Skip to main content

Theoretical Basis for Semiempirical Theories

  • Chapter

Part of the book series: Modern Theoretical Chemistry ((MTC,volume 7))

Abstract

Quantum mechanics provides the possibility for the complete description of the electronic properties of molecular systems, their structure, reactivities, etc. However, the computational difficulties encountered in the general case, as well as the magnitude of extraneous information generated by many-electron wave functions, necessitate the development of entire conceptual frameworks in order to apply the quantum theory to chemical systems in a chemically or physically meaningful manner. Thus, far from being a sterile exeicise in applied mathematics, the development of quantum theories of molecular electronic structure has required a great deal of chemical insight and imagination(1–6)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. G. Parr, The Quantum Theory of Molecular Electronic Structure, Benjamin, New York (1963).

    Google Scholar 

  2. J. N. Murrell, The Theory of the Electronic Spectra of Organic Molecules, Wiley, New York (1963).

    Google Scholar 

  3. L. Salem, The Molecular Orbital Theory of Conjugated Systems, Benjamin, New York (1966).

    Google Scholar 

  4. M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, New York (1969).

    Google Scholar 

  5. H. F. Schaefer, The Electronic Structure of Atoms and Molecules, Addison-Wesley, Reading, Massachusetts (1972).

    Google Scholar 

  6. K. F. Freed, Many-body theories of the electronic structure of atoms and molecules, Ann. Rev. Phys. Chem. 22, 313–346 (1971).

    Article  CAS  Google Scholar 

  7. M. J. S. Dewar, Quantum organic chemistry, Science 187, 1037–1044 (1975).

    Article  CAS  Google Scholar 

  8. K. Jug, On the development of semiempirical methods in the MO formalism, Theor. Chim. Acta 14, 91–135 (1969).

    Article  CAS  Google Scholar 

  9. G. Klopman and B. O’Leary, All-valence electron S. C. F. calculations, Top. Cur. Chem. 15, 477–566 (1970).

    Google Scholar 

  10. J. Michl, Physical basis of qualitative MO arguments in organic photochemistry, Top. Cur. Chem. 46, 1 (1974).

    CAS  Google Scholar 

  11. J. Koutecky, Some properties of semiempirical hamiltonians, J. Chem. Phys. 47, 1501–1511 (1967).

    Article  CAS  Google Scholar 

  12. K. Schulten and M. Karplus, On the origin of a low-lying forbidden transition in polyenes and related molecules, Chem. Phys. Lett. 14, 305–309 (1972).

    Article  CAS  Google Scholar 

  13. R. M. Gavin Jr. and S. A. Rice, Spectroscopic properties of polyenes II. The vacuum ultraviolet spectrum of eis- and frarts-l,3,5-hexatriene, J. Chem. Phys. 60, 3231–3237 (1974).

    Article  CAS  Google Scholar 

  14. J. N. Murrel and A. J. Harget, Semi-Empirical Self-Consistent-Field Molecular-Orbital Theory of Molecules, Wiley, New York (1972).

    Google Scholar 

  15. G. W. Whelandand D. E. Mann, The dipole moments of fulvene and azulene, J. Chem. Phys. 17, 264–268 (1949).

    Article  Google Scholar 

  16. R. Pariser and R. G. Parr, A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules: I, J. Chem. Phys. 21, 466–471 (1953);

    Article  CAS  Google Scholar 

  17. R. Pariser and R. G. Parr, A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules: II, J. Chem. Phys. 21, 767–776 (1953).

    Article  CAS  Google Scholar 

  18. J. A. Pople, Electron interaction in unsaturated hydrocarbons, Trans. Faraday Soc. 49, 1375–1385 (1953).

    Article  CAS  Google Scholar 

  19. I. Fischer-Hjalinars, Zero differential overlap in π-electron theories, Adv. Quant. Chem. 2, 25–46 (1966).

    Article  Google Scholar 

  20. L. Salem and C. Rowland, The electronic properties of diradicals, Angew. Chem. Int. Ed. 11, 92–111 (1972).

    Article  CAS  Google Scholar 

  21. J. A. Pople, D. P. Santry, and G. A. Segal, Approximate self-consistent field molecular orbital theory I. Invariant properties, J. Chem. Phys. 43, S129-S135 (1965).

