Advertisement

Synthesis and Analysis of Stable Isotope- and Radioisotope-Labeled Fatty Acids

  • Edward A. Emken
Part of the Handbook of Lipid Research book series (HLRE, volume 1)

Abstract

This chapter will touch on points of general consideration for preparing labeled fatty acids and on selected methods used to label fatty acids. Representative syntheses of some labeled fatty acids will be described, and typical analytical methods for determining isotope purities and label position will be covered.

Keywords

Unsaturated Fatty Acid Methyl Oleate Fatty Ester Methyl Stearate Wittig Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, J. R., 1963, Liquid scintillation counting of tritium, in: Advances in Tracer Methodology, Vol. 1 (S. Rothchud, ed.), pp. 69–76, Plenum, New York.Google Scholar
  2. Aronoff, S., 1956, Techniques of Radiobiochemistry, The Iowa State College Press, Ames, Ia.Google Scholar
  3. Axenrod, T., and Webb, G. A., 1974, Nuclear Magnetic Resonance Spectroscopy of Nuclei Other Than Protons, Wiley, New York.Google Scholar
  4. Aylward, F., and Narayana Rao, C. V., 1956, Use of hydrazine as a reducing agent for unsaturated compounds. I. The hydrogenation of oleic acid, J. Appl. Chem. 6:248.Google Scholar
  5. Aylward, F., and Narayana Rao, C. V., 1957, Use of hydrazine as a reducing agent for unsaturated compounds. III. Hydrogenation of linoleic acid, J. Appl. Chem. 7:134.Google Scholar
  6. Barley, G. C., Jones, Sir Ewart R. H., Thaller, V., and Vere Hodge, R. A., 1973, Natural acetylenes. Part XXXIX. Synthesis of methyl (1,9-14C)-, (9-14C)-, and (10-3H)-crepenynate, methyl (9-14C)-and (10-3H)-linoleate, and methyl (9-14C)-and (10-3H)-oleate, J. Chem. Soc. Perkin Trans. 1(2):151.Google Scholar
  7. Bell, C. G., Jr., and Hayes, F. N., 1958, Liquid Scintillation Counting, Pergamon Press, New York.Google Scholar
  8. Birch, A. J., and Walker, K. A. M., 1966, Aspects of catalytic hydrogenation with a soluble catalyst, J. Chem. Soc. C 21:1894.Google Scholar
  9. Birks, J. B., 1964, The Theory and Practice of Scintillation Counting, Pergamon Press, New York.Google Scholar
  10. Blanchard, F. A., Wagner, M. R., and Takahashi, 1968, Liquid scintillation counting: Automated mathematical fitting and use of channels ratio methods by computer program, in: Advances in Tracer Methodology (S. Rothchild, ed.), pp. 133–144, Plenum, New York.Google Scholar
  11. Bonner, J. F., 1954, Determination of radioactivity by scintillation counting, in: Technique of Organic Chemistry, Vol. 1 (A. Weissberger, ed.), Part III, pp. 2491–2515, Interscience, New York.Google Scholar
  12. Budny, J., and Sprecher, H., 1971, A study of some of the factors involved in regulating the conversion of octadeca-8,11-dienoate to eicosa-4,7,10,13-tetraenoate in the rat, Biochim. Biophys. Acta 239:190.PubMedGoogle Scholar
  13. Bus, J., and Frost, D. J., 1974, 13CMR analysis of methyl octadecenoates, Recl. Trav. Chim. Pays-Bas 93:213.Google Scholar
  14. Bus, J., and Frost, D. J., 1976, Determination of the positions of double bonds in unsaturated fatty acids by 13C and proton NMR spectrometry, in: Lipids, Vol. 2: Technology (R. Paoletti, G. Jacini, and R. Porcellati, eds.), Raven Press, New York.Google Scholar
  15. Butterfield, R. O., and Dutton, H. J., 1968, High-yield preparation of methyl stearolate, J. Am. Oil Chem. Soc. 45:635.Google Scholar
  16. Calf, G. E., Garnett, J. L., and Pickles, V. A., 1968, Catalytic deuterium exchange reactions with organic XI: Pyridine, the quinolines, azines, and aniline on unsupported groups VIII transition metals, Aust.J. Chem. 21:961.Google Scholar
