Advertisement

Approximate Molecular Orbital Theory of Nuclear and Electron Magnetic Resonance Parameters

  • David L. Beveridge
Part of the Modern Theoretical Chemistry book series (MTC, volume 8)

Abstract

Magnetic resonance experiments are currently one of the most important and widely available means for studying the molecular and electronic structure of molecules. Both the analysis and interpretation of magnetic resonance spectra are based on quantum mechanics, and magnetic resonance research has evolved with an especially constructive interaction between experimentalists and theorists. This chapter deals particularly with the interpretation of nuclear magnetic resonance (NMR) spectra and electron spin resonance spectra (ESR) based on quantum mechanics and particularly molecular orbital calculations.

Keywords

Electron Spin Resonance Spin Density Spin Polarization Hyperfine Coupling Constant Molecular Orbital Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Kauzmann, Quantum Chemistry, Academic Press, New York (1957), Chapter 8.Google Scholar
  2. 2.
    C. P. Schlicter, Principles of Magnetic Resonance, Harper and Row, New York (1963).Google Scholar
  3. 3.
    R. McWeeney, Spins in Chemistry, Academic Press, New York (1970).Google Scholar
  4. 4.
    F. L. Pilar, Elementary Quantum Chemistry, McGraw-Hill, New York (1968).Google Scholar
  5. 5.
    C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).Google Scholar
  6. 6.
    J. A. Pople and R. K. Nesbet, J. Chem. Phys. 22, 571 (1964).Google Scholar
  7. 7.
    F. Sasaki and K. Ohno, J. Math. Phys. 4, 1140 (1943).Google Scholar
  8. 8.
    A. Streitwieser, Molecular Orbital Theory for Organic Chemists, Wiley, New York (1959).Google Scholar
  9. 9.
    R. Hoffman, J. Chem. Phys. 39, 1397 (1963).Google Scholar
  10. 10.
    R. Pariser and R. G. Parr, J. Chem. Phys. 2, 466 (1953);Google Scholar
  11. 10a.
    J. A. Pople, Proc. Phys. Soc. (Lond.) 81, 305 (1955).Google Scholar
  12. 11.
    J. A. Pople and G. A. Segal, J. Chem. Phys. 44, 3289 (1966).Google Scholar
  13. 12.
    J. A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Chem. Phys. 47, 2026 (1967);Google Scholar
  14. 12.
    R. N. Dixon, Mol. Phys. 12, 83 (1967).Google Scholar
  15. 13.
    N. C. Baird and M. J. S. Dewar, J. Chem. Phys. 50, 1262 (1969).Google Scholar
  16. 14.
    J. A. Pople, D. P. Santry, and G. A. Segal, J. Chem. Phys. 43, 5129 (1965).Google Scholar
  17. 15.
    J. O. Hirschfelder, W. Byers-Brown, and S. T. Epstein, Adv. Quant. Chem. 1, 255 (1964).Google Scholar
  18. 16.
    M. Karplus and H. J. Kolker, J. Chem. Phys. 35, 2235 (1961);Google Scholar
  19. 16.
    M. Karplus and H. J. Kolker, J. Chem. Phys. 38, 1263 (1963).Google Scholar
  20. 17.
    J. A. Pople, J. W. Mclver Jr., and N. S. Ostlund, J. Chem. Phys. 49, 2960 (1968).Google Scholar
  21. 18.
    R. Ditchfield, N. S. Ostlund, J. N. Murrell, and M. A. Turpin, Mol. Phys. 18, 433 (1970).Google Scholar
  22. 19.
    N. F. Ramsey, Phys. Rev. 77, 567 (1950);Google Scholar
  23. 19.
    N. F. Ramsey, Phys. Rev. 78, 699 (1950);Google Scholar
  24. 19.
    N. F. Ramsey, Phys. Rev. 86, 243 (1952).Google Scholar
  25. 20.
    S. T. Epstein, J. Chem. Phys. 42, 2897.Google Scholar
  26. 21.
    J. D. Memory, Quantum Theory of Magnetic Resonance Parameters, McGraw-Hill, New York (1968).Google Scholar
  27. 22.
    W. N. Lipscomb, Advan. Magn. Resonance 2, 137 (1966).Google Scholar
  28. 23.
    R. Ditchfield, D. P. Miller, and J. A. Pople, J. Chem. Phys. 53, 613 (1970).Google Scholar
  29. 24.
    A. Saika and C. P. Schlicter, J. Chem. Phys. 22, 26 (1954).Google Scholar
