Advertisement

Abstract

Within the framework of the Born-Oppenheimer approximation, the theoretician’s task in describing photochemical processes naturally falls into two parts, a static and a dynamic part. Computation of molecular wave functions and construction of potential energy hypersurf aces is the static part of the problem, while the study of molecular dynamics on these surfaces represents the dynamic part. In the present treatise, the two topics are separated. Molecular dynamics is discussed in Volumes 1 and 2, and the use of quantum chemical methods for the construction of potential energy hypersurfaces for excited states is the subject of the present chapter. Such methods vary in sophistication from simple qualitative arguments concerning the molecular orbitals and states involved, which shall not be discussed here (for such discussions see Refs. 1–7; for a review see Ref. 8), to calculations by semiempirical methods such as PPP, (9) CNDO, (10) etc., on which we shall concentrate here, to ab initio studies by methods discussed in Volumes 3 and 4 of this series,* which will not be mentioned. In addition to being restricted to a discussion of semiempirical treatments of static aspects of photochemistry, the chapter also concentrates exclusively on studies of organic molecules. Theoretical as well as experimental experience with photochemistry of inorganic and organometallic compounds is presently more limited.

Keywords

Excited State Singlet State Photochemical Reaction Excited Singlet Photochemical Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Verlag Chemie, Weinheim, Germany, and Academic Press, New York (1970).Google Scholar
  2. 2.
    R. G Dougherty, J. Am. Chem. Soc. 93, 7187 (1971)Google Scholar
  3. 2a.
    M. J. S. Dewar and R. G Dougherty, The PMO Theory of Organic Chemistry, Plenum Press, New York (1975), Chapter 6.Google Scholar
  4. 3.
    H. E. Zimmerman, Ace. Chem. Res. 4, 272 (1971);Google Scholar
  5. 3a.
    N. D. Epiotis, Angew. Chem. Int. Ed. Engl. 13, 751 (1974).Google Scholar
  6. 4.
    J. Michl, Mol. Photochem. 4, 257 (1972).Google Scholar
  7. 5.
    J. Michl. PureAppl. Chem. 41, 507 (1975).Google Scholar
  8. 6.
    J. Michl, Mol. Photochem. 4, 243, 287 (1972);Google Scholar
  9. 6a.
    J. Michl in Chemical Reactivity and Reaction Paths (G. Klopman, ed.), Wiley, New York (1974), Chapter 8.Google Scholar
  10. 7.
    W. G Herndon, Topics Curr. Chem. 46, 141 (1974).Google Scholar
  11. 8.
    J. Michl, Topics Curr. Chem. 46, 1 (1974).Google Scholar
  12. 9.
    R. G. Parr, The Quantum Theory of Molecular Electronic Structure, Benjamin, New York (1964);Google Scholar
  13. 9a.
    H. Suzuki, Electronic Absorption Spectra and Geometry of Organic Molecules, Academic Press, New York (1967)Google Scholar
  14. 9b.
    L. Salem, The Molecular Orbital Theory of Conjugated Systems, Benjamin, New York (1966).Google Scholar
  15. 10.
    J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York (1970). 11a.Google Scholar
  16. 10a.
    A. Devaquet, Topics Curr. Chem. 54, 1 (1975). lib.Google Scholar
  17. 10b.
    W. G. Dauben, L. Salem, and N. J. Turro, Ace. Chem. Res. 8, 41 (1975).Google Scholar
  18. 12.
    W. Rhodes, Chem. Phys. 4, 259 (1974);Google Scholar
  19. 12a.
    J. Jortner and S. Mukamel, in The World of Quantum Chemistry. Proceedings of the First International Congress of Quantum Chemistry held at Menton, France, July 4–10, 1973 (R. Daudel and B. Pullman eds.), D. Reidel, Dordrecht, Holland (1974), pp. 145–209;Google Scholar
  20. 12b..
    G. W. Robinson and G A. Langhoff, Chem. Phys. 5, 1 (1974).Google Scholar
  21. 13.
    K. G. Kay, J. Chem. Phys. 61, 5205 (1974).Google Scholar
  22. 14.