  17. Calvin, M., 1949, Isotopic Carbon, Wiley, New York.Google Scholar
  18. Castro, C. E., and Stephens, R. D., 1964, The reduction of multiple bonds by low-valent transition metal ions: The homogeneous reduction of acetylenes by chromous sulfate, J. Am. Chem. Soc. 86:4358.Google Scholar
  19. Catch, J., 1961, Carbon-14 Compounds, Butterworth, Washington, D.C.Google Scholar
  20. Christie, W. W., 1973, Lipid Analysis, pp. 282–297, Pergamon Press, New York.Google Scholar
  21. Christie, W. W., and Holman, R. T., 1967, Synthesis and characterization of the complete series of methylene-interrupted cis,cis-octadecadienoic acids, Chem. Phys. Lipids 1:407.Google Scholar
  22. Christie, W. W., Hunter, M. L., and Harfoot, C. G., 1973, The biosynthetic preparation of 1-14C-trans-11-octadecenoic acid, J. Labelled Compd. 9:483.Google Scholar
  23. Clerc, J. T., Pretsch, E., and Sternhill, S., 1973, Carbon-13 Nuclear Resonance Spectroscopy, Akad. Verlag, Frankfurt, Germany.Google Scholar
  24. Colosimo, M., and Guarino, A., 1972, Self-radiolysis of tritiated compounds. IV. Unsaturated fatty acid esters, J. Labelled Compd. 8:257.Google Scholar
  25. Conacher, H. B. S., 1976, Chromatographic determination of cis-trans monoethylenic unsaturation in fats and oils—A review, J. Chromatogr. Sci. 14:405.PubMedGoogle Scholar
  26. Craig, D., and Fowler, R. B., 1961, Deuterio 1,3-butadienes derived by reductive dechlorination, J. Org. Chem. 26:713.Google Scholar
  27. Crespi, H. L., Conrad, S. M., Uphaus, R. A., and Katz, J. J., 1960, Cultivation of microorganisms in heavy water, Ann. N.Y. Acad. Sci. 84:648.PubMedGoogle Scholar
  28. Cronan, J. E., Jr., and Batchelor, J. G., 1973. An efficient biosynthetic method to prepare fatty acyl chains highly enriched with 13C, Chem. Phys. Lipids 11:196.PubMedGoogle Scholar
  29. Dauben, W. G., Hoerger, E., and Petersen, J. W., 1953, Distribution of acetic acid carbon in high fatty acids synthesized from acetic acid by the intact mouse, J. Am. Chem. Soc. 75:2347.Google Scholar
  30. DeJarlais, W. J., and Emken, E. A., 1976, Syntheses of tetra-and hexadeuterated octadecenoates, Lipids 11:594.PubMedGoogle Scholar
  31. Dinh-Nguyen, N., 1964, Organic syntheses with heavy isotopes. Part I. Some deuterium-substituted normal long-chain saturated hydrocarbons, acids and esters, Ark. Kemi 22:151.Google Scholar
  32. Dinh-Nguyen, N., 1968, Contribution à l’étude de la spectrometrie de masse: Utilisation des esters méthyliques de monoacides à longue chaine normale marques au deuterium et au carbone-13, Ark. Kemi 28:289.Google Scholar
  33. Dinh-Nguyen, N., and Fischmeister, I., 1970a, The solid state infrared absorption spectra of the positionally isomeric methyl gem-dideutero-octadecanoates, Ark. Kemi 32:181.Google Scholar
  34. Dinh-Nguyen, N., and Fischmeister, I., 1970b, The solid infrared absorption spectra of deuterated long chain fatty acids and esters, Ark. Kemi 32:205.Google Scholar
  35. Dinh-Nguyen, N., Raal, A., and Stenhagen, E., 1972, Perdeuteriated organic compounds. I. Normal long-chain saturated deuteriocarbons, monocarboxylic acids and methyl esters, Chem. Scr. 2:171.Google Scholar
  36. Dutton, H. J., 1961, Monitoring eluates from chromatography and countercurrent distribution for radioactivity, J. Am. Oil Chem. Soc. 38:631.Google Scholar
  37. Dutton, H. J., 1965, Some techniques of radioactive gas chromatography for lipid research, in: Advances in Tracer Methodology, Vol. 2 (S. Rothchild, ed.), pp. 123–134, Plenum, New York.Google Scholar
