Separation and Determination of Structure of Fatty Acids

  • Arnis Kuksis
Part of the Handbook of Lipid Research book series (HLRE, volume 1)


The development of precise methods of separation and identification of structure has revealed a great diversity and complexity in the fatty acids prepared from various natural fats. In the past quarter of a century, different positional and geometric isomers of long-recognized and commonly occurring ethylenic fatty acids have been detected and isolated, as have been previously unknown homologues of these acids. In addition, fatty acids with odd numbers of carbon atoms, branched-chain acids, hydroxy and epoxy acids, acetylenic and mixed ethylenic-acetylenic acids both conjugated and unconjugated, and cyclopropanyl and cyclopropenyl acids have been isolated and identified. In many fats the less common acids are present in only minor amounts, while in other fats these acids may represent major components. Since the discovery of gas chromatography, over 500 different fatty acids have been resolved from natural sources or from synthetic products.


Fatty Acid Methyl Ester Cyclic Fatty Acid Vernolic Acid Pristanic Acid Isomeric Methyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamsson, E., Ställberg-Stenhagen, S., and Stenhagen, E., 1963, The higher saturated branched chain acids, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 7 (R. T. Holman and T. Malkin, eds.), Part 1, p. 41, Pergamon Press, Oxford.Google Scholar
  2. Ackman, R. G., 1968, Prediction of retention times in the GLC of diastereoisomers of methyl-branched fatty acids, J. Chromatogr. 34:165.PubMedCrossRefGoogle Scholar
  3. Ackman, R. G., 1972, The analysis of fatty acids and related materials by gas-liquid chromatography, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 12 (R. T. Holman, ed.), pp. 165–284, Pergamon Press, Oxford.Google Scholar
  4. Ackman, R. G., and Castell, J. D., 1966, Isomeric monoethylenic fatty acids in herring oil, Lipids 1:341.PubMedCrossRefGoogle Scholar
  5. Ackman, R. G., and Hansen, R. P., 1967, The occurrence of diastereoisomers of phytanic and pristanic acids and their determination by gas—liquid chromatography, Lipids 2:357.PubMedCrossRefGoogle Scholar
  6. Ackman, R. G., and Hooper, S. N., 1969, The load effect in open tubular GLC: Relationships among methyl trans-11-octadecenoate and cis-isomers with similar retention times, J. Chromatogr. Sci. 7:549.Google Scholar
  7. Ackman, R. G., Hooper, S. N., Kates, M., Sen Gupta, A. K., Eglinton, G., and Maclean, I., 1969, Gas—liquid chromatographic separation of diastereoisomers of phytanic acid l-methyl esters, J. Chromatogr. 44:256.CrossRefGoogle Scholar
  8. Ackman, R. G., Cox, R. E., Eglinton, G., Hooper, S. N., and Maxwell, J. R., 1972, Stereochemical studies of acyclic isoprenoid compounds. I. Gas chromatographic analysis of stereoisomers of a series of standard acyclic isoprenoid acids, J. Chromatogr. Sci. 10:392.Google Scholar
  9. Allen, G. R., and Saxby, M. J., 1968, Gas chromatography of isomeric fatty acid methyl esters, J. Chromatogr. 37:312.PubMedCrossRefGoogle Scholar
  10. Anderson, R. D., Bottino, N. R., and Reiser, R., 1967, Pancreatic lipase hydrolysis as a source of diglycerides for the stereospecific analysis of triglycerides, Lipids 2:440.PubMedCrossRefGoogle Scholar
  11. Anderson, R. E., and Rakoff, H., 1965, Gas-liquid chromatography of the positional isomers of methyl nonynoates, J. Am. Oil Chem. Soc. 42:1102.CrossRefGoogle Scholar
  12. Andersson, B. A., and Holman, R. T., 1975, Mass spectrometric localization of methyl branching in fatty acids using acylpyrrolidines, Lipids 10:716.PubMedCrossRefGoogle Scholar
  13. Andersson, B. A., Christie, W. W., and Holman, R. T., 1975, Mass spectrometric determination of positions of double bonds in polyunsaturated fatty acid pyrrolidides, Lipids 10:215.CrossRefGoogle Scholar
  14. Aplin, R. T., and Coles, L., 1967, A simple procedure for localization of ethylenic bonds by mass spectrometry, Chem. Commun. 1967:858.Google Scholar
  15. Artman, N. R., and Smith, D. E., 1972, Systematic isolation and identification of minor components in heated and unheated fat, J. Am. Oil Chem. Soc. 49:318.CrossRefGoogle Scholar
  16. Ashes, J. R., and Haken, J. K., 1974, Gas chromatography of homologous esters. VI. Structure-retention increments of aliphatic esters, J. Chromatogr. 101:103.CrossRefGoogle Scholar
  17. Ashes, J. R., and Haken, J. K., 1975, Gas chromatography of homologous esters. IX. Structure-retention increments of unsaturated esters, J. Chromatogr. 111:171.CrossRefGoogle Scholar
  18. Aylward, F., and Sawistowska, M., 1962, Hydrazine—A reducing agent for olefinic compounds, Chem. Ind. (London) 1962:484.Google Scholar
  19. Bagby, M. O., Smith, C. R., Jr., and Wolff, I. A., 1965, Labellanic acid. A new allenic acid from Leonotis nepetaefolia seed oil, J. Org. Chem. 30:4227.CrossRefGoogle Scholar
  20. Barve, J. A., Gunstone, F. D., Jacobsberg, F. R., and Winlow, P., 1972, Fatty acids, Part 34. Behaviour of all the methyl octadecenoates and octadecynoates in argentation chromatography and gas liquid chromatography, Chem. Phys. Lipids 8:117.CrossRefGoogle Scholar
  21. Baumann, W. J., and Ulshoefer, H. W., 1968, Characteristic absorption bands and frequency shifts in the infrared spectra of naturally-occurring long-chain ethers, esters and ether esters of glycerol and various diols, Chem. Phys. Lipids 2:114.PubMedCrossRefGoogle Scholar
  22. Bergelson, L. D., Dyatlovitskaya, E. V., and Voronkova, V. V., 1964, Complete structural analysis of fatty acid mixtures by thin-layer chromatography, J. Chromatogr. 15:191.PubMedCrossRefGoogle Scholar
  23. Bohlman, F., and Hanel, P., 1969, Ueber die Polyine aus Cicuta virosa L., Chem. Ber. 102:3293.CrossRefGoogle Scholar
  24. Bohlman, F., Schuman, D., Bethke, H., and Zdero, C., 1967, Ueber die Massenspektren von acetylcarbonsauere Ester. Chem. Ber. 100:3706.CrossRefGoogle Scholar