  30. 25.
    J. A. Pople, J. Chem. Phys. 37, 53 (1962);Google Scholar
  31. 25.
    J. A. Pople, J. Chem. Phys. 37, 60 (1962);Google Scholar
  32. 25a.
    J. A. Pople, Mol. Phys. 7, 301 (1964);Google Scholar
  33. 25b.
    J. A. Pople, Disc. Faraday Soc. 34, 7 (1962).Google Scholar
  34. 26.
    J. I. Musher, Adv. Magn. Resonance 2, 177 (1966).Google Scholar
  35. 27.
    W. H. Flygare, Chem. Rev. 74, 653 (1974).Google Scholar
  36. 28.
    A. D. Buckingham and P. J. Stiles, Mol. Phys. 24, 99 (1972).Google Scholar
  37. 29.
    A. Velenik and R. M. Lynden-Bell, Mol. Phys. 19, 371 (1970).Google Scholar
  38. 30.
    A. B. Strong, D. Ikenberry, and D. M. Grant, J. Magn. Resonance 9, 145 (1973).Google Scholar
  39. 31.
    P. D. Ellis, G. E. Maciel, and J. W. Mclver Jr., J. Am. Chem. Soc. 94, 4069 (1972).Google Scholar
  40. 32.
    G. E. Maciel, J. C. Dallas, R. L. Elliot, and H. C. Dorn, J. Am. Chem. Soc. 95, 5857 (1973).Google Scholar
  41. 33.
    W. T. Raynes, in Nuclear Magnetic Resonance (Riki Harris, ed.), Specialist Periodical Reports, The Chemical Society, London, Vol. 1 (1972), p. 1; Vol. 2 (1973), p. 1; Vol. 3 (1974), p. 1.Google Scholar
  42. 34.
    R. Ditchfield and P. D. Ellis, Theory of 13C chemical shifts, in Topics in 13 CNMR Spectroscopy (G. C. Levy, ed.), Wiley, New York (1974), Vol. 1.Google Scholar
  43. 35.
    D. E. O’Reilly, Prog. NMR Spectry. 2, 1 (1967).Google Scholar
  44. 36.
    N. F. Ramsey, Phys. Rev. 91, 303 (1953);Google Scholar
  45. 36a.
    N. F. Ramsey and E. M. Purcell, Phys. Rev. 85, 143 (1952).Google Scholar
  46. 37.
    H. M. McConnell, J. Chem. Phys. 24, 460 (1956).Google Scholar
  47. 38.
    J. A. Pople, J. W. Mclver Jr., and N. S. Ostlund, J. Chem. Phys. 49, 2965 (1968).Google Scholar
  48. 39.
    R. Ditchfield and L. C. Synder, J. Chem. Phys. 56, 5823 (1972).Google Scholar
  49. 40.
    A. D. McLachlan, J. Chem. Phys. 32, 1263 (1960).Google Scholar
  50. 41.
    J. A. Pople and D. P. Santry, Mol. Phys. 8, 1, 269 (1964).Google Scholar
  51. 42.
    K. Hirao, H. Nakatsuji, H. Kato, and T. Yonezawa, J. Am. Chem. Soc. 94, 4078 (1972);Google Scholar
  52. 42a.
    K. Hirao, H. Nakatsuji, H. Kato, and T. Yonezawa, J. Am. Chem. Soc. 95, 31 (1973).Google Scholar
  53. 43.
    R. Ditchfield and J. N. Murrell, Mol. Phys. 14, 481 (1968);Google Scholar
  54. 43a.
    J. N. Murrell, Prog. NMR Spectry. 2, 1 (1967).Google Scholar
  55. 44.
    A. D. C. Towl and K. Schaumberg, Mol. Phys. 22, 49 (1971).Google Scholar
  56. 45.
    G. E. Maciel, J. W. Mclver Jr., N. S. Ostlund, and J. A. Pople, J. Am. Chem. Soc. 92, 1, 11, 4151, 4497, 4056 (1970);Google Scholar
  57. 45a.
    G. Maciel, J. Am. Chem. Soc. 93, 4375 (1971);Google Scholar
  58. 45b.
    P. D. Ellis and G. E. Maciel, J. Am. Chem. Soc. 92, 5829 (1970);Google Scholar
  59. 45c.
    K. D. Summerhays and G. E. Maciel, Mol. Phys. 24, 913 (1972).Google Scholar
  60. 46.
    M. Johnston and M. Barfield, J. Chem. Phys. 54, 3083 (1971);Google Scholar
  61. 46a.
    M. Barfield, Chem. Rev. 73, 53 (1973).Google Scholar
  62. 47.
    R. Grinter, in Nuclear Magnetic Resonance (R. K. Harris, ed.), Specialist Periodical Reports, The Chemical Society, London, Vol. 1 (1972), Vol. 2 (1973), p. 50, Vol. 3 (1974), p. 50.Google Scholar
  63. 48.
    A. C. Blizzard and D. P. Santry, J. Chem. Phys. 55, 950 (1971).Google Scholar
  64. 49.
    J. M. Schulman and M. D. Newton, J. Am. Chem. Soc. 96, 6295 (1974).Google Scholar
  65. 50.
    M. Karplus, J. Chem. Phys. 30, 11 (1959);Google Scholar
  66. 50a.
    M. Karplus, J. Am. Chem. Soc. 85, 2870 (1963).Google Scholar
  67. 51.