  38. Dutton, H. J., Jones, E. P., Davison, V. L., and Nystrom, R. F., 1962, Labeling fatty acids by exposure to tritium gas. III. Methyl stearolate and methyl linolenate, J. Org. Chem. 27:2648.Google Scholar
  39. Dutton, H. J., Scholfield, C. R., Selke, E., and Rohwedder, W. K., 1968, Double bond migration, geometric isomerization, and deuterium distribution during heterogeneous catalytic deuteration of methyl oleate, J. Catal. 10:316.Google Scholar
  40. Egmond, M. R., Vliegenthart, J. F. G., and Boldingh, J., 1973, Synthesis of 11 (n-8)Ls tritium-labelled linoleic acid, Biochim. Biophys. Acta 316:1.PubMedGoogle Scholar
  41. Eisch, J. J., and Kaska, W. C., 1966, Stereochemistry and orientation in the reactions of 1-phenylpropyne with diisobutyl aluminum hydride, J. Am. Chem. Soc. 88:2213.Google Scholar
  42. Emken, E. A., Scholfield, C. R., and Dutton, H. J., 1964, Chromatographic separation of cis and trans fatty esters by argentation with a macroreticular exchange resin, J. Am. Oil Chem. Soc. 41:388.Google Scholar
  43. Emken, E. A., Rohwedder, W. K., Dougherty, R., Mackin, J., Iacono, J. M., and Dutton, H. J., 1976, Dual-labeled technique for human lipid metabolism studies using deuterated fatty acid isomers, Lipids 11:135.PubMedGoogle Scholar
  44. Evans, E. A., 1966, Tritium and Its Compounds, Van Nostrand, Princeton, NJ.Google Scholar
  45. Evans, E. A., and Stanford, F. G., 1963, Decomposition of tritium-labelled organic compounds, Nature (London) 197:551.Google Scholar
  46. Fetizon, M., and Gramain, J. C., 1969, Recent methods of deuteration, Bull. Soc. Chim. Fr. 1969:651.Google Scholar
  47. Frankel, E. N., Selke, E., and Glass, C. A., 1969, Homogeneous hydrogenation of diolefins catalyzed by tricarbonyl chromium complexes. II. Deuteration, J. Org. Chem. 34:2628.Google Scholar
  48. Friedrich, K., and Thieme, H. K., 1973, Activated ethylenes. Synthesis of electronegatively substituted 2-chloro alkenes, Synthesis 2:111.Google Scholar
  49. Gellerman, J. L., and Schlenk, H., 1965, Preparation of fatty acids labeled with C14 from Ochromonas danica. J. Protozool. 12:178.PubMedGoogle Scholar
  50. Gensler, W. J., and Bruno, J. J., 1963, Synthesis of unsaturated fatty acids: Positional isomers of linoleic acids, J. Org. Chem. 28:1254.Google Scholar
  51. Gibble, W. P., Kurtz, E. B., Jr., and Kelley, A. E., 1956, A semi-micro procedure for the separation and degradation of long-chain fatty acids, J. Am. Oil Chem. Soc. 33:66.Google Scholar
  52. Ginger, L. G., 1944, The chemistry of the lipids of tubercle bacilli. LXXI. The determination of terminal methyl groups in branched chain fatty acids, J. Biol. Chem. 156:453.Google Scholar
  53. Graff, G., Szczepanik, P., Klein, P. D., Chipault, J. R., and Holman, R. T., 1970, Identification and characterization of fully deuterated fatty acids isolated from Scenedesmus obliquus cultured in deuterium oxide, Lipids 5:786.PubMedGoogle Scholar
  54. Gunstone, F., Scrimgeour, C., and Vedanayagem, S., 1974, New procedure for converting unsaturated fatty acids to their nor-alcohols required as intermediates for the preparation of carboxy-labelled acids, J. Chem. Soc. Chem. Commun. 1974:916.Google Scholar
  55. Hamberg, M., and Samuelson, B., 1967, On the mechanism of the biosynthesis of Prostaglandins E1 and F, J. Biol. Chem. 242:5336.PubMedGoogle Scholar
  56. Hirsch, J., 1960, Chromatography of lipids on non-polar stationary phases with automatic recording, Colloq. Int. Centre Natl. Rech. Sci. (Paris), pp. 17-21.Google Scholar
