Advertisement

Ground-State Potential Surfaces and Thermochemistry

  • Marie C. Flanigan
  • Andrew Komornicki
  • James W. McIverJr.
Part of the Modern Theoretical Chemistry book series (MTC, volume 8)

Abstract

It has been known since the early days of quantum mechanics that with existing, well-understood, physical and mathematical concepts, it is in principle possible to accurately predict and account for all “chemical” behavior. Realization of this exciting and challenging goal requires only the development of an adequate computational technology and there have been significant advances toward this end in the last ten years. One of these has been the evolution of approximate, semiempirical molecular orbital (MO) methods. These methods can be used to study properties of molecules large enough to be interesting to the organic chemist and often to the biochemist. Although it is perhaps unduly optimistic to say that these methods have brought us to the state in which the computer effectively competes with existing laboratory measurement techniques(1) they do have a number of unique and valuable features. In addition to their computational economy and broad applicability, the interpretation of computed results can be couched in the simple and familiar vocabulary of LCAO molecular orbital theory.

Keywords

Partition Function Potential Energy Surface Equilibrium Geometry Transition State Theory Semiempirical Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. S. Dewar, Chem. in Britain 11, 97 (1975).Google Scholar
  2. 2.
    R. H. Schwendeman, J.Chem. Phys. 44, 2115 (1966).CrossRefGoogle Scholar
  3. 3.
    G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules, D. Van Nostrand, New York (1945), pp. 501–530.Google Scholar
  4. 4.
    S. Glasstone, K. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York (1941).Google Scholar
  5. 5.
    W. J. Hehre, R. Ditchfield, L. Radom, and J. A. Pople, J. Am. Chem. Soc. 92, 4796 (1970).CrossRefGoogle Scholar
  6. 6.
    J. N. Murrell and G. L. Pratt, Trans. Faraday Soc. 66, 1680 (1970).CrossRefGoogle Scholar
  7. 7.
    E. W. Schlag,J. Chem. Phys. 38, 2480 (1963).CrossRefGoogle Scholar
  8. 8.
    M. J. S. Dewar and E. Haselbach, J. Am. Chem. Soc. 92, 590 (1970).CrossRefGoogle Scholar
  9. 9.
    R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc. 97, 1285 (1975).CrossRefGoogle Scholar
  10. 10.
    G. Klopman, J. Am. Chem. Soc. 86, 4550 (1964).CrossRefGoogle Scholar
  11. 11.
    J. A. Pople and G. A. Segal, J. Chem. Phys. 44, 3289 (1966).CrossRefGoogle Scholar
  12. 12.
    J. A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Chem. Phys. 47, 2026 (1967).CrossRefGoogle Scholar
  13. 13.
    A. Komornicki and J. W. Mclver, Jr., J. Am. Chem. Soc. 98, 4553 (1976).CrossRefGoogle Scholar
  14. 14.
    J. A. Pople, J. Am. Chem. Soc. 97, 5306 (1975).CrossRefGoogle Scholar
  15. 15.
    W. J. Hehre, J. Am. Chem. Soc. 97, 5308 (1975).CrossRefGoogle Scholar
  16. 16.
    M. J. S. Dewar, J. Am. Chem. Soc. 97, 6591 (1975).CrossRefGoogle Scholar
  17. 17.
    A. Komornicki, unpublished results.Google Scholar
  18. 18.
    J. W. Mclver, Jr. and A. Komornicki, Chem. Phys. Lett. 10, 303 (1971).CrossRefGoogle Scholar
  19. 19.