  25. Bottcher, C. J. F., Woodford, F. P., Boelsma-Van Haute, E., and Van Gent, C. M., 1959, Methods for the analysis of lipid extracts from human arteries and other tissues, Recl. Trav. Chim. Pays-Bas. 78:794.CrossRefGoogle Scholar
  26. Bottino, N. R., Vandenberg, G. A., and Reiser, R., 1967, Pancreatic lipases selectivity of fatty acids, Lipids 2:489.PubMedCrossRefGoogle Scholar
  27. Breckenridge, H. C., and Kuksis, A., 1968, Structure of bovine milk fat triglycerides. I. Short and medium chain lengths, Lipids 3:291.PubMedCrossRefGoogle Scholar
  28. Brennan, P. J., Griffin, P. I. S., Loesel, O. M., and Tyrell, D., 1975, The lipids of fungi, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 14 (R. T. Holman, ed.), Part 2, pp. 49–89, Pergamon Press, Oxford.Google Scholar
  29. Brett, D., Howling, D., Morris, L. J., and James, A. T., 1971, Specificity of the fatty acid desaturases. The conversion of saturated to monoenoic acids, Arch. Biochem. Biophys. 143:535.PubMedCrossRefGoogle Scholar
  30. Brockerhoff, H., 1971, Stereospecific analysis of triglycerides, Lipids 6:942.PubMedCrossRefGoogle Scholar
  31. Brockerhoff, H., and Ackman, R. G., 1967, Positional distribution of isomers of monoenoic fatty acids in animal glycerolipids, J. Lipid Res. 8:661.PubMedGoogle Scholar
  32. Brockerhoff, H., and Jensen, R. G., 1974, Lipolytic Enzymes, Academic Press, New York.Google Scholar
  33. Brown, C. A., 1967, Simple component apparatus for rapid process determination of unsaturation via hydrogenation on a micro and ultramicro scale, Anal. Chem. 39:1882.CrossRefGoogle Scholar
  34. Campbell, I. N., and Naworal, J., 1969, Mass spectra discrimination between monoenoic and cyclo-propanoid, and between normal, iso, and anteiso fatty acid methyl esters, J. Lipid Res. 10:589.PubMedGoogle Scholar
  35. Capella, P., and Zorzut, C. M., 1968, Determination of double bond position in monounsaturated fatty acid esters by mass spectrometry of their trimethylsilyloxy derivatives, Anal. Chem. 40:1458.CrossRefGoogle Scholar
  36. Cason, J., Sumrell, G., Allen, C. F., Gillies, G. A., and Elberg, S., 1953, Certain characteristics of the fatty acids from the lipides of the tubercle bacillus, J. Biol. Chem. 205:435.PubMedGoogle Scholar
  37. Carroll, K. K., 1976, Column chromatography of neutral glycerides and fatty acids, in: Lipid Chromatographic Analysis (G. V. Marinetti, ed.), pp. 173–214, Dekker, New York.Google Scholar
  38. Chapman, D., 1965, The Structure of Lipids, Methuen, London.Google Scholar
  39. Christie, W. W., 1968, Chromatography of the isomeric methylene-interrupted methyl cis,cis-octadecadienoates. 2. Gas—liquid chromatography, J. Chromatogr. 37:27.CrossRefGoogle Scholar
  40. Christie, W. W., 1970, Cyclopropane and cyclopropene fatty acids, in: Topics in Lipid Chemistry, Vol. 1 (F. D. Gunstone, ed.), PP. 1–49, Logos Press, London.Google Scholar
  41. Christie, W. W., 1972, The preparation of alkyl esters from fatty acids and lipids, in: Topics in Lipid Chemistry, Vol. 3 (F. D. Gunstone, ed.), pp. 171–197, Wiley, New York.Google Scholar
  42. Christie, W. W., and Holman, R. T., 1966, Mass spectrometry of lipids. I. Cyclopropane fatty acid esters, Lipids 1:176.PubMedCrossRefGoogle Scholar
  43. Christie, W. W., and Holman, R. T., 1967, Synthesis and characterization of the complete series of methylene-interrupted cis,cis-octadecadienoic acid, Chem. Phys. Lipids 1:407.CrossRefGoogle Scholar
  44. Christie, W. W., Gunstone, F. D., Ismail, I. A., and Wade, L., 1968, The synthesis and chromatographic and spectroscopic properties of the cyclopropane esters derived from all the methyl octadecanoates (Δ2–Δ17), Chem. Phys. Lipids 2:196.PubMedCrossRefGoogle Scholar
  45. Christie, W. W., Rebello, D., and Holman, R. T., 1969, Mass spectrometry of derivatives of cyclopentenyl fatty acids, Lipids 4:229.CrossRefGoogle Scholar
  46. Cochrane, G. C., 1975, A review of the analysis of free fatty acids (C2–C6), J. Chromatogr. Sci. 13:440.CrossRefGoogle Scholar
  47. Conacher, H. B. S., and Gunstone, F. D., 1969, Fatty acids. Part 21. The rearrangement of methyl 12,13-epoxyoleate by boron trifluoride with formation of cyclopropane esters, Chem. Phys. Lipids 3:203.PubMedCrossRefGoogle Scholar
  48. Cooper, M. J., and Anders, M. W., 1974, Determination of long chain fatty acids as 2-naphthacyl esters by high pressure liquid chromatography and mass spectrometry, Anal. Chem. 46:1849.PubMedCrossRefGoogle Scholar
  49. Dinh-Nguyen, P. N., 1968, Contribution à l’étude de la spectrometrie de masse: Utilisation des esters méthyliques de monoacides à longue chaine normale marques au deuterium et au carbone-13, Ark. Kemi 28:289.Google Scholar
  50. Dinh-Nguyen, P. N., Ryhage, R., Ställberg-Stenhagen, S., and Stenhagen, E., 1961, Mass spectrometry studies. VIII. A study of the fragmentation of normal long chain methyl esters and hydrocarbons under electron impact with the aid of deuterium substituted compounds, Ark. Kemi 18:393.Google Scholar
  51. Drodz, J., 1975, Chemical derivatization in gas chromatography, J. Chromatogr. 113:303.CrossRefGoogle Scholar
  52. Dudley, P. A., and Anderson, R. E., 1975, Separation of polyunsaturated fatty acids by argentation thin layer chromatography, Lipids 10:113.PubMedCrossRefGoogle Scholar
  53. Dutton, H. J., 1968, Hydrogenation of fats, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 9 (R. T. Holman, ed.), pp. 351–376, Pergamon Press, Oxford.Google Scholar
  54. Eglinton, G., Hunneman, D. H., and McCormick, A., 1968, Gas chromatographic—mass spectrometric studies of long chain hydroxy acids. III. The mass spectra of the methyl esters, trimethylsilyl ethers of aliphatic hydroxy acids: A facile method of double bond location, Org. Mass Spectrom. 1:593.CrossRefGoogle Scholar
  55. Emken, E. A., 1971, Determination of cis and trans in monoene and diene fatty esters by gas chromatography, Lipids 6:686.CrossRefGoogle Scholar
  56. Emken, E. A., 1972, Cis and trans analysis of fatty esters by gas chromatography: Octdecenoate and octadecadienoate isomers, Lipids 7:459.CrossRefGoogle Scholar
