Advertisement

Separation and Determination of the Structure of Acylglycerols and Their Ether Analogues

  • John J. Myher
Part of the Handbook of Lipid Research book series (HLRE, volume 1)

Abstract

This chapter describes the techniques that are used for the separation and structural characterization of neutral glycerolipids having one to three molecules of fatty acid (esters) or alcohol (ethers) combined with the hydroxyl groups of glycerol. The emphasis is placed on practical considerations, and theoretical discussions are either brief or absent. Although references quoted in this chapter often do not indicate the original source of a procedure or idea, such information can be found within the comprehensive reviews that are cited in each section.

Keywords

Neutral Lipid Carbon Number Equivalent Chain Length Glyceryl Ether Trimethylsilyl Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aasen, A. J., Lauer, W. M., and Holman, R. T., 1970, Mass spectrometry of triglycerides. II. Specifically deuterated triglycerides and elucidation of fragmentation mechanisms, Lipids 5:869.PubMedCrossRefGoogle Scholar
  2. Aitzetmüller, K., 1975, The liquid chromatography of lipids: A critical review, J. Chromatogr. 113:231.PubMedCrossRefGoogle Scholar
  3. Anonymous, 1967, IUPAC-IUB Commission of Biochemical Nomenclature. The nomenclature of lipids, Biochemistry 105:897.Google Scholar
  4. Arpino, P., Baldwin, M. A., and McLafferty, F. W., 1974a, Liquid chromatography—mass spectrometry. II. Continuous monitoring. Biomed. Mass Spectrom. 1:80.PubMedCrossRefGoogle Scholar
  5. Arpino, P. J., Dawkins, B. G., and McLafferty, F. W., 1974b, A liquid chromatography/mass spectrometry system providing continuous monitoring with nanogram sensitivity, J. Chromatogr. Sci. 12:574.Google Scholar
  6. Assmann, G., Krauss, R. M., Frederickson, D. S., and Levy, R. I., 1973, Positional specificity of triglyceride lipases in post heparin plasma, J. Biol. Chem. 248:7148.Google Scholar
  7. Bailey, G. F., and Horvat, R. J., 1972, Raman spectroscopic analysis of the cis/trans isomer composition of edible vegetable oils, J. Am. Oil Chem. Soc. 49:494.CrossRefGoogle Scholar
  8. Barbano, D. M., and Sherbon, J. W., 1975, Stereospecific analysis of high melting triglycerides of bovine milk fat and their biosynthetic origin, J. Dairy Sci. 58:1.PubMedCrossRefGoogle Scholar
  9. Barber, M., Merren, T. O., and Kelly, W., 1964, The mass spectrometry of large molecules. I. The triglycerides of straight chain fatty acids, Tetrahedron Lett. 18:1063.CrossRefGoogle Scholar
  10. Barber, M., Chapman, J. R., and Wolstenholme, W. A., 1968, Lipid analysis by coupled mass spectrometry—gas chromatography (MS-GLC). 1. Diglycerides, J. Mass. Spectrometry Ion Phys. 1:98.CrossRefGoogle Scholar
  11. Barrett, C. B., Dallas, M. S. J., and Padley, F. B., 1962, The separation of glycerides by thin-layer chromatography on silica impregnated with silver nitrate, Chem. Ind. (London) 1962:1050.Google Scholar
  12. Baumann, W. J., and Ulshöfer, H. W., 1968, Characteristic absorption bands and frequency shifts in the infrared spectra of naturally-occurring long-chain ethers, esters and ether esters of glycerol and various diols, Chem. Phys. Lipids 2:114.PubMedCrossRefGoogle Scholar
  13. Baumann, W. J., Madson, T. H., and Weseman, B. J., 1972, “Plasmalogen-type” cyclic acetals: Formation and conformation of the 1,3-dioxanes and 1,3-dioxolanes from 1-O-cis-alk-1-enyl-sn-glycerols, J. Lipid Res. 13:640.PubMedGoogle Scholar
  14. Bellamy, L. J., 1958, The Infrared Spectra of Complex Molecules, 2nd ed., Methuen, London.Google Scholar
  15. Bezard, J., and Bugaut, M., 1972, The component triglycerides of rat adipose tissue. I. As studied after fractionation into classes by silver ion—thin-layer chromatography, J. Chromatogr. Sci. 10:451.PubMedGoogle Scholar
  16. Biemann, K., 1962, Mass Spectrometry: Organic Chemical Applications, McGraw-Hill, New York.Google Scholar
  17. Blank, M. L., and Snyder, F., 1975, Quantitative aspects of thin-layer chromatography in the analysis of phosphorus-free lipids, in: Analysis of Lipids and Lipoproteins (E. G. Perkins, ed.), pp. 63–69, American Oil Chemists’ Society, Champaign, Ill.Google Scholar
  18. Blank, M. L., Verdino, B., and Privett, O. S., 1965, Determination of triglyceride structure via silver nitrate—TLC, J. Am. Oil Chem. Soc. 42:87.PubMedCrossRefGoogle Scholar
  19. Blank, M. L., Kasama, K., and Snyder, F., 1972, Isolation and identification of an alkyldiacylglycerol containing isovaleric acid, J. Lipid Res. 13:390.PubMedGoogle Scholar
  20. Blank, M. L., Cress, E. A., Piantadosi, C., and Snyder, F., 1975, A method for the quantitative determination of glycerolipids containing O-alkyl and O-alk-1-enyl moieties, Biochim. Biophys. Acta 380:208.PubMedCrossRefGoogle Scholar
  21. Blankenhorn, D. H., Rouser, G., and Weimer, T. J., 1961, A method for the estimation of blood glycerides employing Florisil, J. Lipid Res. 2:281.Google Scholar
  22. Bligh, E. G., and Dyer, W. J., 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol. 37:911.PubMedCrossRefGoogle Scholar
  23. Blomberg, J., 1974, Unusual lipids. II. Head oil of the North Atlantic pilot whale, Globicephala melaena malaena, Lipids 9:461.Google Scholar