    R. B. Woodward and R. Hoffmann, Angew. Chem. Int. Ed. Engl. 8, 781 (1969).CrossRefGoogle Scholar
  20. 20.
    J. A. Pople, Int. J. Quantum Chem. S5, 175 (1971).Google Scholar
  21. 21.
    A. R. Gregory and M. N. Paddon-Row, Chem. Phys. Lett. 12, 552 (1972).CrossRefGoogle Scholar
  22. 22.
    R. E. Stanton and J. W. Mclver, Jr., J. Am. Chem. Soc. 97, 3632 (1975).CrossRefGoogle Scholar
  23. 23.
    M. J. S. Dewar and S. Kirschner, J. Am. Chem. Soc. 93, 4291 (1971).CrossRefGoogle Scholar
  24. 24.
    J. W. Mclver, Jr. and A. Komornicki, J. Am. Chem. Soc. 94, 2625 (1972).CrossRefGoogle Scholar
  25. 25.
    R. Fletcher, Optimization, Academic Press, New York (1969).Google Scholar
  26. 26.
    J. Pancir, Theor. Chim. Acta 29, 21 (1973).CrossRefGoogle Scholar
  27. 27.
    M. J. S. Dewar, Science 187, 1037 (1975).CrossRefGoogle Scholar
  28. 28.
    B. A. Murtagh and R. W. H. Sargent, Comput. J. 13, 185 (1970).CrossRefGoogle Scholar
  29. 29.
    M. J. D. Powell, Comput. J. 7, 303 (1965).Google Scholar
  30. 30.
    J. W. Mclver, Jr.,J. Am. Chem. Soc. 94, 4782 (1972).CrossRefGoogle Scholar
  31. 31.
    J. W. Mclver, Jr., Ace. Chem. Res. 7, 72 (1974).CrossRefGoogle Scholar
  32. 32.
    A. Komornicki and J. W. Mclver, Jr., J. Am. Chem. Soc. 96, 5798 (1974).CrossRefGoogle Scholar
  33. 33.
    T. A. Halgren, I. M. Pepperberg, and W. N. Lipscomb, J. Am. Chem. Soc. 97,1248 (1975).CrossRefGoogle Scholar
  34. 34.
    J. N. Murrell and K. J. Laidler, Trans. Faraday Soc. 64, 371 (1968).CrossRefGoogle Scholar
  35. 35.
    J. W. Mclver, Jr. and R. E. Stanton, J. Am. Chem. Soc. 94, 8618 (1972).CrossRefGoogle Scholar
  36. 36.
    P. Pulay, Mol. Phys. 17, 197 (1969).CrossRefGoogle Scholar
  37. 37.
    T. A. Halgren, D. A. Kleier, and W. N. Lipscomb, Science 190, 591 (1975).CrossRefGoogle Scholar
  38. 38.
    M. J. S. Dewar, Science 190, 591 (1975).CrossRefGoogle Scholar
  39. 39.
    R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc. 97, 1294 (1975).CrossRefGoogle Scholar
  40. 40.
    L. C. Snyder and H. Basch, J. Am. Chem. Soc. 91, 2189 (1969).CrossRefGoogle Scholar
  41. 41.
    P. C. Hariharan, W. A. Lathan, and J. A. Pople, Chem. Phys. Lett. 14, 385 (1972).CrossRefGoogle Scholar
  42. 42.
    J. D. Cox and G. Pilcher, Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York (1970).Google Scholar
  43. 43.
    M. S. Gordon and J. A. Pople, J. Chem. Phys. 49, 4643 (1968).CrossRefGoogle Scholar
  44. 44.
    A. Komornicki, Doctoral Thesis, State Univ. of N.Y. at Buffalo (1974), unpublished.Google Scholar
  45. 45.
    M. D. Newton, W. A. Lathan, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 52, 4064 (1970).CrossRefGoogle Scholar
  46. 46.
    D. E. Shaw, D. W. Lepard, and H. L. Welsh, J. Chem. Phys. 42, 3736 (1965).CrossRefGoogle Scholar
  47. 47.
    K. Kuchitsu, J.Chem. Phys. 44, 906 (1966).CrossRefGoogle Scholar
  48. 48.
    W. J. Lafferty and R. J. Thibault, J.Mol. Spectrosc. 14, 79 (1964).CrossRefGoogle Scholar
  49. 49.
    A. G. Maki and R. A. Toth, J. Mol. Spectrosc. 17, 136 (1965).CrossRefGoogle Scholar
  50. 50.
    L. Radom, W. A. Lathan, W. J. Hehre, and J. A. Pople, J. Am. Chem. Soc. 93, 5339 (1971).CrossRefGoogle Scholar
  51. 51.