  57. Emken, E. A., and Dutton, H. J., 1974, Sequential gas chromatographic procedure for microanalysis of monoenoic double bond position in hydrogenated oils, Lipids 9:272.PubMedCrossRefGoogle Scholar
  58. Emken, E. A., Scholfield, C. R., Davison, V. L., and Frankel, E. N., 1967, Separation of conjugated methyl octadecadienoate and trienoate geometric isomers by silver resin columns and preparative gas—liquid chromatography, J. Am. Oil Chem. Soc. 44:373.CrossRefGoogle Scholar
  59. Fischer, W., 1973, The suitability of lipases from Rhizopus arrhizus for analysis of fatty acid distribution in dihexosyl diglycerides, phospholipids and plant sulfolipids, Hoppe-Seyler’s Z. Physiol. Chem. 354:1115.PubMedCrossRefGoogle Scholar
  60. Fischmeister, I., 1975, Infrared absorption spectroscopy of normal and substituted long-chain fatty acids and esters in the solid state, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 14 (R. T. Holman, ed.), Part 3, pp. 93–162, Pergamon Press, Oxford.Google Scholar
  61. Foglia, T. A., Heller, P., and Dooley, C. J., 1976, Analysis of α-branched fatty acids by gas chromatography and mass spectrometry, J. Am. Oil Chem. Soc. 53:45.PubMedCrossRefGoogle Scholar
  62. Freeman, N. K., 1968, Applications of infrared absorption spectroscopy in the analysis of lipids, J. Am. Oil Chem. Soc. 45:798.CrossRefGoogle Scholar
  63. Frost, D. J., and Barzilay, J., 1971, Proton magnetic resonance identification of nonconjugated cis-unsaturated fatty acids and esters, Anal. Chem. 43:1316.CrossRefGoogle Scholar
  64. Frost, D. J., and Gunstone, F. D., 1975, The PMR analysis of non-conjugated alkenoic and alkynoic acids and esters, Chem. Phys. Lipids 15:53.PubMedCrossRefGoogle Scholar
  65. Gardner, H. W., and Weisleder, D., 1970, Lypoxygenase from Zea mays: 9-d-Hydroxytrans-10-cis-12-octadecadienoic acid from linoleic acid, Lipids 5:678.CrossRefGoogle Scholar
  66. Glass, R. L., 1971, Alcoholysis, saponification and the preparation of fatty acid methyl esters, Lipids 6:919.CrossRefGoogle Scholar
  67. Glass, R. L., Krick, T. P., Sand, D. M., Rahn, C. H., and Schlenk, H., 1975, Furanoid fatty acids from fish lipids, Lipids 10:695.PubMedCrossRefGoogle Scholar
  68. Gloster, J., and Fletcher, R. F., 1966, Quantitative analysis of serum lipids with thin-layer chromatography, Clin. Chim. Acta 13:235.PubMedCrossRefGoogle Scholar
  69. Golovnya, R. V., Uralets, V. P., and Kuzmenko, T. E., 1976, Characterization of fatty acid methyl esters by gas chromatography on siloxane liquid phases, J. Chromatogr. 121:118.PubMedCrossRefGoogle Scholar
  70. Goodridge, A. G., 1972, Regulation of fatty acid synthesis in the liver of prenatal and early postnatal chicks: Hepatic concentrations of individual free fatty acids and other metabolites, J. Biol. Chem. 248:1930.Google Scholar
  71. Graff, G., Szczepanik, P., Klein, P. D., Chipault, J. R., and Holman, R. T., 1970, Identification and characterization of fully deuterated fatty acids isolated from Scenedesmus obliquus cultured in deuterium oxide, Lipids 5:786.PubMedCrossRefGoogle Scholar
  72. Groff, T. M., Rakoff, H., and Holman, R. T., 1968, Mass spectrometry of lipids. Isomeric methyl nonynoates and the corresponding nonenoates and dideuteronenoates, Ark. Kemi 29:179.Google Scholar
  73. Gunstone, F. D. and Inglis, R. P., 1971, NMR spectra of fatty acids and related compounds, in: Topics in Lipid Chemistry, Vol. 2 (F. D. Gunstone, ed.), pp. 287–307, Logos Press (Wiley-Interscience), New York.Google Scholar
  74. Gunstone, F. D., and Jacobsberg, F. R., 1972, The synthesis, silver ion chromatographic and NMR spectroscopic properties of the nine 9, 12-diunsaturated n-C18 acids, Chem. Phys. Lipids 9:112.CrossRefGoogle Scholar
  75. Gunstone, F. D., Ismail, I. A., and Lie Ken Jie, M., 1967, Fatty acids. Part 16. Thin-layer and gas—liquid chromatographic properties of the cis and trans methyl octadecenoates and of some acetylenic esters, Chem. Phys. Lipids 1:337.CrossRefGoogle Scholar
  76. Hamberg, M., and Samuelsson, B., 1967, On the specificity of the oxygenation of unsaturated fatty acids catalyzed by soybean lipoxidase, J. Biol. Chem. 242:5329.PubMedGoogle Scholar
  77. Hammarstrom, S., 1974, Microdetermination of stereoisomers of 2-hydroxy and 3-hydroxy fatty acids, in: Methods of Enzymology, Vol 35 (J. M. Lowenstein, ed.), Lipids Part B, pp. 326–334, Academic Press, New York.Google Scholar
  78. Hansen, R. P., 1967, 11-Cyclohexylundecanoic acid: Its occurrence in bovine rumen bacteria, Chem. Ind. (London) 1967:1640.Google Scholar
  79. Hilditch, T. P., and Williams, P. N., 1964, The Chemical Constitution of Natural Fats, 4th ed., Chapman and Hall, London.Google Scholar
  80. Hintze, U., Roper, H., and Gercken, G., 1973, Gas chromatography-mass spectrometry of C1–C20 fatty acid benzyl esters, J. Chromatogr. 87:482.PubMedGoogle Scholar
  81. Hitchcock, C., and Nichols, B. W., 1971, Plant Lipid Biochemistry, Academic Press, New York.Google Scholar
  82. Hoffmann, G., and Meijboom, P. W., 1969, Identification of 11,15-octadecadienoic acid from beef and mutton tallow, J. Am. Oil Chem. Soc. 46:620.CrossRefGoogle Scholar
  83. Hofstetter, H. H., Sen, N., and Holman, R. T., 1965, Characterization of unsaturated fatty acids by gas—liquid chromatography, J. Am. Oil Chem. Soc. 42:537.CrossRefGoogle Scholar
  84. Holman, R. T., and Rahm, J. J., 1966, Analysis and characterization of polyunsaturated fatty acids, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 9 (R. T. Holman, ed.), pp. 15–90, Pergamon Press, Oxford.Google Scholar
  85. Holman, R. T., Egwim, P. O., and Christie, W. W., 1969, Substrate specificity of soybean lipoxidase, J. Biol. Chem. 224:1149.Google Scholar
  86. Hooper, N. K., and Law, J. H., 1968, Mass spectrometry of derivatives of cyclopropane fatty acids, J. Lipid Res. 9:270.PubMedGoogle Scholar
  87. Hopkins, C. Y., 1965, Nuclear magnetic resonance in fatty acids and glycerides, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 18 (R. T. Holman, ed.), pp. 215–252, Pergamon Press, Oxford.Google Scholar