  57. Horrocks, D. L., and Chin-Tzu, P., 1971, Organic Scintillators and Liquid Scintillation Counting, Academic Press, New York.Google Scholar
  58. Howton, D. R., and Stein, R. A., 1969, Ahmad-Strong synthesis of 8-, 9-, and 10-pentadecynoic acids, J. Lipid Res. 10:631.PubMedGoogle Scholar
  59. Howton, D. R., Davis, R. H., and Neuenzel, J. C., 1952, Decarboxylation and reconstitution of linoleic acid, J. Am. Chem. Soc. 74:1109.Google Scholar
  60. Hsiao, C. Y. Y., Ottaway, C. A., and Wetlaufer, D. B., 1974, Preparation of fully deuterated fatty acids by simple method, Lipids 9:913.PubMedGoogle Scholar
  61. Imaizumi, K., Cho, S., Sugano, M., and Wada, M., 1972, The effect of overnight fasting on the synthesis of glycerolipids by liver slice, Agr. Biol. Chem. 36:1783.Google Scholar
  62. Jackman, L. M., and Cotton, F. A., 1975, Dynamic Nuclear Magnetic Resonance Spectroscopy, Academic Press, New York.Google Scholar
  63. Jones, E. P., and Stolp, J. A., 1958, Periodate-permanganate oxidations for determining location and amount of unsaturation in monounsaturated fatty acids, J. Am. Oil Chem. Soc. 35:71.Google Scholar
  64. Kates, M., 1972, Techniques of lipidology: Isolation, analysis and identification of lipids, Part II, in: Laboratory Techniques in Biochemistry and Molecular Biology (T. S. Work and E. Work, eds.), pp. 470–501, American Elsevier, New York.Google Scholar
  65. Klok, R., Egmond, G. J. N., and Pabon, H. J. J., 1974, Synthesis of 19-cis-docosenoic, 17-cis-eicosenoic and 15-cis-octadecenoic acid, Recl. Trav. Chim. Pays-Bas 93:222.Google Scholar
  66. Koch, G. K., 1969a, Specific 3H-labelling by diimide reduction of unsaturated bonds. I. Mechanism of reduction with hydrazine in aprotic solvents, J. Labelled Compd. 5:99.Google Scholar
  67. Koch, G. K., 1969b, Specific 3H-labelling by diimide reduction of unsaturated bonds. II. Methods and applications of labelling, J. Labelled Compd. 5:110.Google Scholar
  68. Koritala, S., and Selke, E., 1971, Selective hydrogenation with copper catalysts. IV. Reaction of stearolate, oleate and conjugated esters with deuterium, J. Am. Oil Chem. Soc. 48:222.Google Scholar
  69. Kovachic, D., and Leitch, L. C., 1961, Organic deuterium compounds. XIII. Synthesis of deuteriated olefins, Can.J. Chem. 39:363.Google Scholar
  70. Kuhlein, K., Neumann, W. P., and Mohring, H., 1968, A versatile method for preparation of C-deuterated compounds, Angew. Chem. Int. Ed. Engl. 7:455.Google Scholar
  71. Kunau, W.-H., 1971a, Chemical synthesis of highly unsaturated fatty acids. I. Preparation of (n — 4), (n — l)-alkadiynoic acids, Chem. Phys. Lipids 7:101.Google Scholar
  72. Kunau, W.-H., 1971b, Chemical synthesis of highly unsaturated fatty acids. II. Preparation of substituted propargyl halides, Chem. Phys. Lipids 7:108.Google Scholar
  73. Kunau, W.-H., 1973, Synthesis of unsaturated fatty acids, Chem. Phys. Lipids 11:254.PubMedGoogle Scholar
  74. Lindlar, H., and Dubuis, R., 1973, Palladium catalyst for partial reduction of acetylenes, in: Organic Syntheses, Collective Vol. 5, pp. 880–885, Wiley, New York.Google Scholar
  75. Magoon, E. F., and Slaugh, L. H., 1967, Reduction of acetylenes and conjugated diolefins by lithium aluminum hydride, Tetrahedron 23:4509Google Scholar
  76. Mangold, H. K., 1968, Preparation of labelled lipids, J. Labelled Compd. 4:3.Google Scholar
  77. Mangold, H. K., and Schlenk, H., 1957, Preparation and isolation of fatty acids randomly labeled with C14, J. Biol. Chem. 229:731.PubMedGoogle Scholar
  78. Mangold, H. K., Kammereck, R., and Malins, D. C., 1962, Microchemical Techniques (N. D. Cheronis, ed.), pp. 697–714, Interscience, New York.Google Scholar