  24. Breckenridge, W. C., and Kuksis, A., 1967, Specific distribution of short chain fatty acids in bovine milk fat, Proc. Can. Fed. Biol. Soc. 10:156.Google Scholar
  25. Breckenridge, W. C., and Kuksis, A., 1968, Structure of bovine milk fat triglycerides. I. Short and medium chain lengths, Lipids 3:291.PubMedCrossRefGoogle Scholar
  26. Breckenridge, W. C., and Kuksis, A., 1969, Structure of bovine milk fat triglycerides. II. Long chain lengths, Lipids 4:197.PubMedCrossRefGoogle Scholar
  27. Breckenridge, W. C., Marai, L., and Kuksis, A., 1969, Triglyceride structure of human milk fat, Can. J. Biochem. 47:761.PubMedCrossRefGoogle Scholar
  28. Brockerhoff, H., 1971, Stereospecific analysis of triglycerides, Lipids 6:942.PubMedCrossRefGoogle Scholar
  29. Budzikiewicz, H., Djerassi, C., and Williams, D. H., 1967, Mass Spectrometry of Organic Compounds, Holden-Day, San Francisco.Google Scholar
  30. Bugaut, M., and Bezard, J., 1973, The component triglycerides of rat adipose tissue. II. As studied after fractionation of classes into groups by gas liquid chromatography, J. Chromatogr. Sci. 11:36.Google Scholar
  31. Burlingame, A. L., Kimble, B. J., and Derrick, P. J., 1976, Mass spectrometry, Anal. Chem. 48:368R.CrossRefGoogle Scholar
  32. Burton, R. M., 1974, Lipid extraction and separation procedures, in: Fundamentals of Lipid Chemistry (R. M. Burton and F. C. Guerra, eds.), pp. 11–45, BI-Science Publications Division, Webster Groves, Mo.Google Scholar
  33. Carroll, D. I., Dzidic, L, Stillwell, R. N., Haegele, K. D., and Horning, E. C., 1975, Atmospheric pressure ionization mass spectrometry: Corona discharge ion source for use in lipid chromatograph—mass spectrometer—computer analytical system, Anal. Chem. 47:2369.CrossRefGoogle Scholar
  34. Carroll, K. K., 1976, Column chromatography of neutral glycerides and fatty acids, in: Lipid Chromatographic Analysis, Vol. 1 (G. V. Marinetti, ed.), pp. 205–237, Marcel Dekker, New York.Google Scholar
  35. Casparrini, G., Horning, M. G., and Horning, E. C., 1968, Gas chromatographic study of phosphatidylserines, Anal. Lett. 1:481.CrossRefGoogle Scholar
  36. Chapman, D., 1965, The Structure of Lipids by Spectroscopic and X-ray Techniques, Wiley, New York.Google Scholar
  37. Chapman, D., and Magnus, P. D., 1966, Introduction to Practical High Resolution NMR Spectroscopy, Academic Press, New York.Google Scholar
  38. Christie, W. W., 1969, The glyceride structure of Sapium sebiferum seed oil, Biochim, Biophys. Acta 187:1.CrossRefGoogle Scholar
  39. Corey, E. J., and Venkateswarlu, A., 1972, Protection of hydroxyl groups as tert-butyldimethylsilyl derivatives, J.Am. Chem. Soc. 94:6190.CrossRefGoogle Scholar
  40. Cram, S. P., and Juvet, R. S., Jr., 1976, Gas chromatography, Anal. Chem. 48:411R.CrossRefGoogle Scholar
  41. Culp, T. W., Harlow, R. D., Litchfield, D., and Reiser, R., 1965, Analysis of triglycerides by consecutive chromatographic techniques. II. Ucuhaba kernel fat, J. Am. Oil Chem. Soc. 42:974.PubMedCrossRefGoogle Scholar
  42. Curstedt, T., 1974, Mass spectra of trimethylsilyl ethers of 2H-labelled mono-and diglycerides, Biochim. Biophys. Acta 360:12.PubMedCrossRefGoogle Scholar
  43. Curstedt, T., and Sjövall, J., 1974, Analysis of molecular species of 2H-labelled phosphatidylcholines by liquid-gel chromatography and gas chromatography—mass spectrometry, Biochim. Biophys. Acta 360:24.PubMedCrossRefGoogle Scholar
  44. Davenport, J. B., 1971, Infrared spectroscopy of lipids, in: Biochemistry and Methodology of Lipids (A. R. Johnson and J. B. Davenport, eds.), pp. 231–242, Wiley-Interscience, New York.Google Scholar
  45. De Stefano, J. J., and Kirkland. J. J., 1975a, Preparative high-performance liquid chromatography, Part I, Anal. Chem. 47:1103A.Google Scholar
  46. De Stefano, J. J., and Kirkland, J. J., 1975b, Preparative high-performance liquid chromatography, Part II, Anal. Chem. 47:1193A.Google Scholar
  47. Dyer, J. R., 1965, Applications of Absorption Spectroscopy of Organic Compounds, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  48. Ellingboe, J. E., Nyström, J. F., and Sjövall, J., 1968, A versatile lipophilic Sephadex derivative for “reversed-phase” chromatography, Biochim. Biophys. Acta 152:803.PubMedCrossRefGoogle Scholar
  49. Ellingboe, J. E., Nyström, J. F., and Sjövall, J., 1970, Liquid-gel chromatography on lipophilic-hydrophobic Sephadex derivatives, J. Lipid Res. 11:266.PubMedGoogle Scholar
  50. Evans, N., Games, D. E., Harwood, J. L., and Jackson, A. H., 1974, Field-desorption mass spectrometry of triglycerides and phospholipids, Biochem. Soc. Trans. 2:1091.Google Scholar
  51. Fales, H. M., Milne, G. W. A., Winkler, H. U., Beckey, H. D., Damico, J. N., and Barron, R., 1975, Comparison of mass spectra of some biologically important compounds as obtained by various ionization techniques, Anal. Chem. 47:207.CrossRefGoogle Scholar
  52. Ferrell, W. J., Radloff, J. F., and Jackiw, A. B., 1969, Quantitative analysis of free and bound fatty aldehydes: Optimum conditions for p-nitrophenyl-hydrazone formation, Lipids 4:278.PubMedCrossRefGoogle Scholar
  53. Fiorti, J. A., Kanuk, M. J., and Sims, R. J., 1969, Gas chromatography of epoxyglycerides, J. Chromatogr. Sci. 7:448.Google Scholar