    L. Salem and C. Rowland, Angew. Chem. Int. Ed. Engl. 11, 92 (1972).Google Scholar
  23. 15.
    R. Hoffmann and R. B. Woodward, Ace. Chem. Res. 1, 17 (1968).Google Scholar
  24. 16.
    B. Hudson and B. Köhler, Ann. Rev. Phys. Chem. 25, 437 (1974);Google Scholar
  25. 16a.
    R. M. Gavin, Jr. and S. A. Rice, J. Chem. Phys. 60, 3231 (1974);Google Scholar
  26. 16b..
    J. Cizek, J. Paldus, and I. Hubac, Int. J. Quant. Chem. 8, 951 (1974).Google Scholar
  27. 17.
    J. Michl and E. W. Thulstrup, Tetrahedron, 32, 205 (1976).Google Scholar
  28. 18.
    N. C. Baird, Mol. Phys. 18, 39 (1970); J. Chem. Soc. D. Chem. Commun, 1970, 199.Google Scholar
  29. 19.
    A. J. Lorquet, J. Phys. Chem. 74, 895 (1970).Google Scholar
  30. 20.
    M. Wolfsberg and L. Helmholz, J. Chem. Phys. 20, 837 (1952)Google Scholar
  31. 20a.
    R. Hoffmann and W. N. Lipscomb, J. Chem. Phys. 37, 2872 (1962)Google Scholar
  32. 20b..
    L. L. Lohr, Jr., and W. N. Lipscomb, J. Chem. Phys. 38, 1607 (1963)Google Scholar
  33. 20c..
    R. Hoffmann, J. Chem. Phys. 39, 1397 (1963).Google Scholar
  34. 21.
    G. Feler, Theor. Chim. Acta 12, 412 (1968);Google Scholar
  35. 21a.
    K. A. Muszkat and W. Schmidt, Helv. Chim. Acta 54, 1195 (1971)Google Scholar
  36. 21b.
    W. Schmidt, Helv. Chim. Acta 54, 862 (1971);Google Scholar
  37. 21c.
    R. Hoffmann, Tetrahedron 22, 521, 539 (1966);Google Scholar
  38. 21d.
    R. Hoffmann and R. A. Olofson, J. Am. Chem. Soc. 88, 943 (1966)Google Scholar
  39. 21e.
    G. W. Van Dine and R. Hoffmann, J. Am. Chem. Soc. 90, 3227 (1968)Google Scholar
  40. 21f.
    S.-i. Kita and K.-i. Fukui, Bull. Chem. Soc. Japan 42, 66 (1969);Google Scholar
  41. 21g.
    H. E. Zimmerman, R. W. Binkley, R. S. Givens, G. L. Grunewald, and M. A. Sherwin, J. Am. Chem. Soc. 91, 3316 (1969);Google Scholar
  42. 21h.
    R. Hoffmann, J. Am. Chem. Soc. 90, 1475 (1968).Google Scholar
  43. 22.
    W. D. Stohrer, G. Wiech, and G. Quinkert, Angew. Chem. Int. Ed. Engl. 13, 200 (1974)Google Scholar
  44. 22a.
    W. D. Stohrer, P. Jacobs, K. H. Kaiser, G. Wiech, and G. Quinkert, Topics Curr. Chem. 46, 181 (1974).Google Scholar
  45. 23.
    J. L. Chenot, Theor. Chim. Acta 28, 201 (1973)Google Scholar
  46. 23a.
    B. L. Kaiman, J. Chem. Phys. 59, 5184 (1973)Google Scholar
  47. 23b.
    P. Coffey and J. R. Van Wazer, J. Chem. Phys. 61, 85 (1974)Google Scholar
  48. 23c.
    K. Sakamoto and Y. J. I’Haya, Bull Chem. Soc. Japan 44, 1201 (1971)Google Scholar
  49. 23d.
    A. B. Anderson, J. Chem. Phys. 62, 1187 (1975)Google Scholar
  50. 23e.
    A. B. Anderson, J. Spanget-Larsen, J. El. Spectrosc. Rel. Phenomena 2, 33 (1973);Google Scholar
  51. 23f..