    G. Govil, Indian J. Chem. 9, 824 (1971);Google Scholar
  68. 51a.
    G. Govil, Mol. Phys. 21, 953 (1971).Google Scholar
  69. 52.
    M. Barfield and S. Sternhell, J. Am. Chem. Soc. 94, 1905 (1972).Google Scholar
  70. 53.
    Ph. de Montgolfier and J. E. Harriman, J. Chem. Phys. 55, 5262 (1971).Google Scholar
  71. 54.
    A. J. Stone, Proc. Roy. Soc. (Lond.) A 271, 424 (1963).Google Scholar
  72. 55.
    P. W. Atkins and M. C. R. Symons, The Structure of Inorganic Radicals, Elsevier Publishing Co., Amsterdam (1967).Google Scholar
  73. 56.
    T. Morikawa, O. Kikuchi, and K. Someno, Theor. Chim. Acta (Berl.) 22, 224 (1971).Google Scholar
  74. 57.
    J. W. Mclver, Jr., private communication.Google Scholar
  75. 58.
    R. Lefebvre, Mol. Phys. 12, 417 (1967).Google Scholar
  76. 59.
    R. W. Fessenden and R. H. Schüler, J. Chem. Phys. 43, 2704 (1965).Google Scholar
  77. 60.
    R. W. Fessenden, J. Phys. Chem. 71, 74 (1967).Google Scholar
  78. 61.
    S. I. Weissman, J. Chem. Phys. 22, 1135 (1954).Google Scholar
  79. 62.
    H. M. McConnell, J. Chem. Phys. 24, 632, 764 (1956);Google Scholar
  80. 62a.
    H. M. McConnell and D. B. Chestnut, J. Chem. Phys. 28, 107 (1958).Google Scholar
  81. 63.
    R. Bershon, J. Chem. Phys. 24, 1066 (1956).Google Scholar
  82. 64.
    J. P. Colpa and J. R. Bolton, Mol. Phys. 6, 273 (1963);Google Scholar
  83. 64a.
    A. D. McLachlan, Mol. Phys. 3, 233 (1960).Google Scholar
  84. 65.
    A. T. Amos, Adv. Atomic Mol. Phys. 1, 196 (1963);Google Scholar
  85. 65a.
    A. Carrington, Quart. Rev. 17, 67 (1963).Google Scholar
  86. 66.
    J. A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Am. Chem. Soc. 90, 4201 (1968).Google Scholar
  87. 67.
    H. G. Benson and A. Hudson, Theor. Chim. Acta (Berl.) 23, 259 (1971).Google Scholar
  88. 68.
    D. L. Beveridge and P. A. Dobosh, J. Chem. Phys. 48, 5532 (1968).Google Scholar
  89. 69.
    A. Carrington and I. C. P. Smith, Mol. Phys. 9, 137 (1965);Google Scholar
  90. 69a.
    D. L. Beveridge and E. Guth, J. Chem. Phys. 55, 458 (1971).Google Scholar
  91. 70.
    M. Raimondi, M. Simonetta, and G. F. Tantardini, J. Chem. Phys. 56, 5091 (1972).Google Scholar
  92. 71.
    R. V. Lloyd and D. E. Wood, J. Am. Chem. Soc. 96, 659 (1974).Google Scholar
  93. 72.
    R. V. Lloyd and D. E. Wood, J. Am. Chem. Soc. 96, 659 (1974).Google Scholar
  94. 73.
    C. M. Bogan and L. D. Kispert, J. Phys. Chem. 11, 1491 (1973).Google Scholar
  95. 74.
    H. M. McConnell, C. Heller, T. Cole, and R. W. Fessenden, J. Am. Chem. Soc. 82, 776 (1960);Google Scholar
  96. 74a.
    A. Hersfeld, J. R. Morton, and D. H. Whifïen, Mol. Phys. 4, 327 (1961).Google Scholar
  97. 75.
    H. M. McConnell and J. Strathdee, Mol. Phys. 2, 129 (1959).Google Scholar
  98. 76.
    G. H. Loew, M. Chadwick, and D. A. Steinberg, Theor. Chim. Acta (Berl.) 33, 125 (1974);Google Scholar
  99. 76a.
    G. H. Harris and D. Lo, Theor. Chim. Acta (Berl.) 33, 137, 147 (1974);Google Scholar
  100. 76b.
    G. H. Harris and D. Lo, Theor. Chim. Acta (Berl.) 32, 217 (1974).Google Scholar
  101. 77.
    D. L. Beveridge and J. W. Mclver Jr., J. Chem. Phys. 54, 4681 (1971).Google Scholar
  102. 78.
    T. Morikawa, O. Kikuchi, and K. Someno, Theor. Chim. Acta (Berl.) 24, 393 (1972).Google Scholar
  103. 79.
    D. M. Hirst, Theor. Chim. Acta 20, 292 (1971).Google Scholar
  104. 80.
    W. R. Wedt and W. A. Goddard III, J. Am. Chem. Soc. 96, 1689 (1974).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • David L. Beveridge
    • 1
  1. 1.Chemistry DepartmentHunter College of the City University of New YorkNew YorkUSA

Personalised recommendations