  54. Folch, J., Lees, M., and Sloane-Stanley, G. H., 1957, A simple method for the isolation and purification of lipid extracts from brain tissue, J. Biol. Chem. 191:833.Google Scholar
  55. Freeman, N. K., 1968, Applications of infrared absorption spectroscopy in the analysis of lipids, J. Am. Oil Chem. Soc. 45:798.CrossRefGoogle Scholar
  56. Gelman, R. A., and Gilbertson, J. R., 1969, The quantitative and qualitative analysis of alkyl α-glycerol ethers as alkoxy acetaldehydes, Anal. Biochem. 31:463.PubMedCrossRefGoogle Scholar
  57. Gray, G. M., 1969, The preparation and assay of long-chain fatty aldehydes, in: Methods in Enzymology (J. M. Lowenstein, ed.), pp. 678–684, Academic Press, New York.Google Scholar
  58. Griffiths, P. R., 1975, Chemical Infrared Fourier Transform Spectroscopy, Wiley-Interscience, New York.Google Scholar
  59. Gunstone, F. D., and Padley, F. B., 1965, Glyceride studies. Part III. The component glycerides of five seed oils containing linolenic acid, J. Am. Oil. Chem. Soc. 42:957.PubMedCrossRefGoogle Scholar
  60. Haken, J. K., 1974, Influence of reference substances on retention behavior of homologous compounds on stationary phases of increasing polar character, J. Chromatogr. 99:329.CrossRefGoogle Scholar
  61. Hallgren, B., and Larsson, S., 1962, The glyceryl ethers in the liver oils of elasmobranch fish, J. Lipid Res. 3:31.Google Scholar
  62. Hallgren, B., and Ställberg, G., 1967, Methoxy-substituted glycerol ethers isolated from Greenland shark liver oil, Acta Chem. Scand. 21:1519.CrossRefGoogle Scholar
  63. Hallgren, B., Niklasson, A., Ställberg, G., and Thorin, H., 1974, On the occurrence of 1-O-(2-methoxyalkyl)glycerols and 1-O-phytanylglycerol in marine animals, Acta Chem. Scand. B28:1035.CrossRefGoogle Scholar
  64. Hamming, M. C., and Foster, N. G,, 1972, Interpretation of Mass Spectra of Organic Compounds, Academic Press, New York.Google Scholar
  65. Hammond, E. G., 1969, The resolution of complex triglyceride mixtures, Lipids 4:246.PubMedCrossRefGoogle Scholar
  66. Hanahan, D. J., 1972, Ether-linked lipids: Chemistry and methods of measurement, in: Ether Lipids, Chemistry and Biology (F. Snyder, ed.), pp. 25–50, Academic Press, New York.Google Scholar
  67. Hanahan, D. J., Ekholm, J., and Jackson, C. M., 1963, Studies on the structure of glyceryl ether phospholipids of bovine erythrocytes, Biochemistry 2:630.PubMedCrossRefGoogle Scholar
  68. Hasegawa, K., and Suzuki, T., 1973, Determination of molecular species of ovolecithin using gas chromatography—mass spectrometry, Lipids 8:631.PubMedCrossRefGoogle Scholar
  69. Hasegawa, K., and Suzuki, T., 1975, Examination of acetolysis products of phosphatidylcholine by gas chromatography-mass spectrometry, Lipids 10:667.PubMedCrossRefGoogle Scholar
  70. Hites, R. A., 1970, Quantitative analysis of triglyceride mixtures by mass spectrometry, Anal. Chem. 42:1736.CrossRefGoogle Scholar
  71. Hites, R. A., 1975, Mass spectrometry of triglycerides, in: Methods of Biochemical Analysis, Vol. XXXV (J. M. Lowenstein, ed.), pp. 348–359, Wiley-Interscience, New York.Google Scholar
  72. Holla, K. S., Horrocks, L. A., and Cornwell, D. G., 1964, Improved determination of glycerol and fatty acids in glycerides and ethanolamine Phosphatides by gas—liquid chromatography, J. Lipid Res. 5:263.PubMedGoogle Scholar
  73. Horning, E. C., Carroll, D. I., Dzidic, I., Haegele, K. D., Horning, M. G., and Stillwell, R. N., 1974, Atmospheric pressure ionization (API) mass spectrometry: Solvent-mediated ionization of samples introduced in solution and in a liquid Chromatograph effluent stream, J. Chromatogr. Sci. 12:725.PubMedGoogle Scholar
  74. Horning, M. G., Casparrini, G., and Horning, E. C., 1969, The use of gas phase analytical methods for the analysis of phospholipids, J. Chromatogr. Sci. 7:267.Google Scholar
  75. Horning, M. G., Murakami, S., and Horning, E. C., 1971, Analyses of phospholipids, ceramides and cerebrosides by gas chromatography—mass spectrometry, Am. J. Clin. Nutr. 24:1086.PubMedGoogle Scholar
  76. Horrocks, L. A., and Cornwell, D. G., 1962, The simultaneous determination of glycerol and fatty acids in glycerides by gas—liquid chromatography, J. Lipid Res. 3:165.Google Scholar
  77. Huebner, V. R., 1959, Preliminary studies on the analysis of mono-and di-glycerides by GLPC, J. Am. Oil Chem. Soc. 36:262.CrossRefGoogle Scholar
  78. Jackman, L. M., and Sternhill, S., 1969, Applications to NMR Spectroscopy in Organic Chemistry, Pergamon Press, New York.Google Scholar
  79. James, A. T., and Martin, A. J. P., 1952, Gas—liquid partition chromatography: The separation and microestimation of volatile fatty acids from formic acid to dodecanoic acid, Biochem. J. 50:679.PubMedGoogle Scholar
  80. James, A. T., and Martin, A. J. P., 1956, Gas—liquid chromatography: The separation and identification of the methyl esters of saturated and unsaturated acids from formic acid to n-octadecanoic acid, Biochem. J. 63:144.PubMedGoogle Scholar
  81. Johnson, C. B., and Holman, R. T., 1966, Mass spectrometry of lipids. II. Monoglycerides, their diacetyl derivatives and their trimethylsilyl ethers, Lipids 1:371.PubMedCrossRefGoogle Scholar