    J. Linderberg and Y. Öhrn, Propagators in Quantum Chemistry, Academic Press, New York (1973), Chapter 9.Google Scholar
  52. 24.
    P. Coffey, C. S. Ewig, and J. R. Van Wazer, J. Am. Chem. Soc. 97, 1656 (1975).Google Scholar
  53. 25.
    W. Th. A. M. van der Lugt and L. J. Oosterhoff, J. Am. Chem. Soc. 91, 6042 (1969).Google Scholar
  54. 26.
    D. Grimbert, G. Segal, and A. Devaquet, J. Am. Chem. Soc. 97, 6629 (1975).Google Scholar
  55. 27.
    I. Fischer-Hjalmars, J. Chem. Phys. 42, 1962 (1965).Google Scholar
  56. 28.
    P.-O. Löwdin, J. Chem. Phys. 18, 365 (1950).Google Scholar
  57. 29.
    J. A. Pople, D. P. Santry, and G. A. Segal, J. Chem. Phys. 43, S129 (1965).Google Scholar
  58. 30.
    J. Pancif, I. Matousek, and R. Zahradnik, Coll. Czech. Chem. Commun. 38, 3039 (1973).Google Scholar
  59. 31.
    N. Mataga and K. Nishimoto, Z. Phys. Chem. (N. F.) 13, 140 (1957).Google Scholar
  60. 32.
    M. J. S. Dewar and N. L. Hojvat (Sabelli), J. Chem. Phys. 34, 1232 (1961);Google Scholar
  61. 32a.
    M. J. S. Dewar and N. L. Hojvat. Proc. Roy. Soc. Ser. A. 264, 431 (1961);Google Scholar
  62. 32b.
    K. Ohno, Theor. Chim. Acta 2, 219 (1964);Google Scholar
  63. 32c.
    G. Klopman, J. Am. Chem. Soc. 86, 4550 (1964).Google Scholar
  64. 33.
    J. Koutecky, J. Chem. Phys. 47, 1501 (1967).Google Scholar
  65. 34.
    J. W. Downing, Ph.D. Dissertation, University of Utah, (1974).Google Scholar
  66. 35.
    J. Karwowski, Chem. Phys. Lett. 18, 47 (1973).Google Scholar
  67. 36.
    J. Pancif and R. Zahradnik, J. Phys. Chem, 77, 107 (1973).Google Scholar
  68. 37.
    K. Inuzuka and R. S. Becker, Bull. Chem. Soc. Japan 44, 3323 (1971);Google Scholar
  69. 37a.
    P. Borrell and H. H. Greenwood, Proc. Roy. Soc. Lond. A 298, 453 (1967);Google Scholar
  70. 37b.
    K. Inuzuka and R. S. Becker, Bull. Chem. Soc. Japan 45, 1557 (1972);Google Scholar
  71. 37c.
    R. S. Becker, K. Inuzuka, J. King, and D. E. Balke, J. Am. Chem. Soc. 93, 43 (1971);Google Scholar
  72. 37d.
    R. S. Becker, K. Inuzuka, and J. King, J. Chem. Phys. 52, 5164(1970).Google Scholar
  73. 38.
    J. Michl, J. Am. Chem. Soc. 93, 523 (1971).Google Scholar
  74. 39.
    P. Seiler and J. Wirz, Helv. Chim. Acta 55, 2693 (1972).Google Scholar
  75. 40.
    R. Constancies O. Chalvet, and J.-C. Rayez, Theor. Chim. Acta 37, 305 (1975).Google Scholar
  76. 41.
    J. M. Sichel and M. A. Whitehead, Theor. Chim. Acta 7, 32 (1967);Google Scholar
  77. 41a.
    J. M. Sichel and M. A. Whitehead, Theor. Chim. Acta 11, 220, 239, 254, 263 (1968)Google Scholar
  78. 41b.
    K. B. Wiberg, J. Am. Chem. Soc. 90, 59 (1968);Google Scholar
  79. 41c.