  79. Marcel, Y. L., and Holman, R. T., 1968, Synthesis of 14C-labelled polyunsaturated fatty acids, Chem. Phys. Lipids 2:173.PubMedGoogle Scholar
  80. Matwiyoff, N. A., and Ott, D. G., 1973, Stable isotope tracers in the life sciences and medicine, Science 181:1125.PubMedGoogle Scholar
  81. McCloskey, J. A., 1975, Gas chromatography-mass spectrometry of esters of perdeuterated fatty acids, in: Methods in Enzymology, Vol. 35 (J. M. Lowenstein, ed.), Part B, p. 341, Academic Press, New York.Google Scholar
  82. McFadden, W., 1973, Techniques of Combined Gas Chromatography/Mass Spectrometry: Applications in Organic Analysis, Wiley, New York.Google Scholar
  83. Morandi, J. R., and Jensen, H. B., 1969, Homogeneous catalytic deuteration of olefinic double bonds, J. Org. Chem. 34:1889.Google Scholar
  84. Morris, L. J., 1967, The mechanism of ricinoleic acid biosynthesis in Ricinus communis seeds, Biochem. Biophys. Res. Commun. 29:311.PubMedGoogle Scholar
  85. Morris, L. J., Harris, R. V., Kelly, W., and James, A. T., 1967, The stereospecificity of desaturations of long-chain fatty acids in Chlorella vulgaris, Biochem. Biophys. Res. Commun. 28:904.PubMedGoogle Scholar
  86. Morris, L. J., Harris, R. V., Kelly, W., and James, A. T., 1968, The stereochemistry of desaturations of long-chain fatty acids in Chlorella vulgaris, Biochem. J. 109:673.Google Scholar
  87. Mosbach, E. H., Phares, E. F., and Carson, S. F., 1951, Degradation of isotopically labeled citric, α-ketoglutaric and glutamic acids, Arch. Biochem. Biophys. 33:179.PubMedGoogle Scholar
  88. Mounts, T. L., 1973, Tritium labeling of lipids, Lipids 8:190.PubMedGoogle Scholar
  89. Mounts, T. L., 1976, Double bond position affects metabolism of cis-cotadecenoates, Lipids 11: 676.PubMedGoogle Scholar
  90. Mounts, T. L., and Dutton, H. J., 1964, Efficient production of biosynthetically labeled fatty acids, J. Am. Oil Chem. Soc. 41:537.Google Scholar
  91. Mounts, T. L., and Dutton, H. J., 1967, Methyl esters of unsaturated fatty acids labeled with tritium in the methyl group, J. Labelled Compd. 3:343.Google Scholar
  92. Mounts, T. L., Emken, E. A., Rohwedder, W. K., and Dutton, H. J., 1971, Metabolism of labeled isomeric octadecenoates by the laying hen, Lipids 6:912.PubMedGoogle Scholar
  93. Murata, T., Takahashi, S., and Takeda, T., 1975, Chemical ionization—mass spectrometry, I. Application to analysis of fatty acids, Anal. Chem. 47:573.Google Scholar
  94. Murray, A., III, and Williams, D. L., 1958, Organic Synthesis with Isotopes, Parts I and II, Interscience, New York.Google Scholar
  95. Nelson, D. C., Ressler, P. C., Jr., and Hawes, R. C., 1963, Performance of an instrument for simultaneous gas chromatographic and radioactivity analysis, Anal. Chem. 35:1575.Google Scholar
  96. Nevenzel, J. C., Riley, R. F., Howton, D. R., and Steinberg, G., 1957, Bibliography of Syntheses with Carbon Isotopes, United States Atomic Energy Commission Report, UCLA-395.Google Scholar
  97. Nicholas, P. P., and Carroll, R. T., 1968, The chlorination of olefins with cuperic chloride: A comparative study of trans-ethylene-d2 and cis-and trans-2-butene, J. Org. Chem. 33:2345.Google Scholar
  98. Numrich, R., and Nystrom, R. F., 1971, Small-scale degradation of carbon-14 labelled carboxylic acids. III. Degradation of acetic acid-14C, J. Labelled Compd. 7:283.Google Scholar
  99. Nystrom, R. F., Mason, L. H., Jones, E. P., and Dutton, H. J., 1959, Labelling fatty acids by exposure to tritium gas. I. Saturated methyl esters, J. Am. Oil Chem. Soc. 36:212.Google Scholar