  82. Jost, U., 1974, 1-Alkyl-2,3-diacyl-sn-glycerol, the major lipid in the harderian gland of rabbits, Hoppe-Seyler’s Z. Physiol. Chem. 355:422.PubMedCrossRefGoogle Scholar
  83. Joustra, M., Söderquist, B., and Fisher, L., 1967, Gel filtration in organic solvents, J. Chromatogr. 28:21.PubMedCrossRefGoogle Scholar
  84. Jurriens, G., and Kroesen, A. C. J., 1965, Determination of glyceride composition of several solid and liquid fats, J. Am. Oil Chem. Soc. 42:9.PubMedCrossRefGoogle Scholar
  85. Kasama, K., Rainey, W. T., and Snyder, F., 1973, Chemical identification and enzymic synthesis of a newly discovered lipid class—hydroxyalkylglycerols, Arch. Biochim. Biophys. 154:648.CrossRefGoogle Scholar
  86. Kates, M., 1972, Techniques of Lipidology: Isolation, Analysis and Identification of Lipids, American Elsevier, New York.Google Scholar
  87. Kelly, R. W., and Taylor, P. L., 1976, Analysis of steroids and Prostaglandins by gas phase methods, Anal. Chem. 48:465.PubMedCrossRefGoogle Scholar
  88. Kirkland, J. J., 1972, High-performance liquid chromatography with porous silica microspheres, J. Chromatogr. Sci. 10:593.Google Scholar
  89. Kleiman, R., Miller, R. W., Earle, F. R., and Wolff, I. A., 1967, (s)-1,2-Diacyl-3-acetins: Optically active triglycerides from Euonymus verrucosus seed oil, Lipids 2:473.PubMedCrossRefGoogle Scholar
  90. Kleiman, R., Spencer, G. F., Earle, F. R., Nieschlag, H. J., and Barclay, A. S., 1972, Tetra-acid triglycerides containing a new hydroxy eicosadienoyl moiety in Lequerella auriculata seed oil, Lipids 7:660.CrossRefGoogle Scholar
  91. Kuksis, A., 1967, Gas chromatography of neutral glycerides, in: Lipid Chromatographic Analysis, Vol. 1 (G. V. Marinetti, ed.), pp. 239–337, Marcel Dekker, New York.Google Scholar
  92. Kuksis, A., 1971, Gas—liquid chromatographic fractionation of natural diglycerides on organo-silicone—polyester liquid phases, Can. J. Biochem. 49:1245.PubMedCrossRefGoogle Scholar
  93. Kuksis, A., 1972a, New developments in the determination of structure of glycerides and phosphoglycerides, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 12 (R. T. Holman, ed.), pp. 1–163, Pergamon Press, New York.Google Scholar
  94. Kuksis, A., 1972b, Gas—liquid chromatographic fractionation of natural diglycerides on stabilized polyester liquid phases, J. Chromatogr. Sci. 10:53.Google Scholar
  95. Kuksis, A., 1973, Progress in the analysis of lipids. XIII. Gas chromatography, Part 5, Fette Seifen Anstrichm. 75:517.CrossRefGoogle Scholar
  96. Kuksis, A., 1975, Gas liquid chromatography of neutral lipids, in: Analysis of Lipids and Lipoproteins (E. G. Perkins, ed.), pp. 26–62, American Oil Chemists’ Society, Champaign, Ill.Google Scholar
  97. Kuksis, A., 1976, Gas chromatography of neutral acylglycerols, in: Lipid Chromatographic Analysis, Vol. 1 (G. V. Marinetti, ed.), 2nd ed., pp. 215–337, Marcel Dekker, New York.Google Scholar
  98. Kuksis, A., and Breckenridge, W. C., 1968, Triglyceride composition of milk fats, in: The Symposium: Dairy Lipids and Lipid Metabolism (M. F. Brink and D. Kritchevsky, eds.), pp. 28–98, Avi Publishing Co., Westport, Conn.Google Scholar
  99. Kuksis, A., and Ludwig, J., 1966, Fractionation of triglyceride mixtures by preparative gas chromatography, Lipids 1:202.PubMedCrossRefGoogle Scholar
  100. Kuksis, A., and Marai, L., 1967, Determination of the complete structure of natural lecithins, Lipids 2:217.PubMedCrossRefGoogle Scholar
  101. Kuksis, A., and Myher, J. J., 1976, Analysis of subsets of molecular species of glycerophospholipids, in: Lipids, Vol. 1 (R. Paoletti, G. Porcellati, and G. Jacini, eds.), pp. 23–38, Raven Press, New York.Google Scholar
  102. Kuksis, A., Marai, L., and Gornall, D. A., 1967, Direct gas chromatographic examination of total lipid extracts, J. Lipid Res. 8:352.PubMedGoogle Scholar
  103. Kuksis, A., Marai, L., Breckenridge, W. C., Gornall, D. A., and Stachnyk, O., 1968a, Molecular species of lecithins of some functionally distinct rat tissues, Can. J. Physiol. Pharmacol. 46:511.PubMedCrossRefGoogle Scholar
  104. Kuksis, A., Breckenridge, W. C., Marai, L., and Stachnyk, O., 1968b, Quantitative gas chromatography in the structural characterization of glyceryl Phosphatides, J. Am. Oil Chem. Soc. 45:537.PubMedCrossRefGoogle Scholar
  105. Kuksis, A., Marai, L., and Myher, J. J., 1973, Triglyceride structure of milk fats, J. Am. Oil Chem. Soc. 50:193.PubMedCrossRefGoogle Scholar
  106. Kuksis, A., Myher, J. J., Marai, L., and Geher, K., 1975a, Determination of plasma lipid profiles by automated gas chromatography and computerized data analysis, J. Chromatogr. Sci. 13:423.PubMedCrossRefGoogle Scholar
  107. Kuksis, A., Myher, J. J., Marai, L., Yeung, S. K. F., Steiman, I., and Mookerjea, S., 1975b, Distribution of newly formed fatty acids among glycerolipids of isolated perfused rat liver, Can. J. Biochem. 53:509.PubMedCrossRefGoogle Scholar
  108. Kuntz, F., 1973, Separation of “neutral” lipids, particularly of all classes of partial glycerides by one-dimensional thin-layer chromatography, Biochim. Biophys. Acta 296:331.CrossRefGoogle Scholar
  109. Landowne, R. A., and Lipski, S. R., 1961, A simple method for distinguishing between unsaturated and branched fatty acid isomers by gas chromatography, Biochim. Biophys. Acta 47:589.PubMedCrossRefGoogle Scholar