    H. Fischer and H. Kollmar, Theor. Chim. Acta 13, 213 (1969);Google Scholar
  80. 41d.
    R. D. Brown and F. R. Burden, Theor. Chim. Acta 12, 95 (1968);Google Scholar
  81. 41e.
    F. Hirota and S. Nagakura, Bull. Chem. Soc. Japan 43, 1642 (1970);Google Scholar
  82. 41f.
    A. Rauk, J. D. Andose, W. G. Frick, R. Tang, and K. Mislow, J. Am. Chem. Soc. 93, 6507 (1971);Google Scholar
  83. 41g.
    R. J. Boyd and M. A. Whitehead, J. Chem. Soc, Dalton Trans. 1972, 73, 79, 81;Google Scholar
  84. 41h.
    K. Ohno, T. Hirooka,Y. Harada, and H. Inokuchi, Bull. Chem. Soc. Japan 46, 2353 (1973);Google Scholar
  85. 41i.
    A. DasGupta and S. Huzinaga, Theor. Chim. Acta 35, 329 (1974).Google Scholar
  86. 42.
    J. Del Bene and H. H. Jaffé, J. Chem. Phys. 48, 1807, 4050 (1968);Google Scholar
  87. 42a.
    J. Del Bene and H. H. Jaffé, J. Chem. Phys. 49, 1221 (1968).Google Scholar
  88. 43.
    A. J. Lorquet and J. C. Lorquet, J. Chem. Phys. 49, 4955 (1968)Google Scholar
  89. 43b.
    P. A. Clark and J. L. Ragle, J. Chem. Phys. 46, 4235 (1967).Google Scholar
  90. 44.
    R. L. Ellis, G. Kuehnlenz, and H. H. Jaffé, Theor. Chim. Acta 26, 131 (1972).Google Scholar
  91. 45.
    A. Tajiri, N. Ohmichi, and T. Nakajima, Bull. Chem. Soc. Japan 44, 2347 (1971);Google Scholar
  92. 45a.
    R. E. Linder, H. Weiler-Feilchenfeld, G. Barth, E. Bunnenberg, and C. Djerassi, Theor. Chim. Acta 36, 135 (1974).Google Scholar
  93. 46.
    C. Giessner-Prettre and A. Pullman, Theor. Chim. Acta 13, 265 (1969)Google Scholar
  94. 46a.
    C. Giessner-Prettre and A. Pullman, Theor. Chim. Acta 17, 120 (1970)Google Scholar
  95. 46b.
    C. Giessner-Prettre and A. Pullman, Theor. Chim. Acta 18, 14 (1970)Google Scholar
  96. 46c.
    C. Giessner-Prettre and A. Pullman, Theor. Chim. Acta 20, 378(1971).Google Scholar
  97. 47.
    E. M. Evleth and G. Feler, Chem. Phys. Lett. 22, 499 (1973).Google Scholar
  98. 48.
    G. M. White, A. J. Yarwood, and D. P. Santry, Chem. Phys. Lett. 13, 501 (1972)Google Scholar
  99. 48a.
    J. C. Leclerc, J. A. Horsley, and J. C. Lorquet, Chem. Phys. 4, 337 (1974)Google Scholar
  100. 48b.
    F. Momicchioli, G. R. Corradini, M. C. Bruni, and I. Baraldi, J. Chem. Soc. Faraday II 71, 215 (1975)Google Scholar
  101. 48c.
    F. Momicchioli, M. C. Bruni, I. Baraldi, and G. R. Corradini, J. Chem. Soc. Faraday II 70, 1325 (1974)Google Scholar
  102. 48d.
    A. Dargelos, D. Liotard, and M. Chaillet, Theor. Chim. Acta 38, 79 (1975);Google Scholar
  103. 48e.
    J. Langlet and J.-P. Malrieu, J. Am. Chem. Soc. 94, 7254 (1972).Google Scholar
  104. 49.
    J. Weber and R. Gerdil, Helv. Chim Acta 56, 1565 (1973).Google Scholar
  105. 50.
    L. L. Combs and M. Holloman, J. Phys. Chem. 79, 512 (1975).Google Scholar
  106. 51.
