Theoretical Basis for Semiempirical Theories

  • Karl F. Freed
Part of the Modern Theoretical Chemistry book series (MTC, volume 7)


Quantum mechanics provides the possibility for the complete description of the electronic properties of molecular systems, their structure, reactivities, etc. However, the computational difficulties encountered in the general case, as well as the magnitude of extraneous information generated by many-electron wave functions, necessitate the development of entire conceptual frameworks in order to apply the quantum theory to chemical systems in a chemically or physically meaningful manner. Thus, far from being a sterile exeicise in applied mathematics, the development of quantum theories of molecular electronic structure has required a great deal of chemical insight and imagination(1–6)


Wave Function True Parameter Schrodinger Equation Semiempirical Method Slater Determinant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. G. Parr, The Quantum Theory of Molecular Electronic Structure, Benjamin, New York (1963).Google Scholar
  2. 2.
    J. N. Murrell, The Theory of the Electronic Spectra of Organic Molecules, Wiley, New York (1963).Google Scholar
  3. 3.
    L. Salem, The Molecular Orbital Theory of Conjugated Systems, Benjamin, New York (1966).Google Scholar
  4. 4.
    M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, New York (1969).Google Scholar
  5. 5.
    H. F. Schaefer, The Electronic Structure of Atoms and Molecules, Addison-Wesley, Reading, Massachusetts (1972).Google Scholar
  6. 6.
    K. F. Freed, Many-body theories of the electronic structure of atoms and molecules, Ann. Rev. Phys. Chem. 22, 313–346 (1971).CrossRefGoogle Scholar
  7. 7.
    M. J. S. Dewar, Quantum organic chemistry, Science 187, 1037–1044 (1975).CrossRefGoogle Scholar
  8. 8.
    K. Jug, On the development of semiempirical methods in the MO formalism, Theor. Chim. Acta 14, 91–135 (1969).CrossRefGoogle Scholar
  9. 9.
    G. Klopman and B. O’Leary, All-valence electron S. C. F. calculations, Top. Cur. Chem. 15, 477–566 (1970).Google Scholar
  10. 10.
    J. Michl, Physical basis of qualitative MO arguments in organic photochemistry, Top. Cur. Chem. 46, 1 (1974).Google Scholar
  11. 11.
    J. Koutecky, Some properties of semiempirical hamiltonians, J. Chem. Phys. 47, 1501–1511 (1967).CrossRefGoogle Scholar
  12. 12.
    K. Schulten and M. Karplus, On the origin of a low-lying forbidden transition in polyenes and related molecules, Chem. Phys. Lett. 14, 305–309 (1972).CrossRefGoogle Scholar
  13. 13.
    R. M. Gavin Jr. and S. A. Rice, Spectroscopic properties of polyenes II. The vacuum ultraviolet spectrum of eis- and frarts-l,3,5-hexatriene, J. Chem. Phys. 60, 3231–3237 (1974).CrossRefGoogle Scholar
  14. 14.
    J. N. Murrel and A. J. Harget, Semi-Empirical Self-Consistent-Field Molecular-Orbital Theory of Molecules, Wiley, New York (1972).Google Scholar
  15. 15.
    G. W. Whelandand D. E. Mann, The dipole moments of fulvene and azulene, J. Chem. Phys. 17, 264–268 (1949).CrossRefGoogle Scholar
  16. 16.
    R. Pariser and R. G. Parr, A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules: I, J. Chem. Phys. 21, 466–471 (1953);CrossRefGoogle Scholar
  17. 16a.
    R. Pariser and R. G. Parr, A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules: II, J. Chem. Phys. 21, 767–776 (1953).CrossRefGoogle Scholar
  18. 17.
    J. A. Pople, Electron interaction in unsaturated hydrocarbons, Trans. Faraday Soc. 49, 1375–1385 (1953).CrossRefGoogle Scholar
  19. 18.
    I. Fischer-Hjalinars, Zero differential overlap in π-electron theories, Adv. Quant. Chem. 2, 25–46 (1966).CrossRefGoogle Scholar
  20. 19.
    L. Salem and C. Rowland, The electronic properties of diradicals, Angew. Chem. Int. Ed. 11, 92–111 (1972).CrossRefGoogle Scholar
  21. 20.
    J. A. Pople, D. P. Santry, and G. A. Segal, Approximate self-consistent field molecular orbital theory I. Invariant properties, J. Chem. Phys. 43, S129-S135 (1965).CrossRefGoogle Scholar
  22. 21.