  110. Lauer, W. M., Aasen, A. J., Graff, G., and Holman, R. T., 1970, Mass spectrometry of triglycerides. I. Structural effects, Lipids 5:861.PubMedCrossRefGoogle Scholar
  111. Lindqvist, B., Sjögren, I., and Nordin, R., 1974, Preparative fractionation of triglyceride mixtures according to acyl carbon number, using hydroxyalkoxypropyl Sephadex, J. Lipid Res. 15:65.PubMedGoogle Scholar
  112. Litchfield, C., 1968, Triglyceride analysis by consecutive liquid-liquid partition and gas—liquid chromatography. Ephedra nevadensis seed fat, Lipids 3:170.PubMedCrossRefGoogle Scholar
  113. Litchfield, C., 1972, Analysis of Triglycerides, Academic Press, New York.Google Scholar
  114. Litchfield, C., Harlow, R. D., and Reiser, R., 1967, Gas—liquid chromatography of triglyceride mixtures containing both odd and even carbon number fatty acids, Lipids 2:363.PubMedCrossRefGoogle Scholar
  115. Mahadevan, V., 1976, Thin-layer chromatography of neutral glycerides and fatty acids, in: Lipid Chromatographic Analysis, Vol. 3 (G. V. Marinetti, ed.), 2nd ed., pp. 777–789, Marcel Dekker, New York.Google Scholar
  116. Maier, R., and Holman, R. T., 1964, Naturally occurring triglycerides possessing optical activity in the glycerol moiety, Biochemistry 3:270.PubMedCrossRefGoogle Scholar
  117. Malins, D. C., and Varanasi, U., 1972, Isovaleric acid in acoustic tissues of porpoises: Triacylglycerols resistant to porcine pancreatic lipase, in: Proceedings of XIX Colloquium, Protides of Biological Fluids (Peeters, ed.), pp. 127–129, Pergamon, Oxford.Google Scholar
  118. Mangold, H. K., 1969, Aliphatic lipids, in: Thin-Layer Chromatography (E. Stahl, ed.), pp. 363–421, Springer-Verlag, New York.Google Scholar
  119. McCloskey, J. A., 1969, Mass spectrometry of lipids and steroids, in: Methods in Enzymology, Vol. XIV (J. M. Lowenstein, ed.), pp. 382–450, Academic Press, New York.Google Scholar
  120. McFadden, W. H., 1973, Techniques of Combined Gas Chromatography/Mass Spectrometry: Applications in Organic Analysis, Wiley-Interscience, New York.Google Scholar
  121. McLafferty, F. W., 1973, Interpretation of Mass Spectra, W. A. Benjamin, Reading, Mass.Google Scholar
  122. McLafferty, F. W., Knutti, R., Venkataraghavan, R., Arpino, P. J., and Dawkins, B. G., 1975, Continuous mass spectrometric monitoring of a liquid chromatograph with subnanogram sensitivity using an on-line computer, Anal. Chem. 47:1503.CrossRefGoogle Scholar
  123. McReynolds, W. O., 1970, Characterization of some liquid phases, J. Chromatogr. Sci. 8:685.Google Scholar
  124. Mikolajczak, K. L., and Smith, C. R., Jr., 1967, Optically active trihydroxy acids of Chamaepeuce seed oils, Lipids 2:261.PubMedCrossRefGoogle Scholar
  125. Morley, N. H., Kuksis, A., Buchnea, D., and Myher, J. J., 1975, Hydrolysis of diacylglycerols by lipoprotein lipase, J. Biol. Chem. 250:3414.PubMedGoogle Scholar
  126. Morris, L. J., 1966, Separations of lipids by silver ion chromatography, J. Lipid Res. 7:717.PubMedGoogle Scholar
  127. Morrison, A., Barratt, M. D., and Aneja, R., 1970, Mass spectrometry of some deuterated 1,3-distearins, Chem. Phys. Lipids 4:47.CrossRefGoogle Scholar
  128. Munson, B., 1971, Chemical ionization mass spectrometry, Anal. Chem. 43:28A.Google Scholar
  129. Muramatsu, T., and Schmid, H. H., 1972, 1-O-2′-Hydroxylalkyl and 1-O-2′-ketoalkyl glycerols, Chem. Phys. Lipids 9:123.CrossRefGoogle Scholar
  130. Murata, T., and Takahashi, S., 1973, Analysis of triglyceride mixtures by gas chromatography—mass spectrometry, Anal. Chem. 45:1816.PubMedCrossRefGoogle Scholar
  131. Myher, J. J., and Kuksis, A., 1974, Gas chromatographic resolution of homologous monoacyl and monoalkyl glycerols, Lipids 9:382.PubMedCrossRefGoogle Scholar
  132. Myher, J. J., and Kuksis, A., 1975, Improved resolution of natural diacylglycerols by gas—liquid chromatography on polar siloxanes, J. Chromatogr. Sci. 13:138.PubMedGoogle Scholar
  133. Myher, J. J., Marai, L., and Kuksis, A., 1974, Identification of monoacyl-and monoalkylglycerols by gas—liquid chromatography—mass spectrometry using polar siloxane liquid phases, J. Lipid Res. 15:586.PubMedGoogle Scholar
  134. Myher, J. J., Marai, L., Yeung, S. K. F., and Kuksis, A., 1977a, A micromethod for determination of molecular species of glycerophospholipids in lipoproteins, Proc. Can. Fed. Biol. Soc. 20:133.Google Scholar
  135. Myher, J. J., Marai, L., Kuksis, A., and Krichevsky, D., 1977b, Acylglycerol structure of peanut oils of different atherogenic potential, Lipids (in press).Google Scholar
  136. Nelson, G. J., 1975, Isolation and purification of lipids from animal tissues, in: Analysis of Lipids and Lipoproteins (E. G. Perkins, ed.), American Oil Chemists’ Society, Champaign, Ill.Google Scholar
  137. Nickel, E. C., and Privett, O. S., 1967, Fractionation of triglycerides by reversed-phase partition chromatography, Sep. Sci. 2:307.CrossRefGoogle Scholar
  138. Nichols, P. L., Jr., 1952, Coordination of silver ion with methyl esters of oleic and elaidic acids, J. Am. Chem. Soc. 74:1091.CrossRefGoogle Scholar
  139. Norton, W. T., Gottfried, E. L., and Rapport, M. M., 1962, The structure of plasmalogens. VI. Configuration of the double bond in the α,β-unsaturated ether linkage of phosphatidylcholine, J. Lipid Res. 3:456.Google Scholar