  88. Hopkins, C. Y., 1968, High resolution NMR spectroscopy and some examples of its use, J. Am. Oil Chem. Soc. 45:778.PubMedCrossRefGoogle Scholar
  89. Hopkins, C. Y., 1972, Fatty acids with conjugated unsaturation, in: Topics in Lipid Chemistry, Vol. 3 (F. D. Gunstone, ed.), pp. 37–87, Wiley, New York.Google Scholar
  90. Hopkins, C. Y., and Chisholm, M. J., 1968, A survey of the conjugated fatty acids of seed oils, J. Am. Oil Chem. Soc. 45:116.Google Scholar
  91. Hornstein, I., Alford, J. A., Elliott, L. E., and Crowe, P. F., 1960, Determination of free fatty acids in fat, Anal. Chem. 32:540.CrossRefGoogle Scholar
  92. Howling, D., Morris, L. J., and James, A. T., 1968, The influence of chain length on the dehydrogenation of saturated fatty acids, Biochim. Biophys. Acta 152:224.PubMedCrossRefGoogle Scholar
  93. Hrivnak, J., Sojak, L., Beska, E., and Janak, J., 1972, Capillary gas chromatography of free saturated C2—C6 fatty acids, J. Chromatogr. 68:55.CrossRefGoogle Scholar
  94. Jacob, J., and Grimmer, G., 1968, Structure and amount of positional isomers of monounsaturated fatty acids in human depot fats, J. Lipid Res. 9:730.PubMedGoogle Scholar
  95. Jacob, J., and Poltz, J., 1975, Composition of uropygial gland secretions of birds of prey, Lipids 10:1.PubMedCrossRefGoogle Scholar
  96. Jaeger, H., Kloer, H. U., and Ditschuneit, H., 1976, Automated glass capillary gas—liquid chromatography of fatty acid methyl esters with reference to cis and trans isomers, J. Lipid Res. 17:185.PubMedGoogle Scholar
  97. James, A. T., 1960, Qualitative and quantitative determination of the fatty acids by gas—liquid chromatography, in: Methods of Biochemical Analysis, Vol. 8 (D. Glick, ed.), pp. 1–59, Interscience, New York.CrossRefGoogle Scholar
  98. Jamieson, G. R., 1970, Structure determination of fatty esters by gas—liquid chromatography, in: Topics in Lipid Chemistry, Vol. 1 (F. D. Gunstone, ed.), pp. 107–159, Logos Press, London.Google Scholar
  99. Jamieson, G. R., and Reid, E. H., 1976, Gas—liquid chromatography characteristics of some long-chain acetylenic methyl esters, J. Chromatogr. 128:193.CrossRefGoogle Scholar
  100. Jangaard, P. M., 1965, A rapid method for concentrating unsaturated fatty acid methyl esters in marine lipids as an aid in their identification by GLC, J. Am. Oil Chem. Soc. 42:845.CrossRefGoogle Scholar
  101. Jensen, R. G., Gordon, D. T., Heinermann, W. H., and Holman, R. T., 1972, Specificity of Geotrichum candidum lipases with respect to double bond position in triglycerides containing cis-octadecenoic acids, Lipids 7:738.PubMedCrossRefGoogle Scholar
  102. Jensen, R. G., Gordon, D. T., and Scholfield, C. R., 1973, Hydrolysis of linoleate geometric isomers by Geotrichum candidum lipase, Lipids 8:323.PubMedCrossRefGoogle Scholar
  103. Johnson, A. R., Fogerty, A. C., Pearson, J. A., Shenstone, F. S., and Bersten, A. M., 1969, Fatty acid desaturase systems of hen liver and their inhibition by cyclopropene fatty acids, Lipids 4:265.PubMedCrossRefGoogle Scholar
  104. Johnson, C. B., and Wong, E., 1975, Esterification and etherification by silver oxide—organic halide reaction gas chromatography, J. Chromatogr. 109:403.PubMedCrossRefGoogle Scholar
  105. Karlsson, K. A., 1974, Resolution and chromatographic configuration analysis of 2-hydroxy fatty acids, Chem. Phys. Lipids 12:65.PubMedCrossRefGoogle Scholar
  106. Kates, M., 1972, Techniques of lipidology: Isolation, analysis and identification of lipids, in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 3 (T. S. Work and E. Work, eds.), pp. 269–600, North-Holland/American Elsevier, New York.Google Scholar
  107. Kates, M., Hancock, A. J., Ackman, R. G., and Hooper, S. N., 1972, Preparation and characterization of the DDD(RRR)-stereoisomer of 4,8,12,16-tetramethylheptadecanoic acid and 5,9,13,17-tetra-methyloctadecanoic acid, Chem. Phys. Lipids 8:32.CrossRefGoogle Scholar
  108. Kleiman, R., and Spencer, G. F., 1973, Gas chromatography—mass spectrometry of methyl esters of unsaturated oxygenated fatty acids, J. Am. Oil Chem. Soc. 50:31.CrossRefGoogle Scholar
  109. Kleiman, R., Spencer, G. F., and Earle, F. R., 1969, Boron trifluoride as catalyst to prepare methyl esters from oils containing unusual acyl groups, Lipids 4:118.CrossRefGoogle Scholar
  110. Kleiman, R., Earle, F. R., Tallent, W. H., and Wolff, I. A., 1970, Retarded hydrolysis by pancreatic lipase of seed oils with trans-3 unsaturation, Lipids 5:513.PubMedCrossRefGoogle Scholar
  111. Kleiman, R., Spencer, G. F., Tjarks, L. W., and Earle, F. R., 1971, Oxygenated trans-3-olefinic acids in a Stenachaenium seed oil, Lipids 6:617.CrossRefGoogle Scholar
  112. Koritala, S., and Rohwedder, W. K., 1972, Formation of an artifact during methylation of conjugated fatty acids, Lipids 7:274.CrossRefGoogle Scholar
  113. Kuksis, A., 1971, Progress in the analysis of lipids. IX. Gas chromatography, Part 1, Fette Seifen Anstrichm. 71:130.CrossRefGoogle Scholar
  114. Kuksis, A., 1977, Gas—liquid chromatography of free fatty acids, in: Separation and Purification Methods, Vol. 6 (E. S. Perry, C. J. Van Oss, and E. Grushka, eds.), Marcel Dekker, New York (in press).Google Scholar
  115. Kuksis, A., and Ludwig, J., 1966, Fractionation of triglyceride mixtures by preparative gas chromatography, Lipids 1:202.PubMedCrossRefGoogle Scholar
  116. Kuksis, A., Breckenridge, W. C., Marai, L., and Stachnyk, O., 1968, Quantitative gas chromatography in the structural characterization of glyceryl Phosphatides, J. Am. Oil Chem. Soc. 45:537.PubMedCrossRefGoogle Scholar
  117. Kuksis, A., Stachnyk, O., and Holub, B. J., 1969, Improved quantitation of plasma lipids by direct gas—liquid chromatography, J. Lipid Res. 10:660.PubMedGoogle Scholar
  118. Kuksis, A., Myher, J. J., Marai, L., Yeung, S. K. F., Steiman, I., and Mookerjea, S., 1975, Distribution of newly formed fatty acids among glycerolipids of isolated perfused rat liver, Can. J. Biochem. 53:509.PubMedCrossRefGoogle Scholar
  119. Kuksis, A., Myher, J. J., Marai, L., and Geher, K., 1976, Estimation of plasma free fatty acids as the trimethylsilyl (TMS) esters, Anal. Biochem. 70:302.PubMedCrossRefGoogle Scholar