    P. E. Cade and W. M. Huo, Electronic structure of diatomic molecules VI: A. Hartree-Fock wave functions and energy quantities for the ground states of the first-row hydrides, AH, J. Chem. Phys. 47, 614–672 (1967).CrossRefGoogle Scholar
  23. 22.
    A. C. Wahl, Analytic self-consistent field wavef unctions and computed properties for homonuclear diatomic molecules, J. Chem. Phys. 41, 2600–2611 (1964);CrossRefGoogle Scholar
  24. 22a.
    G. Das and A. C. Wahl, Extended Hartree-Fock wavefunctions: Optimized valence configurations for H2 and Li2, optimized double configurations for F2 , J. Chem. Phys. 44, 87–96 (1966).CrossRefGoogle Scholar
  25. 23.
    J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York (1970).Google Scholar
  26. 24.
    W. Moffitt, The electronic structure of the oxygen molecules, Proc. Roy. Soc. (Lond.) A 210, 224–245 (1951).CrossRefGoogle Scholar
  27. 25.
    C. W. Eaker and J. Hinze, Semiempirical MC-SCF theory I. Closed shell ground state molecules, J. Am. Chem. Soc. 96, 4084–4089 (1974).CrossRefGoogle Scholar
  28. 26.
    J. Koutecky, K. Hlavaty, and P. Hochmann, Complete configuration interaction calculations of singlet energy levels of benzene in π-electron approximation, Theor. Chim. Acta 3, 341–346 (1965).CrossRefGoogle Scholar
  29. 27.
    P. B. Vischer and L. Faclicov, Exact solution of the one-band π-electron theory of benzene, J. Chem. Phys. 52, 4217–4223 (1970).CrossRefGoogle Scholar
  30. 28.
    K. F. Freed, A derivation of the exact Pielectron Hamiltonian, Chem. Phys. Lett. 13, 181–185 (1972).CrossRefGoogle Scholar
  31. 29.
    K. F. Freed, Towards an ab initio determination of all the parameters which appear in semiempirical quantum chemical theories, Chem. Phys. Lett. 15, 331–336 (1972).CrossRefGoogle Scholar
  32. 30.
    K. F. Freed, Completely ab initio justification of purely semiempirical theories, in Energy, Structure and Reactivity (D. W. Smith and W. B. McRae, eds.), Wiley, New York (1973), pp. 374–387.Google Scholar
  33. 31.
    K. F. Freed, Theoretical foundations of purely semiempirical quantum chemistry, J. Chem. Phys. 60, 1765–1788 (1974).CrossRefGoogle Scholar
  34. 32.
    K. F. Freed, Theoretical foundations of purely semiempirical quantum chemistry II. Molecular properties, Chem. Phys. 3, 463–472 (1974).CrossRefGoogle Scholar
  35. 33.
    K. F. Freed, Theoretical foundations of purely semiempirical quantum chemistry III. Repulsion integrals, Chem. Phys. Lett. 24, 275–279 (1974).CrossRefGoogle Scholar
  36. 34.
    P. G. Lykos and R. G. Parr, On the Pielectron approximation and its possible refinements, J. Chem. Phys. 24, 1166–1173 (1956).CrossRefGoogle Scholar
  37. 35.
    S. Huzinga and A. A. Cantu, Theory of separability of many-electron systems, J. Chem. Phys. 55, 5543–5549 (1971).CrossRefGoogle Scholar
  38. 36.
    T. H. Dunning, R. P. Hosteny, and I. Shavitt, Low-lying π-electron states of trans -butadiene, J. Am. Chem. Soc. 95, 5067–5068 (1973).CrossRefGoogle Scholar
  39. 37.
    P. J. Hay and I. Shavitt, Ab initio configuration interaction studies of the π-electron states of benzene, J. Chem. Phys. 60, 2865–2877 (1974).CrossRefGoogle Scholar
  40. 38.
    R. A. Harris, Pielectron hamiltonian, J. Chem. Phys. 47, 3967–3971 (1967).CrossRefGoogle Scholar
  41. 39.
    R. A. Harris, Generalized time-dependent Hartree theory and the coupling between sigma and pi electrons, J. Chem. Phys. 49, 3972–3976 (1967).CrossRefGoogle Scholar
  42. 40.
    R. A. Harris, Pielectron Hamiltonian II. Inclusion of a self-consistent screening, J. Chem. Phys. 48, 3600–3605 (1968).CrossRefGoogle Scholar
  43. 41.
    O. Sinanoglu, Many-electron theory of atoms and molecules II, J. Chem. Phys. 36, 3198–3208 (1962).CrossRefGoogle Scholar
  44. 42.
    O. Sinanoglu, Many-electron theory of atoms, molecules and their interactions, Adv. Chem. Phys. 6, 315–412 (1964).CrossRefGoogle Scholar
  45. 43.
    O. Sinanoglu, Electron correlation in atoms and molecules, Adv. Chem. Phys. 14, 237–282 (1969).CrossRefGoogle Scholar
  46. 44.
    L. Szasz, Atomic many-body problem I. General theory of correlated wave functions, Phys. Rev. 126, 169–181 (1962).CrossRefGoogle Scholar
  47. 45.
    L. Szasz, Formulation of the quantum-mechanical many-body problem in terms of one- and two-particle functions, Phys. Rev. 132, 936–947 (1963).CrossRefGoogle Scholar
  48. 46.
    H. Fukutome, Hartree-Fock equation in restricted Hubert space, Suppl. Progr. Theor. Phys. 1968, 293–302.Google Scholar
  49. 47.
    E. C. Kemble, The Fundamental Principles of Quantum Mechanics, McGraw-Hill, New York (1937), p. 391.Google Scholar
  50. 48.
    P. O. Löwdin, Studies in perturbation theory I. An elementary iteration-variation procedure for solving the Schrödinger equation by partitioning techniques,J. Mol. Spect. 10, 12–33 (1963);CrossRefGoogle Scholar
  51. 48a.
    P. O. Löwdin, Studies in perturbation theory II. Generalization of the Brillouin-Wigner formalism. J. Mol. Spect. 13, 326–337 (1964);CrossRefGoogle Scholar
  52. 48b.
    P. O. Löwdin, Studies in perturbation theory IV. Solution of eigenvalue problem by projection operator formalism, J. Math. Phys. 3, 969–982 (1962);CrossRefGoogle Scholar
  53. 48c.
    P. O. Löwdin, Studies in perturbation theory VI. Contraction of secular equations, J. Mol. Spect. 14, 112–130 (1964);CrossRefGoogle Scholar
  54. 48d.
    P. O. Löwdin, Studies in perturbation theory X. Lower bounds to energy eigenvalues in perturbation-theory ground state, Phys. Rev. 139, A357-A372 (1965).CrossRefGoogle Scholar
  55. 49.
    J. des Cloizeaux, Extension d’une formule de Lagrange à des problèmes de valeurs propres, Nucl. Phys. 20, 321–346 (1960).CrossRefGoogle Scholar
  56. 50.
    B. H. Brandow, Linked-cluster expansion for the nuclear many-body problem, Rev. Mod. Phys. 39, 771–828 (1967).CrossRefGoogle Scholar
  57. 51.
    S. Iwata and K. F. Freed, Ab initio evaluation of correlation contributions to the true π-electron Hamiltonian: ethylene, J. Chem. Phys. 61, 1500–1509 (1974).CrossRefGoogle Scholar
  58. 52.
    S. Iwata and K. F. Freed, Ab initio calculations of the pi electron Hamiltonian: singlet-triplet splittings, Chem. Phys. Lett. 28, 176–178 (1974).CrossRefGoogle Scholar
  59. 53.
    S. Iwata and K. F. Freed, Solution of large configuration mixing matrices arising in partitioning technique, to be published.Google Scholar
  60. 54.
    R. Pariser, An improvement in the π-electron approximation in LCAO MO theory, J. Chem. Phys. 21, 568–569 (1953).CrossRefGoogle Scholar
  61. 55.
    S. Iwata and K. F. Freed, to be published.Google Scholar
  62. 56.
    S. Iwata, private communication.Google Scholar
  63. 57.
    A. D. McLachlan, The pairing of electronic states in alternant hydrocarbons, Mol Phys. 2, 271–284 (1959).CrossRefGoogle Scholar
  64. 58.
    A. Streitwieser, private communication.Google Scholar
  65. 59.
    J. O. Hirschfelder, W. B. Brown, and S. T. Epstein, Recent developments in perturbation theory, Adv. Quant. Chem. 1, 256–374 (1964).Google Scholar
  66. 60.
    K. F. Freed, Open-shell generalized perturbation theory, Chem. Phys. 4, 80–95 (1974).CrossRefGoogle Scholar
  67. 61.
    K. F. Freed, unpublished work.Google Scholar
  68. 62.
    P. O. Löwdin, On the non-orthogonality problem connected with the use of atomic wavefunc-tions in the theory of molecules and crystals, J. Chem. Phys. 18, 365–375 (1950).CrossRefGoogle Scholar
  69. 63.
    A. Messiah, Quantum Mechanics, Wiley, New York (1961).Google Scholar
  70. 64.
    S. Shih, R. J. Buenker, and S. D. Peyerimhoff, Non-empirical calculations of the electronic spectrum of butadiene, Chem. Phys. Lett. 16, 244–251 (1972);CrossRefGoogle Scholar
  71. 64a.
    P. J. Hay and I. Shavitt, Large scale configuration interaction calculations on the π-electron states of benzene, Chem. Phys. Lett. 22, 33–36 (1973).CrossRefGoogle Scholar
  72. 65.
    R. S. Mulliken, Mixed V states, Chem. Phys. Lett. 25, 305–307 (1974).Google Scholar
  73. 66.
    J. A. Ryan and J. L. Whitten, A valence state description of the ethylene V state by configuration interaction theory, Chem. Phys. Lett. 15, 119–123 (1972).CrossRefGoogle Scholar
  74. 67.
    E. Miron, B. Raz, and J. Jortner, A comment on the V excited state of the ethylene molecule, Chem. Phys. Lett. 6, 563–565 (1970); M. B. Robin and N. Kuebler, Pressure effectson vacuum ultraviolet spectra, J. Mol. Spect. 33, 274–291 (1970).CrossRefGoogle Scholar
  75. 68.
    C. F. Bender, T. H. Dunning Jr., H. F. Schaefer III, W. A. Goddard III, and W. J. Hunt, Multiconfiguration wavefunctions for the lowest (ππ*) excited states of ethylene, Chem. Phys. Lett. 15, 171–178 (1972).CrossRefGoogle Scholar
  76. 69.
    M. C. Escher, The Graphic Works of M. C Escher, Pan/Ballantine, London (1974), p. 74.Google Scholar
  77. 70.
    G. Orlandi and W. Siebrand, Model for the direct photo-isomerization of stilbene, Chem. Phys. Lett. 30, 352–354 (1975).CrossRefGoogle Scholar
  78. 71.
    J. C. Phillips and L. Kleinman, A new method for calculating wave functions in crystals and molecules, Phys. Rev. 116, 287–294 (1959).CrossRefGoogle Scholar
  79. 72.
    J. D. Weeks, A. Hazi, and S. A. Rice, On the use of pseudopotentials in the quantum theory of atoms and molecules, Adv. Chem. Phys. 16, 283–342 (1969).CrossRefGoogle Scholar
  80. 73.
    M. E. Schwartz and J. D. Switalski, Valence electron studies with Gaussian-based model potentials and Gaussian based functions, J. Chem. Phys. 57, 4125–4142 (1972).CrossRefGoogle Scholar
  81. 74.
    J. D. Switalski, T. T. J. Huang, and M. E. Schwartz, Valence electron studies with Gaussian based model potentials and Gaussian basis functions. III. Applications to two-valence-electron systems composed of combinations of Li, Na, H or their unipositive ions, J. Chem. Phys. 60, 2252–2254 (1974).CrossRefGoogle Scholar
  82. 75.
    M. Kleiner and R. McWeeny, Valence-electron-only calculations of electronic structure, Chem. Phys. Lett. 19, 476–479 (1973).CrossRefGoogle Scholar
  83. 76.
    L. R. Kaln and W. A. Goddard III, Ab initio effective potentials for use in molecular calculations, J. Chem. Phys. 56, 2685–2701 (1972).CrossRefGoogle Scholar
  84. 77.
    T. Betts and V. McKoy, Rydberg states of polyatomic molecules using model potentials, J. Chem. Phys. 60, 2947–2952 (1974).CrossRefGoogle Scholar
  85. 78.
    I. V. Abarenkov and V. Heine, The model potential for positive ions, Phil. Mag. 12, 529–537 (1965).CrossRefGoogle Scholar
  86. 79.
    S. Iwata and K. F. Freed, Nonclassical terms in the true effective valence shell Hamiltonian: A second quantized formalism, J. Chem. Phys. 65, 1071–1088 (1976).CrossRefGoogle Scholar
  87. 80.
    S. Iwata and K. F. Freed, Analysis of exact valence shell Hamiltonian: Nonclassical terms and molecular based parameters, Chem. Phys. Lett. 38, 425–431 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Karl F. Freed
    • 1
  1. 1.The James Franck Institute and Department of ChemistryThe University of ChicagoChicagoUSA

Personalised recommendations