  140. Nutter, L. J., and Privett, O. S., 1968, An improved method for the quantitative analysis of lipid classes via thin-layer chromatography employing charring and densitometry, J. Chromatogr. 35:519.CrossRefGoogle Scholar
  141. Nyström, E., and Sjövall, J., 1975, Chromatography on lipophilic Sephadex, in: Methods in Enzymology, Vol. XXXV (J. M. Lowenstein, ed.), Academic Press, New York.Google Scholar
  142. O’Brien, J. F., and Klopfenstein, W. E., 1971, Gas—liquid chromatographie analysis of diglycerides, Chem. Phys. Lipids 6:1.PubMedCrossRefGoogle Scholar
  143. Odham, G., and Stenhagen, E., 1972, Complex lipids, in: Biochemical Applications of Mass Spectrometry (G. R. Waller, ed.), pp. 229–249, Wiley, New York.Google Scholar
  144. Parikh, V. M., 1974, Absorption Spectroscopy of Organic Molecules, Addison-Wesley, Reading, Mass.Google Scholar
  145. Parodi, P. W., 1975, Detection of acetodiacylglycerols in milk fat lipids by thin-layer chromatography, J. Chromatogr. 111:223.PubMedCrossRefGoogle Scholar
  146. Perkins, E. G., 1975, Gas chromatography—mass spectrometry of lipids, in: Analysis of Lipids and Lipoproteins (E. G. Perkins, ed.), pp. 183–203, American Oil Chemists’s Society, Champaign, Ill.Google Scholar
  147. Perkins, E. G., and Johnston, P. V., 1969, Pyrolysis—gas chromatography of phosphoglycerides: A mass spectral study of the products, Lipids 4:301.PubMedCrossRefGoogle Scholar
  148. Pfeffer, P. E., 1975, NMR of lipids: The use of chemical shift reagents, in: Analysis of Lipids and Lipoproteins (E. G. Perkins, ed.), pp. 153–169, American Oil Chemists’ Society, Champaign, Ill.Google Scholar
  149. Phillipou, G., Bigham, D. A., and Seamark, R. F., 1975, Subnanogram detection of t-butyldimethylsilyl fatty acid esters by mass fragmentography, Lipids 10:714.PubMedCrossRefGoogle Scholar
  150. Phillips, B. E., and Smith, C. R., Jr., 1970, Glycerides of Monnina emarginata seed oil, Biochim. Biophys. Acta 218:71.PubMedCrossRefGoogle Scholar
  151. Pitas, R. E., Sampugna, J., and Jensen, R. G., 1967, Triglyceride structure of cow’s milk fat. I. Preliminary observations in the fatty acid composition of positions 1, 2 and 3, J. Dairy Sci. 50:1332.CrossRefGoogle Scholar
  152. Pollack, J. D., Clark, D. S., and Somerson, N. L., 1971, Four-directional-development thin-layer chromatography of lipids using trimethyl borate, J. Lipid Res. 12:563.PubMedGoogle Scholar
  153. Powell, R. G., Kleiman, R., and Smith, C. R., Jr., 1969, New sources of 9-d-Hydroxy-cis-12-octadecenoic acid, Lipids 4:450.PubMedCrossRefGoogle Scholar
  154. Privett, O. S., and Erdahl, W. L., 1975, Liquid chromatography of lipids, in: Analysis of Lipids and Lipoproteins (E. G. Perkins, ed.), pp. 123–137, American Oil Chemists’ Society, Champaign, Ill.Google Scholar
  155. Privett, O. S., Blank, M. L., and Romanus, O., 1963, Isolation analysis of tissue fatty acids by ultra-micro-ozonolysis in conjunction with thin-layer chromatography and gas liquid chromatography, J. Lipid Res. 4:260.PubMedGoogle Scholar
  156. Privett, O. S., Blank, M. L., Codding, D. W., and Nickell, E. C., 1965, Lipid analysis by quantitative thin-layer chromatography, J. Am. Oil Chem. Soc. 42:381.PubMedCrossRefGoogle Scholar
  157. Radford, T., and DeJongh, D. C., 1972, Carbohydrates, in: Biochemical Applications of Mass Spectrometry (G. R. Waller, ed.), pp. 313–350, Wiley, New York.Google Scholar
  158. Radin, N. S., 1969, Preparation of lipid extracts, in: Methods in Enzymology, Vol. XIV (J. M. Lowenstein, ed.), pp. 245–254, Academic Press, New York.Google Scholar
  159. Ramachandran, S., Sprecher, H. W., and Cornwell, D. G., 1968, Studies on the preparation and analysis of glyceryl ether derivatives and the isolation and reductive ozonolysis of unsaturated glyceryl ethers, Lipids 3:511.PubMedCrossRefGoogle Scholar
  160. Renkonen, O., 1965, Individual molecular species of different phospholipid classes. II. A method of analysis, J. Am. Oil Chem. Soc. 42:299.CrossRefGoogle Scholar
  161. Renkonen, O., 1966, Individual molecular species of phospholipids. III. Molecular species of ox brain lecithins, Biochim. Biophys. Acta 125:288.CrossRefGoogle Scholar
  162. Renkonen, O., 1967a, Individual molecular species of phospholipids. IV. Gas—liquid chromatography of different types of diglyceride acetates derived from ox brain lecithins, Biochim. Biophys. Acta 137:575.PubMedCrossRefGoogle Scholar
  163. Renkonen, O., 1967b, The analysis of individual molecular species of polar lipids, in: Advances in Lipid Research (R. Paoletti and D. Kritchevsky, eds.), pp. 329–351, Academic Press, New York.Google Scholar
  164. Renkonen, O., 1968, Individual molecular species of phospholipids. VII. Analysis of lecithins containing ten to twelve double bonds, Lipids 3:191.PubMedCrossRefGoogle Scholar
  165. Renkonen, O., 1971, Thin-layer chromatographic analysis of subclasses and molecular species of polar lipids, in: Progress in Thin-Layer Chromatography and Related Methods, Vol. II (A. Niederwieser and G. Pataki, eds.), pp. 143–182, Ann Arbor Science Publishers, Ann Arbor, Mich.Google Scholar