  120. Laine, R. A., 1974, Identification of 2-hydroxy fatty acids in complex mixtures of fatty acid methyl esters by mass chromatography, Biomed. Mass Spectrometr. 1:10.CrossRefGoogle Scholar
  121. Lam, C. H., and Lie Ken Jie, M. S. F., 1975, Fatty acids. IV. Synthesis of all the dimethylene-interrupted methyl octadecadiynoates and a study of their gas—liquid chromatographic properties, J. Chromatogr. 115:559.PubMedCrossRefGoogle Scholar
  122. Lam, C. H., and Lie Ken Jie, M. S. F., 1976a, Fatty acids. VII. The gas-liquid chromatographic properties of all dimethylene interrupted methyl cis,cis-octadecadienoates, J. Chromatogr. 117:365.PubMedCrossRefGoogle Scholar
  123. Lam, C. H., and Lie Ken Jie, M. S. F., 1976b, Fatty acids. VIII. Gas-liquid chromatographic properties of all dimethylene interrupted methyl trans, trans-octadecadienoates, J. Chromatogr. 121:303.PubMedCrossRefGoogle Scholar
  124. Langenbeck, U., Mohring, H. U., and Dieckmann, K. P., 1975, Gas chromatography of α-keto acids as their O-trimethyl-silylquioxalinol derivatives, J. Chromatogr. 115:65.PubMedCrossRefGoogle Scholar
  125. Lankin, V. Z., Anikeeva, S. P., Ananenko, A. A., and Veltischev, Y. Y., 1974, Kolichestvennoe opredelenie neeterifitsirovannykh shirnykh kislot syrorotki krovi metodom gazozhidkostnof khromatografii, Vopr. Med. Khim. 20:435.PubMedGoogle Scholar
  126. Lemarchal, P., and Munsch, N., 1965, Etude sur le métabolisme de l’acide par des homogenats de foie de rat, C.R. Acad. Sci. Ser. D 260:714.Google Scholar
  127. Lemieux, R. U., and von Rudloff, E., 1955, Periodate-permanganate oxidation: Oxidation of olefins, Can. J. Chem. 33:1701.CrossRefGoogle Scholar
  128. Lie Ken Jie, M. S. F., 1975a, Fatty acids. II. The synthesis and gas—liquid chromatographic behaviour of five trimethylene-interrupted C18-diunsaturated fatty acids, J. Chromatogr. 109:81.PubMedCrossRefGoogle Scholar
  129. Lie Ken Jie, M. S. F., 1975b, Fatty acids. III. Further study of the gas—liquid chromatographic properties of all of the methyl undecynoates and methyl cis-undecenoates, J. Chromatogr. 111:189.CrossRefGoogle Scholar
  130. Lie Ken Jie, M. S. F., and Lam, C. H., 1974, Fatty acids. I. Synthesis of all the methyl undecynoates and the methyl cis-undecenoates and a study of their gas—liquid chromatographic properties, J. Chromatogr. 97:165.PubMedCrossRefGoogle Scholar
  131. Lin, S.-N., and Horning, E. C., 1975a, Convenient determination of α-tocopherol and free fatty acids in human plasma by glass open tubular capillary column gas chromatography, J. Chromatogr. 112:465.PubMedCrossRefGoogle Scholar
  132. Lin, S.-N., and Horning, E. C., 1975b, Analysis of long chain acids of human plasma phosphatidylcholines (lecithin) and cholesteryl esters by glass open tubular capillary column gas chromatography for stroke patients and for normal subjects, J. Chromatogr. 112:483.PubMedCrossRefGoogle Scholar
  133. Lough, A. K., 1973, The chemistry and biochemistry of phytanic, pristanic and related acids, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 14 (R. T. Holman, ed.), pp. 1–48, Pergamon Press, Oxford.Google Scholar
  134. Luddy, F. E., Barford, R. A., Herb, S. F., Magidman, P., and Riemenschmeider, R. W., 1964, Pancreatic lipase hydrolysis of triglycerides by a semimicro technique, J. Am. Oil Chem. Soc. 41:693.CrossRefGoogle Scholar
  135. Luddy, F. E., Barford, R. A., Herb, S. F., and Magidman, P., 1968, A rapid quantitative procedure for the preparation of methyl esters of butteroil and other fats, J. A. Oil Chem. Soc. 45:549.CrossRefGoogle Scholar
  136. Lundberg, W. O., and Jarvi, P., 1970, Peroxidation of polyunsaturated fatty compounds, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 9 (R. T. Holman, ed.), pp. 377–406, Pergamon Press, Oxford.Google Scholar
  137. MacLean, I., Eglinton, G., Douraghi-Zadeh, K., Ackman, R. C., and Hooper, S. N., 1968, Correlation of stereoisomerism in present day and geologically ancient isoprenoid fatty acids, Nature (London) 218:1019.PubMedCrossRefGoogle Scholar
  138. Mani, V. V. S., and Lakshminarayana, G., 1969, The thin-layer chromatographic behaviour of cyclopentanyl and cyclopentenyl fatty acid methyl esters. J. Chromatogr. 39:182.CrossRefGoogle Scholar
  139. Markley, K. S., 1960, Isomerism, in: Fatty Acids: Their Chemistry, Properties, Production and Uses (K. S. Markley, ed.), Part 1, pp. 251–283, Interscience, New York.Google Scholar
  140. Markley, K. S., 1967, Identification of fatty acids, in: Fatty Acids: Their Chemistry, Properties, Production and Uses (K. S. Markley, ed.), 2nd ed., Part 4, Interscience, New York.Google Scholar
  141. Markley, K. S., 1968, Isomerism, in: Fatty Acids: Their Chemistry, Properties, Production and Uses (K. S. Markley, ed.), 2nd ed., Part 5, pp. 3282–3290, Interscience, New York.Google Scholar
  142. McCloskey, J. A., 1969, Mass spectrometry of lipids and steroids in: Methods in Enzymology, Vol. 14 (S. P. Colowick and N. O. Kaplan, eds.), Lipids (J. M. Lowenstein, ed.), pp. 382–450, Academic Press, New York.Google Scholar
  143. McCloskey, J. A., 1970, Mass spectrometry of fatty acid derivatives, in: Topics in Lipid Chemistry, Vol. 1 (F. D. Gunstone, ed.), pp. 369–440, Logos Press, London.Google Scholar
  144. McCloskey, J. A., and Law, J. H., 1967, Ring location in cyclopropane fatty acid esters by a mass spectrometric method, Lipids 2:225.PubMedCrossRefGoogle Scholar
  145. McCloskey, J. A., and McClelland, M. J., 1965, Mass spectra of O-isopropylidene derivatives of unsaturated fatty esters, J. Am. Chem. Soc. 87:5090.CrossRefGoogle Scholar
  146. McLafferty, F. W., 1959, Mass spectrometric analyses: Molecular rearrangements, Anal. Chem. 1959:82.CrossRefGoogle Scholar
  147. Mikolajczak, K. L., and Smith, C. R., Jr., 1967, Optically active trihydroxy acids of Chemaepeuce seed oils, Lipids 2:261.PubMedCrossRefGoogle Scholar