    D. R. Lide, Jr. J. Chem. Phys. 33, 1514 (1960).CrossRefGoogle Scholar
  52. 52.
    D. R. Lide, Jr. and D. Christiensen, J. Chem. Phys. 35, 1374 (1961).CrossRefGoogle Scholar
  53. 53.
    A. Almenningen, I. M. Anfinisen, and A. Haaland, Acta Chem. Scand. 24, 43 (1970).CrossRefGoogle Scholar
  54. 54.
    W. Haugen and M. Trateberg, Acta Chem. Scand. 20, 1726 (1966).CrossRefGoogle Scholar
  55. 55.
    W. J. Hehre and J. A. Pople, J. Am. Chem. Soc. 97, 6941 (1975).CrossRefGoogle Scholar
  56. 56.
    O. Bastiansen, F. N. Fritsch, and K. Hedberg, Acta Cryst. 17, 538 (1964).CrossRefGoogle Scholar
  57. 57.
    P. H. Kasai, R. J. Myers, D. F. Eggers, Jr., and K. B. Wiberg, J. Chem. Phys. 30, 512 (1959).CrossRefGoogle Scholar
  58. 58.
    A. Langseth, B. P. Stoicheff, Can. J. Phys. 34, 350 (1956).CrossRefGoogle Scholar
  59. 59.
    J. F. Chiang, G F. Wilcox, Jr., and S. H. Bauer, J. Am. Chem. Soc. 90, 3149 (1968).CrossRefGoogle Scholar
  60. 60.
    L. S. Bartell, K. Kuchitsu, and R. J. DeNui, J. Chem. Phys. 35, 1211 (1961).CrossRefGoogle Scholar
  61. 61.
    K. Kuchitsu, J. P. Guillory, and L. S. Bartell, J. Chem. Phys. 49, 2488 (1965).CrossRefGoogle Scholar
  62. 62.
    K. Kuchitsu and L. S. Bartell, J. Chem. Phys. 36, 2460 (1962).CrossRefGoogle Scholar
  63. 63.
    C. P. Courtney, Ann. Soc. Sci. Bruxelles 73, 5 (1959).Google Scholar
  64. 64.
    K. Takagi and T. Oka, J. Phys. Soc. Japan 18, 1174 (1963).CrossRefGoogle Scholar
  65. 65.
    R. W. Kilb, C. C. Lin, and E. B. Wilson, Jr., J. Chem. Phys. 26, 1695 (1957).CrossRefGoogle Scholar
  66. 66.
    A. Komornicki and M. Flanigan, unpublished results.Google Scholar
  67. 67.
    P. Venkateswarlu and W. Gordy, J. Chem. Phys. 23, 1200 (1955).CrossRefGoogle Scholar
  68. 68.
    W. A. Lathan, L. A. Curtiss, W. J. Hehre, J. B. Lisle, and J. A. Pople, Prog. Phys. Org. Chem. 11, 175(1974).CrossRefGoogle Scholar
  69. 69.
    V. Blukis, P. H. Kasai, and R. J. Myers, J. Chem. Phys. 38, 2753 (1963).CrossRefGoogle Scholar
  70. 70.
    F. W. Dalby, Can. J. Phys. 36, 1336 (1958).CrossRefGoogle Scholar
  71. 71.
    P. A. Gigiure and I. D. Liu, Can. J. Chem. 30, 948 (1952).CrossRefGoogle Scholar
  72. 72.
    D. R. Lide, Jr., J. Chem. Phys. 27, 343 (1957).CrossRefGoogle Scholar
  73. 73.
    C. C. Costain, J. Chem. Phys. 29, 864 (1958).CrossRefGoogle Scholar
  74. 74.
    C. H. Chiang, R. F. Porter, and S. H. Bauer, J. Am. Chem. Soc. 92, 5313 (1970).CrossRefGoogle Scholar
  75. 75.
    R. H. Hunt, R. A. Leacock, C. W. Peters, and K. T. Hecht, J. Chem. Phys, 42, 1931 (1965).CrossRefGoogle Scholar
  76. 76.
    R. H. Hughes, J. Chem. Phys. 24, 131 (1956).CrossRefGoogle Scholar
  77. 77.
    A. Yamaguchi, I. Schishima, T. Shimanouchi, and S. Mizushima, Spectro. Chim. Acta 16, 1471 (1960).CrossRefGoogle Scholar
  78. 78.
    N. Bodor, M. J. Dewar, and D. H. Lo, J. Am. Chem. Soc. 94, 5303 (1972).CrossRefGoogle Scholar
  79. 79.
    G. Guzzardo Jr., Masters Thesis, State Univ. of N.Y. at Buffalo (1972), unpublished.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Marie C. Flanigan
    • 1
  • Andrew Komornicki
    • 1
  • James W. McIverJr.
    • 1
  1. 1.Department of ChemistryState University of New York at BuffaloBuffaloUSA

Personalised recommendations