. Am. Oil Chem. Soc. 38:648.CrossRefGoogle Scholar
  128. O’Doherty, P. J. A., Kuksis, A., and Buchnea, D., 1972, Enantiomeric diglycerides as stereospecific probes in triglyceride synthesis in vitro, Can. J. Biochem. 50:881.PubMedCrossRefGoogle Scholar
  129. Ogston, A. G., 1948, Interpretation of experiments on metabolic processes using isotopic tracer elements, Nature (London) 18:963.CrossRefGoogle Scholar
  130. Palameta, B., and Kates, M., 1966, Aliphatic diether analogs of glycerol-derived lipids. III. Synthesis of dialkenyl and mixed alkylalkenylglycerol ethers, Biochemistry 5:618.PubMedCrossRefGoogle Scholar
  131. Paltauf, F., 1971, Metabolism of the enantiomeric 1-O-alkylglycerol ethers in the rat intestinal mucosa in vivo: Incorporation into 1-O-alkyl and 1-O-alk 1′-enyl glycerol lipids, Biochim. Biophys. Acta 239:38.PubMedCrossRefGoogle Scholar
  132. Paltauf, F., and Johnston, J. M., 1971, The metabolism of enantiomeric 1-O-alkyl glycerols and 1,2-and 1,3-alkyl acyl glycerols in the intestinal mucosa, Biochim. Biophys. Acta 239:47.PubMedCrossRefGoogle Scholar
  133. Paltauf, F., and Spener, F., 1968, An improved synthesis of 1,2-dialkyl glycerol ethers and synthesis of 14C-labelled trialkyl glycerol ethers, Chem. Phys. Lipids 2:168.PubMedCrossRefGoogle Scholar
  134. Paltauf, F., and Wagner, E., 1976, Stereospecificity of lipases, enzymatic hydrolysis of enantiomeric alkyldiacyl-and diacyl-alkylglycerols by lipoprotein lipase, Biochim. Biophys. Acta 431:359.PubMedCrossRefGoogle Scholar
  135. Paltauf, F., Esfandi, F., and Holasek, A., 1974, Stereospecificity of lipases: enzymatic hydrolysis of enantiomeric alkyl diacyl-glycerols by lipoprotein lipase, lingual lipase and pancreatic lipase, FEBS Lett. 40:119.PubMedCrossRefGoogle Scholar
  136. Pfeiffer, F. R., Cohen, S. R., Williams, K. R., and Weisbach, A., 1968, Glycerolipids. I. Synthesis of d and l mono-and polyunsaturated 1,2-diglycerides via glycerol carbonates, Tetrahedron Lett. 32:3549.CrossRefGoogle Scholar
  137. Quinn, J. G., Sampugna, J., and Jensen, R. G., 1967, Synthesis of 100-gram quantities of highly purified mixed acid triglycerides, J. Am. Oil Chem. Soc. 44:439.CrossRefGoogle Scholar
  138. Ryhage, R., and Stenhagen, E., 1960, Mass spectroscopy in lipid research, J. Lipid Res. 1:361.PubMedGoogle Scholar
  139. Schlenk, W., 1962, Optische Aktivität Bei Triglyceriden: Festschrift Karl Wuster 60 Gerbutstag, p. 105, Chem. Abstr. 57:14930g.Google Scholar
  140. Schlenk, W., 1965a, Synthesis and analysis of optically active triglycerides, J. Am. Oil Chem. Soc. 42:945.PubMedCrossRefGoogle Scholar
  141. Schlenk, W., 1965b, Neuere Ergebnisse der Konfigurationsforschung, Angew. Chem. 77:161.CrossRefGoogle Scholar
  142. Schmid, H. H. O., and Mangold, H. K., 1966, Neutrale Plasmalogene und Alkoxydiglyceride in menschlichem Depotfett, Biochem. Z. 346:13.Google Scholar
  143. Schmid, H. H. O., Baumann, W. J., and Mangold, H. K., 1967, The structure and configuration of “neutral plasmalogens,” J. Am. Chem. Soc. 89:4797.PubMedCrossRefGoogle Scholar
  144. Schulz, M., and Tollens, B., 1896, Über die Verbindungen der mehrwertigen Alkohole mit Formaldehyde, Ann. Chem. 289:21.Google Scholar
  145. Schwartz, P., and Carter, H. E., 1954, A nonenzymatic illustration of “citric acid type” asymmetry: The meso-carbon atom, Proc. Natl. Acad. Sci. (USA) 40:499.CrossRefGoogle Scholar
  146. Serdarevich, B., 1967, Glyceride isomerization in lipid chemistry, J. Am. Oil Chem. Soc. 44:381.CrossRefGoogle Scholar
  147. Serdarevich, B., and Carroll, K. K., 1966, Synthesis and characterization of 1-and 2-monoglycerol ethers of antesio fatty alcohols, and reinvestigation of benzylidene glycerol synthesis, Can. J. Biochem. 44:743.PubMedGoogle Scholar
  148. Shvets, V. I., 1971, Advances in the synthesis of glycerol Phosphatide esters, Russ. Chem. Rev. 40:330.CrossRefGoogle Scholar