  148. Mikolajczak, K. L., Rogers, M. F., Smith, C. R., Jr., and Wolff, I. A., 1967, An octadecatrienoic acid from Lamium purpureum L. seed: Isolation of 5,6-allenic and trans-16-olefinic unsaturation, Biochem.J. 105:1245.PubMedGoogle Scholar
  149. Minnikin, D. E., 1972, Ring location in cyclopropane fatty acid esters by boron trifluoride-catalyzed methoxylation followed by mass spectroscopy, Lipids 7:398.CrossRefGoogle Scholar
  150. Miwa, T. K., Mikolajczak, K. L., Earle, F. R., and Wolff, I. A., 1960, Gas chromatographic characterization of fatty acids. Identification constants for mono-and dicarboxylic methyl esters, Anal. Chem. 32:1739.CrossRefGoogle Scholar
  151. Morris, L. J., 1966, Separations of lipids by silver ion chromatography, J. Lipid Res. 7:717.PubMedGoogle Scholar
  152. Morris, L. J., 1970, Mechanism and stereochemistry of fatty acid metabolism, Biochem. J. 118:681.PubMedGoogle Scholar
  153. Morris, L. J., and Crouchman, M. L., 1969, The stereochemistry of enzymic hydration and chemical cleavage of d-(+)-cis-12,13-epoxyoleic acid (vernolic acid), Lipids 4:50.PubMedCrossRefGoogle Scholar
  154. Morris, L. J., and Crouchman, M. L., 1972, The absolute optical configurations of the isomeric 9,10-epoxystearic,9,10-dihydroxystearic and 9,10,12-trihydroxystearic acids, Lipids 7:372.CrossRefGoogle Scholar
  155. Morris, L. J., and Nichols, B. W., 1970, Argentation thin-layer chromatography of lipids, in: Progress in Thin-Layer Chromatography and Related Methods, Vol. 1 (A. Niederwieser and G. Pataki, eds.), pp. 75–93, Ann Arbor-Humphrey Science Publishers, Ann Arbor, Mich.Google Scholar
  156. Morris, L. J., and Wharry, D. M., 1965, Chromatographic behaviour of isomeric long-chain aliphatic compounds. I. Thin-layer chromatography of some oxygenated fatty acid derivatives, J. Chromatogr. 20:27.PubMedCrossRefGoogle Scholar
  157. Morris, L. J., and Wharry, D. M., 1966, Naturally occurring epoxy acids. IV. The absolute optical configuration of vernolic acid, Lipids 1:41.PubMedCrossRefGoogle Scholar
  158. Morris, L. J., Wharry, D. M., and Hammond, E. W., 1968, Chromatographic behaviour of isomeric long-chain aliphatic compounds. III. Thin-layer chromatography of positional isomers of substituted fatty acids and alcohols, J. Chromatogr. 33:471.CrossRefGoogle Scholar
  159. Morrison, W. R., and Smith, L. M., 1964, Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron trifluoride-methanol, J. Lipid Res. 5:600.PubMedGoogle Scholar
  160. Murata, T., 1975, Chemical ionization—mass spectrometry. I. Application to analysis of fatty acids, Anal. Chem. 47:573.CrossRefGoogle Scholar
  161. Murawski, U., Egge, H., Gyorgi, P., and Zilliken, F., 1971, Identification of non-methylene-interrupted cis,cis-octadecadienoic acids in human milk, FEBS Lett. 18:290.PubMedCrossRefGoogle Scholar
  162. Myher, J. J., Marai, L., and Kuksis, A., 1974, Identification of fatty acids by GC-MS using polar siloxane liquid phases, Anal. Biochem. 62:188.PubMedCrossRefGoogle Scholar
  163. Nelson, G. J., 1972, Quantitative analysis of blood lipids, in: Blood Lipids and Lipoproteins: Quantitation, Composition, and Metabolism (G. J. Nelson, ed.), pp. 25–73, Interscience, New York.Google Scholar
  164. Nicolaides, N., Apon, J. M. B., and Wong, D. H., 1976, Further studies of the saturated methyl branched fatty acids of vernix caseosa lipid, Lipids 11:781.PubMedCrossRefGoogle Scholar
  165. Niehaus, W. G., Jr., and Ryhage, R., 1967, Determination of double bond positions in polyunsaturated fatty acids using combination gas chromatography-mass spectrometry, Tetrahedron Lett. 5021.Google Scholar
  166. Niehaus, W. G., and Schroepfer, G. J., 1965, The reversible hydration of oleic acid to 10-hydroxy-stearic acid, Biochem. Biophys. Res. Commun. 21:271.PubMedCrossRefGoogle Scholar
  167. Niehaus, W. G., Kisic, A., Torkelson, A., Bednarczyk, D. J., and Schroepfer, G. J., 1970, Stereospecific hydration of cis- and trans-9, 10-epoxyoctadecenoic acids, J. Biol. Chem. 245:3190.Google Scholar
  168. Nutter, L. J., and Privett, O. S., 1966, Phospholipase A properties of several snake venom preparations, Lipids 1:258.PubMedCrossRefGoogle Scholar
  169. O’Brien, J. S., and Rouser, G., 1964, Analyses of hydroxy fatty acids by gas—liquid chromatography, Anal. Biochem. 7:288.PubMedCrossRefGoogle Scholar
  170. O’Connor, R. T., 1968, Spectral properties, in: Fatty Acids: Their Chemistry, Properties, Production, and Uses (K. S. Markley, ed.), 2nd ed., Part 5, pp. 3315–3417, Interscience, New York.Google Scholar
  171. Odham, G., 1967, Studies on the fatty acids in the feather waxes of some water-birds, Fette Seifen Anstrichm. 69:164.CrossRefGoogle Scholar
  172. Odham, G., and Stenhagen-Ställberg, E., 1972, Fatty acids, in: Biochemical Applications of Mass Spectrometry (G. R. Waller, ed.), pp. 211–228, Interscience, New York.Google Scholar
  173. Odham, G., and Waern, K., 1968, Synthesis of methyl 2d,4d,6d-and 2l,4d,6d-trimethyldodec-11-enoate, Ark. Kemi 29:563.Google Scholar
  174. Organiscian, D. T., 1974, The collection and elution of radioactive fatty acid methyl ester during quantitative gas—liquid chromatography, Prep. Biochem. 4:89.CrossRefGoogle Scholar
  175. Ory, R. L., Kiser, J., and Pradel, P. A., 1969, Studies on positional specificity of the castor bean acid lipase, Lipids 4:261.PubMedCrossRefGoogle Scholar
  176. Oshima, M., and Ariga, T., 1975, ω-Cyclohexyl fatty acids in acidophilic thermophilic bacteria: Studies on their presence, structure, and biosynthesis using precursors labelled with stable isotopes and radioisotopes, J. Biol. Chem. 250:6963.PubMedGoogle Scholar
  177. Ottenstein, D. M., and Supina, W. R., 1974, Improved columns for the separation of C14–C20 fatty acids in the free form, J. Chromatogr. 91:119.PubMedCrossRefGoogle Scholar
  178. Ottenstein, D. M., Bartley, D. A., and Supina, W. R., 1976, Gas chromatographic separation of cis-trans isomers: Methyl oleate/methyl elaidate, J. Chromatogr. 119:401.PubMedCrossRefGoogle Scholar
  179. Pawlowski, N. E., 1972, Mass spectra of methyl sterculate and malvalate and 1,2-dialkylcyclo-propenes, Chem. Phys. Lipids 13:164.CrossRefGoogle Scholar