  100. Oldfield, E., Chapman, D., and Derbyshire, W., 1971, Deuteron resonance: A novel approach to the study of hydrocarbon chain mobility in membrane systems, FEBS Lett. 16:102.PubMedGoogle Scholar
  101. Oldfield, E., Chapman, D., and Derbyshire, W., 1972, Lipid mobility in acholeplasma membranes using deuteron magnetic resonance, Chem. Phys. Lipids 9:69.PubMedGoogle Scholar
  102. Osbond, J. M., 1966, The synthesis of naturally-occurring and labelled 1,4-polyunsaturated fatty acids, in: Progress in Chemistry of Fats and Other Lipids, Vol. 9 (R. T. Holman, ed.), Part 1, pp. 121–157, Pergamon Press, New York.Google Scholar
  103. Osbond, J. M., Philpott, P. G., and Wickens, J. C., 1961, Essential fatty acids. Part I. Synthesis of linoleic, γ-linolenic, arachidonic, and docosa-4,7,10,13,16-pentaenoic acid, J. Chem. Soc. 1961:2779.Google Scholar
  104. Osborn, J. A., Jardine, F. H., Young, J. F., and Wilkinson, G., 1966, The preparation and properties of tris(triphenylphosphine) halogenorhodium(I) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives, J. Chem. Soc. A 1966(12):1711.Google Scholar
  105. Perkins, E. G., 1975, Gas chromatography-mass spectrometry of lipids, in: Analysis of Lipids and Lipoproteins (E. G. Perkins, ed.), pp. 183–203, The American Oil Chemists’ Society, Champaign, Ill.Google Scholar
  106. Phares, E. F., 1951, Degradation of labeled propionic and acetic acids, Arch. Biochem. Biophys. 33:173.PubMedGoogle Scholar
  107. Pichat, L., Guermont, J. P., and Levron, J. C., 1969, Methylations de composés acétyléniques métallés en milieu hexamethylphosphotriamide et emploi de la reaction de Wittig pour la synthèse d’acides gras marqués au 14C. I. Synth—se de l’acide oléique (14C-18), Bull. Soc. Chim. Fr. 1969:1198.Google Scholar
  108. Privett, O. S., 1966, Determination of the structure of unsaturated fatty acids via degradative methods, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 9 (R. T. Holman, ed.), Part 1, p. 91, Pergamon Press, New York.Google Scholar
  109. Raaen, V. F., Ropp, G. A., and Raaen, H. P., 1968, Carbon-14, McGraw-Hill, New York.Google Scholar
  110. Richardson, G. S., Weliky, I., Batchelder, W., Griffin, M., and Engel, L. L., 1963, Radioautography of 14C-and 3H-labeled steroids on thin-layer chromatograms, J. Chromatogr. 12:115.PubMedGoogle Scholar
  111. Roberts, R. B., Abelson, P. H., Cowie, P. B., Bolton, E. T., and Britten, R. J., 1963, Studies on Biosynthesis in Escherichia coli, Carnegie Institution, Washington, D.C.Google Scholar
  112. Rognstad, R., Woronsberg, J., and Katz, J., 1968, Acetyl group transfer in lipogenesis. I. Studies involving the degradation of fatty acids by the Kuhn—Roth and related methods, Arch. Biochem. Biophys. 127:429.PubMedGoogle Scholar
  113. Rohwedder, W. K., 1975, Mass spectrometry of lipids, in: Analysis of Lipids and Lipoproteins (E. G. Perkins, ed.), pp. 170–182, The American Oil Chemists’ Society, Champaign, Ill.Google Scholar
  114. Rohwedder, W. K., Scholfield, C. R., Rakoff, Henry, Nowakowska, Janina, and Dutton, H. J., 1967, Infrared analysis of methyl stearates containing deuterium, Anal. Chem. 39:820.Google Scholar
  115. Ronzio, A. R., 1954, Microsyntheses with tracer elements, in: Technique of Organic Chemistry, Vol. 6 (A. Weissberger, ed.), pp. 367–409, Interscience, New York.Google Scholar
  116. Ryhage, R., and Stenhagen, E., 1963, Mass spectrometry of long-chain esters, in: Mass Spectrometry of Organic Ions (F. W. McLafferty, ed.), pp. 399–452, Academic Press, New York.Google Scholar