    D. Perahia and A. Pullman, Chem. Phys. Lett. 19, 73 (1973).Google Scholar
  107. 52.
    D. A. Condirston and D. C. Moule, Theor. Chim. Acta. 29, 133 (1973).Google Scholar
  108. 53.
    E. Heilbrunner and A. Schmelzer, Helv. Chim. Acta 58, 936 (1975).Google Scholar
  109. 54.
    J. A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Chem. Phys. 47, 2026 (1967)Google Scholar
  110. 54a.
    R. N. Dixon, Mol Phys. 12, 83 (1967).Google Scholar
  111. 55.
    R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc. 97, 1285 (1975).Google Scholar
  112. 56.
    F. A. Van-Catledge, J. Phys. Chem. 78, 763 (1974)Google Scholar
  113. 56a.
    H. P. Figeys, P. Geerlings, and C. Van Alsenoy, Bull. Soc. Chim. Belg. 84, 145 (1975).Google Scholar
  114. 57.
    J. Ridley and M. Zerner, Theor. Chim. Acta 32, 111 (1973).Google Scholar
  115. 58.
    Z.-i. Yoshida and T. Kobayashi, J. Chem. Phys. 58, 334 (1973)Google Scholar
  116. 58a.
    S.-Y. Chen and R. M. Hedges, Theor. Chim. Acta 31, 275 (1973)Google Scholar
  117. 58b.
    F. A. Van-Catledge, J. Am. Chem. Soc. 93, 4365 (1971);Google Scholar
  118. 58c.
    F. A. Van-Catledge, J. Am. Chem. Soc. 95, 1173 (1973);Google Scholar
  119. 58d.
    H. Kato, H. Konishi, and T. Yonezawa, Bull. Chem. Soc. Japan 40, 1017 (1967)Google Scholar
  120. 58e.
    H. Kato, H. Konishi, H. Yamabe, and T. Yonezawa, Bull. Chem. Soc. Japan 40, 2761 (1967)Google Scholar
  121. 58f.
    K. Yamaguchi and T. Fueno, Bull. Chem. Soc. Japan 44, 43 (1971).Google Scholar
  122. 59.
    J. E. Ridley and M. C. Zerner, J. Mol. Spectrosc. 50, 457 (1974).Google Scholar
  123. 60.
    G. Ahlgren, Tet. Letters 1974, 989.Google Scholar
  124. 61.
    O. Kikuchi, Bull. Chem. Soc. Japan 47, 1551 (1974).Google Scholar
  125. 62.
    M. J. S. Dewar and S. Kirschner, J. Am. Chem. Soc. 96, 7578 (1974)Google Scholar
  126. 62a.
    M. J. S. Dewar, S. Kirschner, and H. W. Kollmar, J. Am. Chem. Soc. 96, 7579 (1974)Google Scholar
  127. 62b.
    R. S. Case, M. J. S. Dewar, S. Kirschner, R. Pettit, and W. Slegeir, J. Am. Chem. Soc. 96, 7581 (1974).Google Scholar
  128. 63.
    B. Voigt, Theor. Chim. Acta 31, 289 (1973).Google Scholar
  129. 64.
    R. G. Jesaitis and A. Streitwieser, Jr., Theor. Chim. Acta 17, 165 (1970).Google Scholar
  130. 65.
    J. A. Pople, D. L. Beveridge, and N. S. Ostlund, Int. J. Quant. Chem. 1S, 293 (1967)Google Scholar
  131. 65a.
    J. J. Kaufman, J. Chem. Phys. 43, S152 (1965)Google Scholar
  132. 65b..
    J. P. Dahl, Acta Chem. Scand. 21, 1244 (1967).Google Scholar
  133. 66.
    R. Sustmann, J. E. Williams, M. J. S. Dewar, L. C. Allen, and P. von R. Schleyer, J. Am. Chem. Soc. 91, 5350 (1969)Google Scholar
  134. 66a.
    R. B. Davidson, W. L. Jorgensen, and L. C. Allen, J. Am. Chem. Soc. 92, 749 (1970)Google Scholar
  135. 66b.