  149. Slotboom, A. J., and Bonsen, P. P. M., 1970, Recent developments in the chemistry of phospholipids, Chem. Phys. Lipids 5:301.PubMedCrossRefGoogle Scholar
  150. Sowden, J. C., 1962, α-l-Glucose and l-mannose from l-arabinose by the nitromethane synthesis, Methods Carbohyd. Chem. 1:132–135.Google Scholar
  151. Sowden, J. C., and Fischer, H. O. L., 1941, Optically active α-β-diglyceride, J. Am. Chem. Soc. 63:3244.CrossRefGoogle Scholar
  152. Sprecher, H. W., Maier, R., and Holman, R. T., 1965, Structure of an optically active allene-containing tetraester triglyceride isolated from the seed oil of Sapium sebiferum, Biochemistry 4:1856.CrossRefGoogle Scholar
  153. Stegerhock, L. J., and Verkade, P. E., 1956a, Ester derived from batyl alcohol, Rec. Trav. Chim. Pays-Bas 75:143.CrossRefGoogle Scholar
  154. Stegerhock, L. J., and Verkade, P. E., 1956b, Phosphoric acid and derivatives. IV. Phosphoric acid derived from batyl alcohol, Rec. Trav. Chim. Pays-Bas 75:467.CrossRefGoogle Scholar
  155. Stimmel, B. F., and King, C. G., 1934, Preparation and properties of α-monoglycerides, J. Am. Chem. Soc. 63:3244.Google Scholar
  156. Stoffel, W., and Pruss, H. D., 1969, Monolayer studies with synthetic saturated, mono-and polyunsaturated mixed 1,2-diglycerides, 1,2-diacylphosphatidylethanolamines and phosphatidylcholines at the air-water-interface, Z. Physiol. Chem. 350:1385.CrossRefGoogle Scholar
  157. Tattrie, N. H., Bailey, R. A., and Kates, M., 1958, The action of pancreatic lipase on stereoisomeric triglycerides, Archiv. Biochem. Biophys. 78:319.CrossRefGoogle Scholar
  158. Thomas, A. E., Scharoun, J. E., and Ralston, H., 1965, Quantitative estimation of isomeric monoglycerides by thin-layer chromatography, J. Am. Oil Chem. Soc. 42:789.CrossRefGoogle Scholar
  159. van Deenen, L. L. M., and de Haas, G. H., 1964, The synthesis of phospholipids and some biochemical applications, in: Advances in Lipid Research, Vol. 2 (R. Paoletti and D. Kritchevsky, eds.), p. 167, Academic Press, New York.Google Scholar
  160. Vander Wal, R. J., 1960, Calculation of distribution of the saturated and unsaturated acyl groups in fats from pancreatic lipase hydrolysis data, J. Am. Oil Chem. Soc. 37:18.CrossRefGoogle Scholar
  161. Verkade, P. E., 1953, Synthesis of glycerides, Chim. Ind. (Paris) 69:239.Google Scholar
  162. Verkade, P. E., and van Roon, J. D., 1942, Über die Benzylidene-Glycerols, Rec. Trav. Chim. Pays-Bas 61:831.CrossRefGoogle Scholar
  163. Vogel, A. I., 1959, Textbook of Practical Organic Chemistry, Third Ed., II-49, p. 189, Longmans, Spottiswopd, Ballantyne and Co. Ltd., London and Colchester.Google Scholar
  164. Weiss, S. B., Kennedy, E. P., and Kiyasu, J. Y., 1960, The enzymatic synthesis of triglycerides, J. Biol. Chem. 235:40.PubMedGoogle Scholar
  165. Wickberg, B., 1958, Synthesis of 1-glycerol d-galactopyranosides, Acta Chem. Scand. 12:1187.CrossRefGoogle Scholar
  166. Windholz, T. B., and Johnston, D. B. R., 1967, Trichloroethoxycarbonyl: A generally applicable protecting group, Tetrahedron Lett. 27:2555.CrossRefGoogle Scholar
  167. Woodward, R. B., 1966, Recent advances in the chemistry of natural products, Science 153:487.PubMedCrossRefGoogle Scholar
  168. Woodward, R. B., Heusler, K., Gosteli, J., Naegeli, P., Oppolzer, W., Ramage, S., Raganathan, S., and Vorbugen, H., 1966, The total synthesis of Cephalosporin C1, J. Am. Chem. Soc. 88:852.CrossRefGoogle Scholar
  169. Wright, W. R., and Tove, S. B., 1967, Metabolism of 1-palmitoyl dioleoyl and 3-palmitoyl dioleoyl glycerol by adipose tissue, Biochim. Biophys. Acta 137:54.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Dmytro Buchnea
    • 1
  1. 1.Banting and Best Department of Medical ResearchUniversity of TorontoTorontoCanada

Personalised recommendations