    Article  CAS  Google Scholar 

  22. P. E. Cade and W. M. Huo, Electronic structure of diatomic molecules VI: A. Hartree-Fock wave functions and energy quantities for the ground states of the first-row hydrides, AH, J. Chem. Phys. 47, 614–672 (1967).

    Article  CAS  Google Scholar 

  23. A. C. Wahl, Analytic self-consistent field wavef unctions and computed properties for homonuclear diatomic molecules, J. Chem. Phys. 41, 2600–2611 (1964);

    Article  CAS  Google Scholar 

  24. G. Das and A. C. Wahl, Extended Hartree-Fock wavefunctions: Optimized valence configurations for H2 and Li2, optimized double configurations for F2 , J. Chem. Phys. 44, 87–96 (1966).

    Article  CAS  Google Scholar 

  25. J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York (1970).

    Google Scholar 

  26. W. Moffitt, The electronic structure of the oxygen molecules, Proc. Roy. Soc. (Lond.) A 210, 224–245 (1951).

    Article  CAS  Google Scholar 

  27. C. W. Eaker and J. Hinze, Semiempirical MC-SCF theory I. Closed shell ground state molecules, J. Am. Chem. Soc. 96, 4084–4089 (1974).

    Article  CAS  Google Scholar 

  28. J. Koutecky, K. Hlavaty, and P. Hochmann, Complete configuration interaction calculations of singlet energy levels of benzene in π-electron approximation, Theor. Chim. Acta 3, 341–346 (1965).

    Article  CAS  Google Scholar 

  29. P. B. Vischer and L. Faclicov, Exact solution of the one-band π-electron theory of benzene, J. Chem. Phys. 52, 4217–4223 (1970).

    Article  Google Scholar 

  30. K. F. Freed, A derivation of the exact Pielectron Hamiltonian, Chem. Phys. Lett. 13, 181–185 (1972).

    Article  CAS  Google Scholar 

  31. K. F. Freed, Towards an ab initio determination of all the parameters which appear in semiempirical quantum chemical theories, Chem. Phys. Lett. 15, 331–336 (1972).

    Article  CAS  Google Scholar 

  32. K. F. Freed, Completely ab initio justification of purely semiempirical theories, in Energy, Structure and Reactivity (D. W. Smith and W. B. McRae, eds.), Wiley, New York (1973), pp. 374–387.

    Google Scholar 

  33. K. F. Freed, Theoretical foundations of purely semiempirical quantum chemistry, J. Chem. Phys. 60, 1765–1788 (1974).

    Article  CAS  Google Scholar 

  34. K. F. Freed, Theoretical foundations of purely semiempirical quantum chemistry II. Molecular properties, Chem. Phys. 3, 463–472 (1974).

    Article  CAS  Google Scholar 

  35. K. F. Freed, Theoretical foundations of purely semiempirical quantum chemistry III. Repulsion integrals, Chem. Phys. Lett. 24, 275–279 (1974).

    Article  CAS  Google Scholar 

  36. P. G. Lykos and R. G. Parr, On the Pielectron approximation and its possible refinements, J. Chem. Phys. 24, 1166–1173 (1956).

    Article  CAS  Google Scholar 

  37. S. Huzinga and A. A. Cantu, Theory of separability of many-electron systems, J. Chem. Phys. 55, 5543–5549 (1971).

    Article  Google Scholar 

  38. T. H. Dunning, R. P. Hosteny, and I. Shavitt, Low-lying π-electron states of trans -butadiene, J. Am. Chem. Soc. 95, 5067–5068 (1973).

    Article  CAS  Google Scholar 

  39. P. J. Hay and I. Shavitt, Ab initio configuration interaction studies of the π-electron states of benzene, J. Chem. Phys. 60, 2865–2877 (1974).

    Article  CAS  Google Scholar 

  40. R. A. Harris, Pielectron hamiltonian, J. Chem. Phys. 47, 3967–3971 (1967).

    Article  CAS  Google Scholar 

  41. R. A. Harris, Generalized time-dependent Hartree theory and the coupling between sigma and pi electrons, J. Chem. Phys. 49, 3972–3976 (1967).

    Article  Google Scholar 

  42. R. A. Harris, Pielectron Hamiltonian II. Inclusion of a self-consistent screening, J. Chem. Phys. 48, 3600–3605 (1968).