    P. Birner, H.-J. Köhler, and C. Weiss, Chem. Phys. Lett. 27, 347 (1974).Google Scholar
  136. 67.
    B. J. Nicholson, Adv. Chem. Phys. 18, 249 (1970).Google Scholar
  137. 68.
    J. W. Mclver, Jr., and A. Komornicki, J. Am. Chem. Soc. 94, 2625 (1972);Google Scholar
  138. 68a.
    J. Pancif, Theor. Chim. Acta 29, 21 (1973);Google Scholar
  139. 68b.
    P. Pulay and F. Török, Mol. Phys. 25, 1153 (1973).Google Scholar
  140. 69.
    N. C. Baird and R. M. West, J. Am. Chem. Soc. 93, 4427 (1971);Google Scholar
  141. 69a.
    N. C. Baird, J. Am. Chem. Soc. 94, 4941 (1972);Google Scholar
  142. 69b.
    N. C. Baird and R. M. West, Mol. Photochem. 5, 209 (1973).Google Scholar
  143. 70.
    R. S. Mulliken, J. Chim. Phys. Physicochim. Biol. 46, 497, 675 (1949).Google Scholar
  144. 71.
    A. Warshel and M. Karplus, J. Am. Chem. Soc. 94, 5612 (1972);Google Scholar
  145. 71a.
    A. Warshel, J. Chem. Phys. 62, 214 (1975).Google Scholar
  146. 72.
    A. Trautwein and F. E. Harris, Theor. Chim. Acta 30, 45 (1973).Google Scholar
  147. 73.
    D. B. Cook, P. C. Hollis, and R. McWeeny, Mol. Phys. 13, 553 (1967);Google Scholar
  148. 73a.
    R. D. Brown, F. R. Burden and G. R. Williams, Theor. Chim. Acta 18, 98 (1970);Google Scholar
  149. 73b.
    R. D. Brown, F. R. Burden, G. R. Williams, and L. F. Phillips, Theor. Chim. Acta 21, 205 (1971).Google Scholar
  150. 74.
    M. D. Newton, N. S. Ostlund, and J. A. Pople, J. Chem. Phys. 49, 5192 (1968);Google Scholar
  151. 74a.
    M. D. Newton, J. Chem. Phys. 51, 3917 (1969);Google Scholar
  152. 74b.
    M. D. Newton, W. A. Lathan, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 51, 3927 (1969).Google Scholar
  153. 75.
    F. P. Billingsley II and J. E. Bloor, J. Chem. Phys. 55, 5178 (1971).Google Scholar
  154. 76.
    A. Okninski, J. Chem. Phys. 60, 4098 (1974).Google Scholar
  155. 77.
    R. G. Body, Theor. Chim. Acta 18, 107 (1970).Google Scholar
  156. 78.
    T. A. Halgren and W. N. Lipscomb, J. Chem. Phys. 58, 1569 (1973).Google Scholar
  157. 79.
    M. Zerner, J. Chem. Phys. 62, 2788 (1975).Google Scholar
  158. 80.
    J. B. Peel, Aust. J. Chem. 27, 923 (1974).Google Scholar
  159. 81.
    J. E. Eilers and D. R. Whitman, J. Am. Chem. Soc. 95, 2067 (1973)Google Scholar
  160. 81a.
    B. J. Duke, J. E. Eilers, and B. O’Leary, J. Chem. Soc. Faraday II 70, 386 (1974).Google Scholar
  161. 82.
    J. M. Herbelin and F. E. Harris, J. Am. Chem. Soc. 93, 2565 (1971)Google Scholar
  162. 82a.
    P. G. Burton, Chem. Phys. 6, 419 (1974)Google Scholar
  163. 82b.
    P. G. Burton and R. D. Brown, Chem. Phys. 4, 220 (1974)Google Scholar
  164. 82c.
    P. G. Burton, Chem. Phys. 4, 226 (1974).Google Scholar
  165. 83.
    T. L. Gilbert, J. Chem. Phys. 60, 1789 (1974)Google Scholar
  166. 83a.
    S. Iwata and K. Morokuma, Theor. Chim. Acta 33, 285 (1974)Google Scholar
  167. 83b.
    R. Carbö, Int. J. Quant. Chem. 8, 423 (1974)Google Scholar
  168. 83c.
    K. Hirao, J. Chem. Phys. 61, 3247 (1974).Google Scholar
  169. 84.
    D. Mukherjee, Int. J. Quant. Chem. 8, 247 (1974).Google Scholar
  170. 85.
    R. Caballol, R. Gallifa, J. M. Riera, and R. Carbö, Int. J. Quant. Chem.. 8, 373 (1974).Google Scholar
  171. 86.
    W. T. Borden, J. Am. Chem. Soc. 97, 2906 (1975).Google Scholar
  172. 87.
    A. Gotebiewski and E. Nowak-Broclawik, Mol. Phys. 26, 989 (1973).Google Scholar
  173. 88.
    C. W. Eaker and J. Hinze, J. Am. Chem. Soc. 96, 4084 (1974).Google Scholar
  174. 89.
    K. Jug, Theor. Chim. Acta 30, 231 (1973).Google Scholar
  175. 90.
    G. A. Segal, J. Chem. Phys. 53, 360 (1970).Google Scholar
  176. 91.
    O. Kikuchi and K. Aoki, Bull. Chem. Soc. Japan 47, 2915 (1974).Google Scholar
  177. 92.
    G. Das, J. Chem. Phys. 58, 5104 (1973).Google Scholar
  178. 93.
    C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960).Google Scholar
  179. 94.
    J. A. Pople and R. K. Nesbet, J. Chem. Phys. 22, 571 (1954).Google Scholar
  180. 95.
    M. J. S. Dewar, J. A. Hashmall, and C. G. Venier, J. Am. Chem. Soc. 90, 1953 (1968)Google Scholar
  181. 95a.
    M. J. S. Dewar and N. Trinajstic, J.Chem. Soc. A 1971, 1220.Google Scholar
  182. 96.
    N. C. Baird and R. F. Barr, Theor. Chim. Acta 36, 125 (1974).Google Scholar
  183. 97.
    P. Jrgensen, Ann. Rev. Phys. Chem. 26, 359 (1975).Google Scholar
  184. 98.
    C. A. Coulson and I. Fischer, Phil. Mag. 40, 386 (1949)Google Scholar
  185. 98a.
    V. Bonacic and J. Koutecky, J. Chem. Phys. 56, 4563 (1972)Google Scholar
  186. 98b.
    A. R. Gregory, J. Chem. Phys. 60, 1680 (1974).Google Scholar
  187. 99.
    B. Huron, J. P. Malrieu, and P. Rancurel, J. Chem. Phys. 58, 5745 (1973).Google Scholar
  188. 100.
    H. M. Chang, H. H. Jaffé, and C. A. Masmanidis, J. Phys. Chem. 79, 1109 (1975).Google Scholar
  189. 101.
    L. Salem, C. Leforestier, G. Segal, and R. Wetmore, J. Am. Chem. Soc. 97, 479 (1975).Google Scholar
  190. 102.
    J. Downing, V. Dvorak, J. Kolc, A. Manzara, and J. Michl, Chem. Phys. Lett. 17, 70 (1972)Google Scholar
  191. 102a.
    J. Kolc, J. W. Downing, A. P. Manzara, and J. Michl, J. Am. Chem. Soc, 98, 930 (1976).Google Scholar
  192. 103.
    A. Denis, J. Langlet, and J. P. Malrieu, Theor. Chim. Acta 29, 117 (1973)Google Scholar
  193. 103a.
    J. Langlet and J. P. Malrieu, Theor. Chim. Acta 30, 59 (1973).Google Scholar
  194. 104.
    J. Langlet and J. P. Malrieu, Theor. Chim. Acta 33, 307 (1974). 105a.Google Scholar
  195. 104a.
    H. F. Schaefer III and F. E. Harris, J. Chem. Phys., 48, 4946 (1968).Google Scholar
  196. 105.