  117. Saito, H., Schrier-Muccillo, S., and Smith, I. C. P., 1973, High resolution deuterium magnetic resonance—An approach to the study of molecular organization in biological membranes and model systems, FEBS Lett. 33:281.PubMedGoogle Scholar
  118. Salsbury, N. J., Dorke, A., and Chapman, D., 1972, Deutron magnetic resonance studies of water associated with phospholipids, Chem. Phys. Lipids 8:142.PubMedGoogle Scholar
  119. Scholfield, C. R., Jones, E. P., Nowakowska, J., Selke, E., and Dutton, H. J., 1961, Hydrogenation of linolenate. II. Hydrazine reduction, J.Am. Oil. Chem. Soc. 39:208.Google Scholar
  120. Schroepfer, G. J., and Block, K., 1965, The stereospecific conversion of stearic acid to oleic acid, J. Biol. Chem. 240:54.PubMedGoogle Scholar
  121. Seelig, A., and Seelig, J., 1974, The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance, Biochemistry 13:4839.PubMedGoogle Scholar
  122. Sgoutas, D. S., and Kummerow, F. A., 1964, Chemical synthesis of tritium-labeled linoleic acid, Biochemistry 3:406.PubMedGoogle Scholar
  123. Sgoutas, D. S., Kim, M. J., and Kummerow, F. A., 1965, Radiohomogeneity of H3-and C14-labeled linoleic acid in vivo, J. Lipid Res. 6:383.PubMedGoogle Scholar
  124. Sgoutas, D. S., Sanders, H., and Yang, E. M., 1969, Tritioboration and synthesis of tritium-labeled polyunsaturated fatty acids, J. Lipid Res. 10:642.PubMedGoogle Scholar
  125. Sheppard, H., and Tsien, W. H., 1963, Autoradiography of tritium-containing thin-layer chromatograms, Anal. Chem. 35:1992.Google Scholar
  126. Slaugh, L. H., 1966, Lithium aluminum hydride, a homogeneous hydrogenation catalyst, Tetrahedron 22:1741.Google Scholar
  127. Snyder, F., 1968, Thin-layer chromatography radioassay, in: Advances in Tracer Methodology: A Review (S. Rothchild, ed.), pp. 81–104, Plenum, New York.Google Scholar
  128. Snyder, F., and Piantadosi, C., 1966, Labeling and radiopurity of lipids, in: Advances in Lipid Research, Vol. 4 (R. Paoletti and D. Kritchevsky, eds.), pp. 257–283, Academic Press, New York.Google Scholar
  129. Sprecher, H., 1971, The synthesis of 1-14C-arachidonate and 3-14C-docosa-7,10,13,16-tetraenoate, Lipids 6:889.PubMedGoogle Scholar
  130. Steenhoek, A., Van Wijngaarden, B. H., and Pabon, H. J. J., 1971, Optimization, mechanism, and kinetics of the hydrogenation of skipped polyynoic acids to all cis skipped polyenoic acids, Recl. Trav. Chim. Pays-Bas. 90:961.Google Scholar
  131. Stein, R. A., and Nicolaides, N., 1962, Structure determination of methyl esters of unsaturated fatty acids by gas—liquid chromatography of the aldehydes formed by triphenylphosphine reduction of the ozonides, J. Lipid Res. 3:476.Google Scholar
  132. Stockton, G. W., Polnaszek, C. F., Tulloch, A. P., Hasan, F., and Smith, I. C. P., 1976, Molecular motion and order in single-bilayer vesicles and multilamellar dispersions of EGG lecithin and lecithin cholesterol mixtures: A deuterium nuclear magnetic resonance study of specifically labeled lipids, Biochemistry 15:954.PubMedGoogle Scholar
  133. Stoffel, W., 1964, Synthese von (1-14C)-markierten all-cis-Polyenfettsauren, Justus Liebigs Ann. Chem. 673:26.Google Scholar
  134. Stoffel, W., 1965, Chemical synthesis of 3H-and 1-14C-labeled polyunsaturated fatty acids, J. Am. Oil Chem. Soc. 42:583.PubMedGoogle Scholar
  135. Stoffel, W., and Bierwirth, E., 1963, Synthesis of 1-14C-labelled polyunsaturated fatty acids, Angew. Chem. Int. Ed. Engl. 2:94.Google Scholar