  166. Renkonen, O., and Luukkonen, A., 1976, Thin-layer chromatography of phospholipids and glyco-lipids, in: Lipid Chromatographic Analysis, Vol. 1 (G. V. Marinetti, ed.), 2nd ed., pp. 1–58, Marcel Dekker, New York.Google Scholar
  167. Roberts, R. N., 1967, Gas chromatography of inositol and glycerol, in: Lipid Chromatographic Analysis, Vol. 1 (G. V. Marinetti, ed.), pp. 447–463, Marcel Dekker, New York.Google Scholar
  168. Rock, C. O., and Snyder, F., 1975, Metabolic inter-relations of hydroxy-substituted ether-linked glycerolipids in the pink portion of the rabbit Harderian gland, Arch. Biochim. Biophys. 171:631.CrossRefGoogle Scholar
  169. Roehm, J. N., and Privett, O. S., 1970, Changes in the structure of soybean triglycerides during maturation, Lipids 5:353.CrossRefGoogle Scholar
  170. Rouser, G., 1973, Quantitative liquid column and thin-layer chromatography of lipids and other water insoluble substances, elution selectivity principles and a graphic method for pattern analysis of chromatographic data, J. Chromatogr. Sci. 11:60.PubMedGoogle Scholar
  171. Rouser, G., Kritchevsky, G., and Yamamoto, A., 1967, Column chromatographic and associated procedures for separation and determination of Phosphatides and glycolipids, in: Lipid Chromatographic Analysis (G. V. Marinetti, ed.), pp. 99–162, Marcel Dekker, New York.Google Scholar
  172. Ryhage, R., and Stenhagen, E., 1960, Mass spectrometry in lipid research, J. Lipid Res. 1:361.PubMedGoogle Scholar
  173. Saito, K., and Gamo, M., 1973, The distribution of diol waxes on preen glands of some birds. III. The occurrence of 1,2-diols, Comp. Biochem. Physiol. 45B:603.Google Scholar
  174. Satouchi, K., and Saito, K., 1976, Studies on trimethylsilyl derivatives of 1-alkyl-2-acylglycerols by gas—liquid chromatography mass spectrometry, Biomed. Mass Spectrometry 3:122.CrossRefGoogle Scholar
  175. Schlenk, W., Jr., 1965, Synthesis and analysis of optically active triglycerides, J. Am. Oil Chem. Soc. 42:945.PubMedCrossRefGoogle Scholar
  176. Schmid, H. H. O., Bandi, P. C., Mangold, H. K., and Baumann, W. J., 1969, Alkoxylipids. V. The isomeric monounsaturated substituents of neutral alkoxylipids and triglycerides of ratfish liver, Biochim. Biophys. Acta 187:208.PubMedCrossRefGoogle Scholar
  177. Schmid, H. H. O., Bandi, P. C., and Kwei, L. S., 1975, Analysis and quantification of ether lipids by chromatographic methods, J. Chromatogr. Sci. 13:478.PubMedGoogle Scholar
  178. Schomberg, G., Dielmann, R., Husmann, H., and Weeke, F., 1976, Gas chromatographic analysis with glass capillary columns, J. Chromatogr. 122:55.CrossRefGoogle Scholar
  179. Schwartz, D. P., Weihrauch, J. L., and Burgwald, L. H., 1969, A periodic acid column procedure for the oxidation of vic-glycols, epoxides and α-hydroxy acids at the micromole level, Anal. Chem. 41:984.CrossRefGoogle Scholar
  180. Scott, R. P. W., Scott, C. G., Munroe, M., and Hess, J., Jr., 1974, Interface for on-line liquid chromatography—mass spectroscopy analysis, J. Chromatogr. 99:395.CrossRefGoogle Scholar
  181. Sjövall, J., Nyström, E., and Haahti, E., 1968, Liquid chromatography on lipophilic Sephadex: Column and detection techniques, in: Advances in Chromatography, Vol. 6 (J. C. Giddings and R. A. Keller, eds.), pp. 119–170, Marcel Dekker, New York.Google Scholar
  182. Skipski, V. P., and Barclay, M., 1969, Thin-layer chromatography of lipids, in: Methods in Enzymology, Vol. XIV (J. Lowenstein, ed.), pp. 530–598, Academic Press, New York.Google Scholar
  183. Snyder, F., 1973, Thin-layer chromatographic behavior of glycerolipid analogs containing ether, ester, hydroxyl, and ketone groupings, J. Chromatogr. 82:7.PubMedCrossRefGoogle Scholar
  184. Snyder, F., 1976, Chromatographic analysis of alkyl and alk-1-enyl ether lipids and their derivatives, in: Lipid Chromatographic Analysis, Vol. 1 (G. V. Marinetti, ed.), 2nd ed., pp. 111–148, Marcel Dekker, New York.Google Scholar
  185. Snyder, F., and Blank, M. L., 1969, Relationships of chain lengths and double bond locations in O-alkyl, O-alk-1-enyl, acyl and fatty alcohol moieties in preputial glands of mice, Arch. Biochim. Biophys. 130:101.CrossRefGoogle Scholar
  186. Snyder, F., Rainey, W. T., Jr., Blank, M. L., and Christie, W. H., 1970, The source of oxygen in the ether bond of glycerolipids, J. Biol. Chem. 245:5853.PubMedGoogle Scholar
  187. Snyder, F., Blank, M. L., and Wykle, R. L., 1971, The enzymic synthesis of ethanolamine plasmalogens, J. Biol. Chem. 246:3639.PubMedGoogle Scholar
  188. Sommer, L. H., 1965, Stereochemistry, Mechanism and Silicon, McGraw-Hill, New York.Google Scholar
  189. Sprecher, H. W., Maier, R., Barber, M., and Holman, R. T., 1965, Structure of an optically active allene-containing tetraester triglyceride isolated from the seed oil of Sapium sebiferum, Biochemistry 4:1856.CrossRefGoogle Scholar
  190. Stahl, E., ed., 1969, Thin-Layer Chromatography—A Laboratory Handbook, 2nd ed., Springer-Verlag, New York.Google Scholar
  191. Stewart, J. E., 1970, Infrared Spectroscopy: Experimental Methods and Techniques, Marcel Dekker, New York.Google Scholar
  192. Su, K. L., Baumann, W. J., Madson, T. H., and Schmid, H. H. O., 1974, Long-chain cyclic acetals of glycerols: Metabolism of the stereomeric 1,3-dioxanes and 1,3-dioxolanes in the myelinating rat brain, J. Lipid Res. 15:39.PubMedGoogle Scholar