    H. F. Schaefer III, The Electronic Structure of Atoms and Molecules, Addison-Wesley, Reading, Mass. (1972), p. 202;Google Scholar
  197. 105a.
    E. W. Thulstrup and A. Andersen, J. Phys. B. 8, 965 (1975).Google Scholar
  198. 106.
    F. O. Ellison, J. Am. Chem. Soc. 85, 3540 (1963)Google Scholar
  199. 106a.
    F. O. Ellison, N. T. Huff, and J. C. Patel, J. Am. Chem. Soc. 85, 3544 (1963).Google Scholar
  200. 107.
    J. C. Tully, J. Chem. Phys. 58, 1396 (1973)Google Scholar
  201. 107a.
    C. W. Bauschlicher, Jr., S. V. O’Neil, R. K. Preston, H. F. Schaefer III, and C. F. Bender, J. Chem. Phys. 59, 1286 (1973).Google Scholar
  202. 108.
    R. C. Bingham and M. J. S. Dewar, J. Am. Chem. Soc. 94, 9107 (1972).Google Scholar
  203. 109.
    W. J. Hehre, L. Salem and M. R. Willcott, J. Am. Chem. Soc. 96, 4328 (1974).Google Scholar
  204. 110.
    W. Gerhartz, R. D. Poshusta, and J. Michl, J. Am. Chem. Soc. 98, 6427 (1976).Google Scholar
  205. 111.
    G. A. Segal, J. Am. Chem. Soc. 96, 7892 (1974).Google Scholar
  206. 112.
    E. Vander Donckt, Prog. Reaction Kinetics 5, 273 (1970).Google Scholar
  207. 113.
    A. M. Trozzolo, A. Dienes, and C. V. Shank, J. Am. Chem. Soc. 96, 4699 (1974).Google Scholar
  208. 114.
    J. R. Huber, M. Nakashima, and J. A. Sousa, J. Phys. Chem. 11, 860 (1973).Google Scholar
  209. 115.
    R. Daudel, Advan. Quant. Chem. 5, 1 (1970); J. Bertran, O. Chalvet, and R. Daudel, Theor. Chim. Acta 14, 1 (1969); V. I. Pechenaya and V. I. Danilov, Chem. Phys. Lett. 11, 539 (1971).Google Scholar
  210. 116.
    G. Kaupp, LiebigsAnn. Chem. 1973, 844.Google Scholar
  211. 117.
    W. G. Dauben, in Reactivity of the Photoexcited Organic Molecule, (Proc. 13th Conf. Chem., Univ. Brussels, 1965), Wiley-Interscience, New York (1967), p. 171.Google Scholar
  212. 118.
    H. E. Zimmerman, J. Am. Chem. Soc. 88, 1566 (1966).Google Scholar
  213. 119.
    J. M. Labrum, J. Kolc. and J. Michl, J. Am. Chem. Soc. 96, 2636 (1974).Google Scholar
  214. 120.
    N. C. Yang, R. V. Carr, E. Li, J. K. McVey, and S. A. Rice, J. Am. Chem. Soc. 96, 2297 (1974)Google Scholar
  215. 120a.
    R. V. Carr, B. Kim, J. K. McVey, N. C. Yang, W. Gerhartz, and J. Michl, Chem. Phys. Lett. 39, 57 (1976).Google Scholar
  216. 121.
    L. Libit, Mol. Photochem. 5, 327 (1973).Google Scholar
  217. 122.
    M. Scholz, M. Mühlstädt, and F. Dietz, Tet. Lett. 1967, 665Google Scholar
  218. 122a.
    W. H. Laarhoven, Th. J. H. M. Cuppen, and R. J. F. Nivard, Tetrahedron 26, 4865 (1970)Google Scholar
  219. 122b.
    T. Sato and T. Morita, Bull. Chem. Soc. Japan 45, 1548 (1972).Google Scholar
  220. 123.
    K. A. Muszkat and S. Sharafi-Ozeri, Chem. Phys. Lett 20, 397 (1973).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Josef Michl
    • 1
  1. 1.Department of ChemistryUniversity of UtahSalt Lake CityUSA

Personalised recommendations