  180. Pawlowski, N. E., Nixon, J. E., and Sinnhuber, R. O., 1972, Assay of cyclopropenoid lipids by nuclear magnetic resonance, J. Am. Oil Chem. Soc. 49:387.PubMedCrossRefGoogle Scholar
  181. Pearl, M. B., Kleiman, R., and Earle, F. R., 1973, Acetylenic acids of Alvaradoa amorphoides seed oil, Lipids 8:627.CrossRefGoogle Scholar
  182. Pelick, N., Henly, R. S., Sweeny, R. F., and Miller, M., 1963, Special methods of purifying fatty acids, J. Am. Oil Chem. Soc. 40:419.CrossRefGoogle Scholar
  183. Perkins, E. G., and Iwaoka, W. T., 1973, Purification of cyclic fatty acid esters: A GC-MS study, J. Am. Oil Chem. Soc. 50:44.CrossRefGoogle Scholar
  184. Perry, T. L., Houser, S., Diamond, S., Bullis, B., Mok, C., and Melangon, S. B., 1970, Volatile fatty acids in normal human physiological fluids, Clin. Chim. Acta 29:369.PubMedCrossRefGoogle Scholar
  185. Phillipou, G., Bigham, D. A., and Seamark, R. F., 1975, Subnanogram detection of t-butyldimethylsilyl fatty acid esters by mass fragmentography, Lipids 10:714.PubMedCrossRefGoogle Scholar
  186. Plattner, R. D., Spencer, G. F., and Kleiman, R., 1976, Double bond location in polyenoic fatty esters through partial oxymercuration, Lipids 11:222.CrossRefGoogle Scholar
  187. Polgar, N., 1971, Natural alkyl-branched long-chain acids, in: Topics in Lipid Chemistry (F. D. Gunstone, ed.), pp. 207–246, Interscience, New York.Google Scholar
  188. Powell, R. G., Smith, C. R., Jr., and Wolff, I. A., 1967, Geometric configuration and etherification reactions of some naturally occurring 9-hydroxy-10,12-and 13-hydroxy-9,11-octadecadienoic acids, J. Org. Chem. 32:1442.CrossRefGoogle Scholar
  189. Privett, O. S., 1966, Determination of the structure of unsaturated fatty acids via degradative methods, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 9 (R. T. Holman, ed.), pp. 91–117, Pergamon Press, London.Google Scholar
  190. Privett, O. S., 1968, Preparation of polyunsaturated fatty acids from natural sources, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 9 (R. T. Holman, ed.), pp. 407–452, Pergamon Press, New York.Google Scholar
  191. Privett, O. S., and Nickell, E. C., 1963, Preparation of highly purified fatty acids via liquid—liquid partition chromatography, J. Am. Oil Chem. Soc. 40:189.CrossRefGoogle Scholar
  192. Raju, P. K., and Reiser, R., 1966, Gas—liquid chromatographic analysis of cyclopropene fatty acids, Lipids 1:10.PubMedCrossRefGoogle Scholar
  193. Rapport, M. M., and Alonzo, N., 1955, Photometric determination of fatty acid ester groups in phospholipids, J. Biol. Chem. 217:193.PubMedGoogle Scholar
  194. Rodrigues De Miranda, J. F., and Eikelboom, T. D., 1975, Thin-layer chromatographic separation of free fatty acids: Analysis and purification of radioactively labelled fatty acids, J. Chromatogr. 114:274.PubMedCrossRefGoogle Scholar
  195. Roehm, J. N., and Privett, O. S., 1969, Improved method for determination of the position of double bonds in polyenoic fatty acid fractions, J. Lipid Res. 10:245.PubMedGoogle Scholar
  196. Rohwedder, W. K., Mabrouk, A. F., and Selke, E., 1965, Mass spectrometric studies of unsaturated methyl esters, J. Phys. Chem. 69:1711.CrossRefGoogle Scholar
  197. Ryhage, R., and Stenhagen, E., 1960, Mass spectrometry in lipid research, J. Lipid Res. 1:361.PubMedGoogle Scholar
  198. Ryhage, R., and Stenhagen, E., 1963, Mass spectrometry of long-chain esters, in: Mass Spectrometry of Organic Ions (F. W. McLafferty, ed.), p. 399, Academic Press, New York.Google Scholar
  199. Ryhage, R., Ställberg-Stenhagen, S., and Stenhagen, E., 1961, Mass spectrometry studies. VII. Methyl esters of alpha, beta-unsaturated long chain acids. On the occurrence of C27-phthienoic acid, Ark. Kemi 18:179.Google Scholar
  200. Schauenstein, E., 1967, Autoxidation of polyunsaturated esters in water: Chemical structure and biological activity of the products, J. Lipid Res. 8:417.PubMedGoogle Scholar
  201. Schlenk, H., 1970, Odd numbered polyunsaturated fatty acids, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 9 (R. T. Holman, ed.), Part 5, pp. 589–605, Pergamon Press, Oxford.Google Scholar
  202. Schlenk, H., and Gellerman, J. L., 1960, Esterification of fatty acids with diazomethane on a small scale, Anal. Chem. 32:1412.CrossRefGoogle Scholar
  203. Schogt, J. C. M., and Haverkamp-Begeman, P., 1965, Isolation of 11-cyclohexylundecanoic acid from butter, J. Lipid Res. 6:466.PubMedGoogle Scholar
  204. Scholfield, C. R., 1975a, High performance liquid chromatography of fatty methyl esters: Analytical separations, J. Am. Oil Chem. Soc. 52: 36.CrossRefGoogle Scholar
  205. Scholfield, C. R., 1975b, High performance liquid chromatography of fatty methyl esters: Preparative separations, Anal. Chem. 47:1417.PubMedCrossRefGoogle Scholar
  206. Scholfield, C. R., and Dutton, H. J., 1970, Gas chromatographic equivalent chain lengths of isomeric methyl octadecenoates and octadecynoates, J. Am. Oil Chem. Soc. 47:1.CrossRefGoogle Scholar
  207. Scholfield, C. R., and Dutton, H. J., 1971, Equivalent chain lengths of methyl octadecadienoates and octadecatrienoates, J. Am. Oil Chem. Soc. 48:228.CrossRefGoogle Scholar
  208. Scholfield, C. R., Butterfield, R. O., Peters, H., Glass, C. A., and Dutton, H. J., 1967, Counter-current distribution of alkali-isomerized methyl linolenate with an argentation system, J. Am. Oil Chem. Soc. 44:50.CrossRefGoogle Scholar
  209. Schroepfer, G. J., Niehaus, W. G., and McCloskey, J. A., 1970, Enzymatic conversion of linoleic acid to 10d-hydroxy-12-cis-octadecenoic acid, J. Biol. Chem. 245:3798.PubMedGoogle Scholar
  210. Sen Gupta, A. K., and Peters, H., 1969, Synthesis and properties of some new C15-ω-aliphatic and cyclic acids, Chem. Phys. Lipids 3:371.CrossRefGoogle Scholar
  211. Shenstone, F. S., 1971, Ultraviolet and visible spectroscopy of lipids, in: Biochemistry and Methodology of Lipids (A. R. Johnson and J. G. Davenport, eds.), pp. 219–242, Interscience, New York.Google Scholar