  136. Stoffel, W., Zierenberg, O., and Tunggal, B. D., 1972, 13C-Nuclear magnetic resonance spectroscopic studies on saturated, mono-, di-, and polyunsaturated fatty acids, phospho-and sphingolipids, Hoppe-Seyler’s Z. Physiol. Chem. 352:1962.Google Scholar
  137. Sugano, M., and Yamamoto, M., 1974, A simple biosynthetic method for preparation of high specific radioactivity phosphatidylcholine, Agr. Biol. Chem. 38:1255.Google Scholar
  138. Susan, A. B., and Nystrom, R. F., 1971a, Small-scale degradation of carbon-14 labelled carboxylic acids. I. Modification of the Hunsdieker reaction, J. Labelled Compd. 7:269.Google Scholar
  139. Susan, A. B., and Nystrom, R. F., 1971b, Small-scale degradation of carbon-14 labelled carboxylic acids. II. Carbon-14 labelled propionic and n-butyric acids, J. Labelled Compd. 7:275.Google Scholar
  140. Swann, S., Jr., 1948, Electrolytic reactions, in: Technique of Organic Chemistry, Vol. II (A. Weissberger, ed.), Interscience, New York.Google Scholar
  141. Thomas, A. F., 1971, Deuterium Labeling in Organic Chemistry, Meredith Corporation, New York.Google Scholar
  142. Thomas, P. J., and Dutton, H. J., 1970, Preparation and counting of lipophilic samples, in: The Current Status of Liquid Scintillation Counting (E. D. Bransome, Jr., ed.), pp. 164–169, Grune and Stratton, New York.Google Scholar
  143. Tokes, L., Jones, G., and Djerassi, C., 1968, Mass spectrometry in structural and stereochemical problems. CLXI. Elucidation of the course of the characteristic ring D fragmentation of steroids, J. Am. Chem. Soc. 90:5465.Google Scholar
  144. Tolbert, M. B., and Siri, W. E., 1960, Determination of radioactivity, in: Technique of Organic Chemistry, Vol. 1 (A. Weissberger, ed.), pp. 3335–3448, Part IV, Interscience, New York.Google Scholar
  145. Tucker, W. P., Trove, S. B., and Kepler, C. R., 1970, The synthesis of 11,11-dideuterolinoleic acid, J. Labelled Compd. 7:11.Google Scholar
  146. Tucker, W. P., Trove, S. B., and Kepler, C. R., 1971, The synthesis of 11,11-dideuterooleic acid, J. Labelled Compd. 7:137.Google Scholar
  147. Tulloch, A. P., and Mazurek, M., 1976, 13C Nuclear magnetic resonance spectroscopy of saturated, unsaturated, and oxygenated fatty acid methyl esters, Lipids 11:228.Google Scholar
  148. Van den Bosch, H., and Van Deenen, L. L. M., 1966, Synthesis of 32P-, 14C-, and 3H-labeled lecithins and their use in studies on lipid metabolism, in: Advances in Tracer Methodology, Vol. 3 (S. Rothchild, ed.), pp. 61–69, Plenum, New York.Google Scholar
  149. Van Tamelen, E. E., Dewey, R. S., and Timmons, R. J., 1961, The reduction of olefins by means of azodicarboxylic acid in situ, J. Am. Chem. Soc. 83:3725.Google Scholar
  150. Wang, C. H., and Willis, D. L., 1965, Radiotracer Methodology in Biological Science, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  151. Wendt, G., and McCloskey, J. A., 1970, Mass spectrometry of perdeuterated molecules of biological origin fatty acid esters from Scenedesmus obliques, Biochemistry 9:4854.PubMedGoogle Scholar
  152. Young, J. F., Osborn, J. A., Jardine, F. H., and Wilkinson, G., 1965, Hydride intermediates in homogeneous hydrogenation reactions of olefins and acetylenes using rhodium catalysts, J. Chem. Soc. Chem. Commun. 1965(1):131.Google Scholar
  153. Zimmerman, M. E., 1967, Preparation of Samples for Liquid Scintillation Counting, Nuclear-Chicago Corporation, Des Piaines, Ill.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Edward A. Emken
    • 1
  1. 1.Northern Regional Research Center, Agricultural Research ServiceU.S. Department of AgriculturePeoriaUSA

Personalised recommendations