  193. Sun, K. K., and Holman, R. T., 1968, Mass spectrometry of lipid molecules, J. Am. Oil Chem. Soc. 45:810.CrossRefGoogle Scholar
  194. Thomas, A. E., III, Scharoun, J. E., and Ralston, H., 1965, Quantitative estimation of isomeric monoglycerides by thin-layer chromatography, J. Am. Oil Chem. Soc. 42:789.CrossRefGoogle Scholar
  195. Thompson, G. A., and Kapoulas, V. M., 1969, Preparation and assay of glyceryl ethers, in: Methods in Enzymology, Vol. XIV (J. M. Lowenstein, ed.), pp. 668–678, Academic Press, New York.Google Scholar
  196. Thompson, G. A., and Lee, P., 1965, Studies of the α-glyceryl ether lipids occurring in molluscan tissues, Biochim. Biophys. Acta 98:151.PubMedCrossRefGoogle Scholar
  197. Van Golde, L. M. G., and Van Deenan, L. L. M., 1966, The effect of dietary fat on the molecular species of lecithin from rat liver, Biochim. Biophys. Acta 125:496.PubMedCrossRefGoogle Scholar
  198. Van Golde, L. M. G., Pietersen, W. A., and Van Deenen, L. L. M., 1968, Alternations in the molecular species of rat liver lecithin by corn oil feeding to essential fatty acid deficient rats as a function of time, Biochim. Biophys. Acta 152:84.PubMedCrossRefGoogle Scholar
  199. Varanasi, U., Everitt, M., and Malins, D. C., 1973, The isomeric composition of diisovaleroyl-glycerides: A specificity for the biosynthesis of the 1,3-diisovaleroyl structures, Int. J. Biochem. 4:373.CrossRefGoogle Scholar
  200. Viswanathan, C. V., 1974, Chromatographic analysis of alkoxy-lipids, J. Chromatogr. 98:129.CrossRefGoogle Scholar
  201. Warner, H. R., and Lands, W. E. M., 1963, The configuration of the double bond in naturally occurring alkenyl ethers, J. Am. Chem. Soc. 85:60.CrossRefGoogle Scholar
  202. Watts, R., and Dils, R., 1969, Isomerization of mono-and diglyceride trimethylsilyl ethers, Chem. Phys. Lipids 3:168.CrossRefGoogle Scholar
  203. Weber, E. J., 1973, Changes in structure of triglycerides from maturing kernels of corn, Lipids 8:295.CrossRefGoogle Scholar
  204. Wedmid, Y., and Litchfield, C., 1975, Positional analysis of isovaleroyl triglycerides using proton magnetic resonance with Eu(fod)3 and Pr(fod)3 shift reagents. I. Model compounds, Lipids 10:145.PubMedCrossRefGoogle Scholar
  205. Wedmid, Y., and Litchfield, C., 1976, Positional analysis of isovaleroyl triglycerides using proton magnetic resonance with Eu(fod)3 and Pr(fod)3 shift reagents. II. Cetacean triglycerides, Lipids 11:189.PubMedCrossRefGoogle Scholar
  206. Wessels, H., and Rajagopal, N. S., 1969, Die DC-Trennung von isomeren und natürlichen triglycerid-Gemischen, Fette Seifen Anstrichm. 71:543.CrossRefGoogle Scholar
  207. Witter, R. F., and Whitner, V. S., 1972, Determination of serum triglycerides, in: Blood Lipids and Lipoproteins (G. Nelson, ed.), pp. 181–272, Wiley-Interscience, New York.Google Scholar
  208. Wood, R., 1967, GLC and TLC analysis of isopropylidene derivatives of isomeric polyhydroxy acids derived from positional and geometrical isomers of unsaturated fatty acids, Lipids 2:199.PubMedCrossRefGoogle Scholar
  209. Wood, R., 1968, Gas—liquid chromatographic analysis of long-chain fatty alcohols, J. Gas Chromatogr. 6:94.Google Scholar
  210. Wood, R., and Snyder, F., 1966, Gas—liquid chromatographic analysis of long-chain isomeric glyceryl monoethers, Lipids 1:62.PubMedCrossRefGoogle Scholar
  211. Wood, R., and Snyder, F., 1967a, Chemical and physical properties of isomeric glyceryl monoethers, Lipids 2:89.CrossRefGoogle Scholar
  212. Wood, R., and Snyder, F., 1967b, Characterization and identification of glyceryl ether diesters present in tumor cells, J. Lipid Res. 8:494.PubMedGoogle Scholar
  213. Wood, R., and Snyder, F., 1968, Quantitative determination of alk-1-enyl and alkyl-glyceryl ethers in neutral lipids and phospholipids, Lipids 3:129.PubMedCrossRefGoogle Scholar
  214. Wood, R., and Snyder, F., 1969, Tumor lipids: Metabolic relationships derived from structural analysis of acyl, alkyl, and alk-1-enyl moieties of neutral glycerides and phosphoglycerides, Arch. Biochim. Biophys. 131:478.CrossRefGoogle Scholar
  215. Wood, R. C., Raju, P. K., and Reiser, R., 1965, Gas—liquid chromatographic analysis of monoglycerides and their trimethylsilyl ether derivatives, J. Am. Oil Chem. Soc. 42:161.PubMedCrossRefGoogle Scholar
  216. Wood, R. C., Piantadosi, C., and Snyder, F., 1969a, Quantitative analysis and comparison of the physical properties of O-alkyl and S-alkyl monoethers of glycerol, J. Lipid Res. 10:370.PubMedGoogle Scholar
  217. Wood, R., Baumann, W. J., Snyder, F., and Mangold, H. K., 1969b, Gas—liquid chromatography of dialkyl, alkylacyl, and diacyl derivatives of glycerol, J. Lipid Res. 10:128.PubMedGoogle Scholar
  218. Yeung, S. K. F., and Kuksis, A., 1974, Molecular species of ethanolamine Phosphatides of dog and pig kidney, Can. J. Biochem. 52:830.PubMedCrossRefGoogle Scholar
  219. Yurkowski, M., and Brockerhoff, H., 1966, Fatty acid distribution of triglycerides determined by deacylation with methyl magnesium bromide, Biochim. Biophys. Acta 125:55.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • John J. Myher
    • 1
  1. 1.Banting and Best Department of Medical ResearchUniversity of TorontoTorontoCanada

Personalised recommendations