    Article  CAS  Google Scholar 

  43. O. Sinanoglu, Many-electron theory of atoms and molecules II, J. Chem. Phys. 36, 3198–3208 (1962).

    Article  CAS  Google Scholar 

  44. O. Sinanoglu, Many-electron theory of atoms, molecules and their interactions, Adv. Chem. Phys. 6, 315–412 (1964).

    Article  Google Scholar 

  45. O. Sinanoglu, Electron correlation in atoms and molecules, Adv. Chem. Phys. 14, 237–282 (1969).

    Article  CAS  Google Scholar 

  46. L. Szasz, Atomic many-body problem I. General theory of correlated wave functions, Phys. Rev. 126, 169–181 (1962).

    Article  CAS  Google Scholar 

  47. L. Szasz, Formulation of the quantum-mechanical many-body problem in terms of one- and two-particle functions, Phys. Rev. 132, 936–947 (1963).

    Article  Google Scholar 

  48. H. Fukutome, Hartree-Fock equation in restricted Hubert space, Suppl. Progr. Theor. Phys. 1968, 293–302.

    Google Scholar 

  49. E. C. Kemble, The Fundamental Principles of Quantum Mechanics, McGraw-Hill, New York (1937), p. 391.

    Google Scholar 

  50. P. O. Löwdin, Studies in perturbation theory I. An elementary iteration-variation procedure for solving the Schrödinger equation by partitioning techniques,J. Mol. Spect. 10, 12–33 (1963);

    Article  Google Scholar 

  51. P. O. Löwdin, Studies in perturbation theory II. Generalization of the Brillouin-Wigner formalism. J. Mol. Spect. 13, 326–337 (1964);

    Article  Google Scholar 

  52. P. O. Löwdin, Studies in perturbation theory IV. Solution of eigenvalue problem by projection operator formalism, J. Math. Phys. 3, 969–982 (1962);

    Article  Google Scholar 

  53. P. O. Löwdin, Studies in perturbation theory VI. Contraction of secular equations, J. Mol. Spect. 14, 112–130 (1964);

    Article  Google Scholar 

  54. P. O. Löwdin, Studies in perturbation theory X. Lower bounds to energy eigenvalues in perturbation-theory ground state, Phys. Rev. 139, A357-A372 (1965).

    Article  Google Scholar 

  55. J. des Cloizeaux, Extension d’une formule de Lagrange à des problèmes de valeurs propres, Nucl. Phys. 20, 321–346 (1960).

    Article  Google Scholar 

  56. B. H. Brandow, Linked-cluster expansion for the nuclear many-body problem, Rev. Mod. Phys. 39, 771–828 (1967).

    Article  CAS  Google Scholar 

  57. S. Iwata and K. F. Freed, Ab initio evaluation of correlation contributions to the true π-electron Hamiltonian: ethylene, J. Chem. Phys. 61, 1500–1509 (1974).

    Article  CAS  Google Scholar 

  58. S. Iwata and K. F. Freed, Ab initio calculations of the pi electron Hamiltonian: singlet-triplet splittings, Chem. Phys. Lett. 28, 176–178 (1974).

    Article  CAS  Google Scholar 

  59. S. Iwata and K. F. Freed, Solution of large configuration mixing matrices arising in partitioning technique, to be published.

    Google Scholar 

  60. R. Pariser, An improvement in the π-electron approximation in LCAO MO theory, J. Chem. Phys. 21, 568–569 (1953).

    Article  CAS  Google Scholar 

  61. S. Iwata and K. F. Freed, to be published.

    Google Scholar 

  62. S. Iwata, private communication.

    Google Scholar 

  63. A. D. McLachlan, The pairing of electronic states in alternant hydrocarbons, Mol Phys. 2, 271–284 (1959).

    Article  CAS  Google Scholar 

  64. A. Streitwieser, private communication.

    Google Scholar 

  65. J. O. Hirschfelder, W. B. Brown, and S. T. Epstein, Recent developments in perturbation theory, Adv. Quant. Chem. 1, 256–374 (1964).

    Google Scholar 

  66. K. F. Freed, Open-shell generalized perturbation theory, Chem. Phys. 4, 80–95 (1974).

    Article  CAS  Google Scholar 

  67. K. F. Freed, unpublished work.

    Google Scholar 

  68. P. O. Löwdin, On the non-orthogonality problem connected with the use of atomic wavefunc-tions in the theory of molecules and crystals, J. Chem. Phys. 18, 365–375 (1950).