  212. Sheppard, A. J., and Iverson, J. L., 1975, Esterification of fatty acids for gas—liquid chromatographic analysis, J. Chromatogr. Sci. 13:448.CrossRefGoogle Scholar
  213. Smith, C. R., Jr., 1970a, Occurrence of unusual fatty acids in plants, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 11 (R. T. Holman, ed.), Part 1, pp. 137-177, Pergamon Press, Oxford.Google Scholar
  214. Smith, C. R., Jr., 1970b, Optically active long-chain compounds and their absolute configuration, in: Topics in Lipid Chemistry, Vol. 1 (F. D. Gunstone, ed.), pp. 277–368, Logos Press, London.Google Scholar
  215. Smith, T. M., and White, H. B., 1966, Two-column gas—liquid chromatography of fatty acid methyl esters, J. Lipid Res. 7:327.PubMedGoogle Scholar
  216. Spener, F., and Mangold, H. K., 1974, New cyclopentenyl fatty acids in Flacourtiaceae: Straight-chain fatty acids and cyclic fatty acids in lipids during maturation of the seeds, Biochemistry 13:2241.PubMedCrossRefGoogle Scholar
  217. Sprecher, W. W., Maier, R., Barber, M., and Holman, R. T., 1965, Structure of an optically active allene containing tetraesters triglyceride isolated from the seed oil of Sapium sebiferum, Biochemistry 4:1856.CrossRefGoogle Scholar
  218. Stoffel, W., and Michaelis, G., 1976, Chemical syntheses of novel- fluorescent-labelled fatty acids, phosphatidylcholines and cholesterol esters, Hoppe-Seyler’s Z. Physiol. Chem. 357:7.PubMedCrossRefGoogle Scholar
  219. Strocchi, A., and Piretti, M., 1968, Separation and identification of geometrical isomers of 9,12-octa-decadienoic and 9,12,15-octadecatrienoic acids, J. Chromatogr. 36:181.CrossRefGoogle Scholar
  220. Sun, K. K., and Holman, R. T., 1968, Mass spectrometry of lipid molecules, J. Am. Oil Chem. Soc. 45:810.CrossRefGoogle Scholar
  221. Svennerholm, L., 1968, Distribution and fatty acid composition of phosphoglycerides in normal human brain, J. Lipid Res. 9:570.PubMedGoogle Scholar
  222. Tallent, W. H., and Kleiman, R., 1968, Bis(trimethylsilyl)acetamide in the silylation of lipolysis products of gas—liquid chromatography, J. Lipid Res. 9:146.PubMedGoogle Scholar
  223. Tanaka, K., and Yu, G. M., 1973, A method for the separate determination of isovalerate and α-methyl-butyrate by use of GLC-mass spectrometry, Clin. Chim. Acta 43:151.CrossRefGoogle Scholar
  224. Tatsumi, K., 1974, Stereochemical aspects of synthetic and naturally occurring 2-hydroxy fatty acids: Their absolute configurations and assays of optical purity, Arch. Biochem. Biophys. 165:656.PubMedCrossRefGoogle Scholar
  225. Thenot, J.P., Horning, E. C., Stafford, M., and Horning, M. G., 1972, Fatty acid esterification with N,N-dimethylformamide dialkyl acetals for GLC analysis, Anal. Lett. 5:217.CrossRefGoogle Scholar
  226. Therriault, D. G., 1963, Fractionation of lipids by countercurrent distribution, J. Am. Oil Chem. Soc. 40:395.CrossRefGoogle Scholar
  227. Tulloch, A. P., 1964, Gas liquid chromatography of the hydroxy-acetoxy-and oxo-stearic acid methyl esters, J. Am. Oil Chem. Soc. 41:833.CrossRefGoogle Scholar
  228. Tulloch, A. P., and Mazurek, M., 1976, 13C nuclear magnetic resonance spectroscopy of saturated, unsaturated and oxygenated fatty acid methyl esters, Lipids 11:228.CrossRefGoogle Scholar
  229. Uchida, K., 1974, Occurrence of saturated and monounsaturated fatty acids with unusually-long chains (C20–C30) in Lactobacillus heterohiochii, an alcoholphilic bacterium, Biochim, Biophys. Acta 348:86.CrossRefGoogle Scholar
  230. Van Deenen, L. L. M., and De Haas, G. H., 1963, The substrate specificity of phospholipase A, Biochim. Biophys. Acta 70:538CrossRefGoogle Scholar
  231. Vulliet, P., Markey, S. P., and Tornabene, T. G., 1974, Identification of methoxyester artifacts produced by methanolic-HCl solvolysis of the cyclopropane fatty acids of the genus Yersinia, Biochim, Biophys. Acta 348:299.CrossRefGoogle Scholar
  232. Wadke, M., Brunengraber, H., Lowenstein, J. M., Dolhun, J. J., and Arsenault, G. P., 1973, Fatty acid synthesis by the liver perfused with deuterated and tritiated water, Biochemistry 12:2619.PubMedCrossRefGoogle Scholar
  233. Warthen, J. D., 1975, Separation of cis and trans isomers by reverse phase high pressure liquid chromatography, J. Am. Oil Chem. Soc. 52:151.CrossRefGoogle Scholar
  234. Weihrauch, J. L., Brewington, C. R., and Schwartz, D. P., 1974, Trace constituents in milk fat: Isolation and identification of oxofatty acids, Lipids 9:883.PubMedCrossRefGoogle Scholar
  235. Wells, M. A., and Hanahan, D. J., 1969, Phospholipase A from Crotalus adamanteus venom, in: Methods in Enzymology, Vol. 14 (J. M. Lowenstein, ed.), pp. 178–184, Academic Press, New York.Google Scholar
  236. Wolff, I. A., and Miwa, T. K., 1965, Effect of unusual acids on selected seed oil analyses, J. Am. Oil Chem. Soc. 42:208.CrossRefGoogle Scholar
  237. Wood, R., 1967, GLC and TLC analyses of isopropylidene derivatives of isomeric polyhydroxy acids derived from positional and geometrical isomers of unsaturated fatty acids, Lipids 2:199.PubMedCrossRefGoogle Scholar
  238. Wood, R., and Reiser, R., 1965, Cyclopropane fatty acid metabolism: Physical and chemical identification of propane ring metabolic products in the adipose tissue, J. Am. Oil Chem. Soc. 42:315.PubMedCrossRefGoogle Scholar
  239. Wood, R., Bever, E. L., and Snyder, F., 1966, The GLC and TLC resolution of diastereoisomeric polyhydroxystearates and assignment of configurations, Lipids 1:399.PubMedCrossRefGoogle Scholar
  240. Wright, A., Dankert, M., Fennessey, P., and Robins, P. W., 1967, Characterization of a polyisoprenoid compound functional in O-antigen biosynthesis, Proc. Natl. Acad. Sci. USA 57:1798.PubMedCrossRefGoogle Scholar
  241. Zeman, I., and Pokorny, J., 1963, Gas chromatographic analysis of cyclopentenyl fatty acids, J. Chromatogr. 10:15.PubMedCrossRefGoogle Scholar
  242. Zimmerman, D. C., and Vires, B. A., 1970, Specificity of flaxseed lipoxidases, Lipids 5:392.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Arnis Kuksis
    • 1
  1. 1.Banting and Best Department of Medical ResearchUniversity of TorontoTorontoCanada

Personalised recommendations