    Article  Google Scholar 

  69. A. Messiah, Quantum Mechanics, Wiley, New York (1961).

    Google Scholar 

  70. S. Shih, R. J. Buenker, and S. D. Peyerimhoff, Non-empirical calculations of the electronic spectrum of butadiene, Chem. Phys. Lett. 16, 244–251 (1972);

    Article  CAS  Google Scholar 

  71. P. J. Hay and I. Shavitt, Large scale configuration interaction calculations on the π-electron states of benzene, Chem. Phys. Lett. 22, 33–36 (1973).

    Article  CAS  Google Scholar 

  72. R. S. Mulliken, Mixed V states, Chem. Phys. Lett. 25, 305–307 (1974).

    CAS  Google Scholar 

  73. J. A. Ryan and J. L. Whitten, A valence state description of the ethylene V state by configuration interaction theory, Chem. Phys. Lett. 15, 119–123 (1972).

    Article  CAS  Google Scholar 

  74. E. Miron, B. Raz, and J. Jortner, A comment on the V excited state of the ethylene molecule, Chem. Phys. Lett. 6, 563–565 (1970); M. B. Robin and N. Kuebler, Pressure effectson vacuum ultraviolet spectra, J. Mol. Spect. 33, 274–291 (1970).

    Article  Google Scholar 

  75. C. F. Bender, T. H. Dunning Jr., H. F. Schaefer III, W. A. Goddard III, and W. J. Hunt, Multiconfiguration wavefunctions for the lowest (ππ*) excited states of ethylene, Chem. Phys. Lett. 15, 171–178 (1972).

    Article  CAS  Google Scholar 

  76. M. C. Escher, The Graphic Works of M. C Escher, Pan/Ballantine, London (1974), p. 74.

    Google Scholar 

  77. G. Orlandi and W. Siebrand, Model for the direct photo-isomerization of stilbene, Chem. Phys. Lett. 30, 352–354 (1975).

    Article  CAS  Google Scholar 

  78. J. C. Phillips and L. Kleinman, A new method for calculating wave functions in crystals and molecules, Phys. Rev. 116, 287–294 (1959).

    Article  CAS  Google Scholar 

  79. J. D. Weeks, A. Hazi, and S. A. Rice, On the use of pseudopotentials in the quantum theory of atoms and molecules, Adv. Chem. Phys. 16, 283–342 (1969).

    Article  CAS  Google Scholar 

  80. M. E. Schwartz and J. D. Switalski, Valence electron studies with Gaussian-based model potentials and Gaussian based functions, J. Chem. Phys. 57, 4125–4142 (1972).

    Article  CAS  Google Scholar 

  81. J. D. Switalski, T. T. J. Huang, and M. E. Schwartz, Valence electron studies with Gaussian based model potentials and Gaussian basis functions. III. Applications to two-valence-electron systems composed of combinations of Li, Na, H or their unipositive ions, J. Chem. Phys. 60, 2252–2254 (1974).

    Article  CAS  Google Scholar 

  82. M. Kleiner and R. McWeeny, Valence-electron-only calculations of electronic structure, Chem. Phys. Lett. 19, 476–479 (1973).

    Article  CAS  Google Scholar 

  83. L. R. Kaln and W. A. Goddard III, Ab initio effective potentials for use in molecular calculations, J. Chem. Phys. 56, 2685–2701 (1972).

    Article  Google Scholar 

  84. T. Betts and V. McKoy, Rydberg states of polyatomic molecules using model potentials, J. Chem. Phys. 60, 2947–2952 (1974).

    Article  CAS  Google Scholar 

  85. I. V. Abarenkov and V. Heine, The model potential for positive ions, Phil. Mag. 12, 529–537 (1965).

    Article  CAS  Google Scholar 

  86. S. Iwata and K. F. Freed, Nonclassical terms in the true effective valence shell Hamiltonian: A second quantized formalism, J. Chem. Phys. 65, 1071–1088 (1976).

    Article  CAS  Google Scholar 

  87. S. Iwata and K. F. Freed, Analysis of exact valence shell Hamiltonian: Nonclassical terms and molecular based parameters, Chem. Phys. Lett. 38, 425–431 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Freed, K.F. (1977). Theoretical Basis for Semiempirical Theories. In: Segal, G.A. (eds) Semiempirical Methods of Electronic Structure Calculation. Modern Theoretical Chemistry, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2556-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2556-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2558-1

  • Online ISBN: 978-1-4684-2556-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics