Theoretical Basis for Semiempirical Theories
Abstract
Quantum mechanics provides the possibility for the complete description of the electronic properties of molecular systems, their structure, reactivities, etc. However, the computational difficulties encountered in the general case, as well as the magnitude of extraneous information generated by many-electron wave functions, necessitate the development of entire conceptual frameworks in order to apply the quantum theory to chemical systems in a chemically or physically meaningful manner. Thus, far from being a sterile exeicise in applied mathematics, the development of quantum theories of molecular electronic structure has required a great deal of chemical insight and imagination(1–6)
Keywords
Wave Function True Parameter Schrodinger Equation Semiempirical Method Slater DeterminantPreview
Unable to display preview. Download preview PDF.
References
- 1.R. G. Parr, The Quantum Theory of Molecular Electronic Structure, Benjamin, New York (1963).Google Scholar
- 2.J. N. Murrell, The Theory of the Electronic Spectra of Organic Molecules, Wiley, New York (1963).Google Scholar
- 3.L. Salem, The Molecular Orbital Theory of Conjugated Systems, Benjamin, New York (1966).Google Scholar
- 4.M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, New York (1969).Google Scholar
- 5.H. F. Schaefer, The Electronic Structure of Atoms and Molecules, Addison-Wesley, Reading, Massachusetts (1972).Google Scholar
- 6.K. F. Freed, Many-body theories of the electronic structure of atoms and molecules, Ann. Rev. Phys. Chem. 22, 313–346 (1971).CrossRefGoogle Scholar
- 7.M. J. S. Dewar, Quantum organic chemistry, Science 187, 1037–1044 (1975).CrossRefGoogle Scholar
- 8.K. Jug, On the development of semiempirical methods in the MO formalism, Theor. Chim. Acta 14, 91–135 (1969).CrossRefGoogle Scholar
- 9.G. Klopman and B. O’Leary, All-valence electron S. C. F. calculations, Top. Cur. Chem. 15, 477–566 (1970).Google Scholar
- 10.J. Michl, Physical basis of qualitative MO arguments in organic photochemistry, Top. Cur. Chem. 46, 1 (1974).Google Scholar
- 11.J. Koutecky, Some properties of semiempirical hamiltonians, J. Chem. Phys. 47, 1501–1511 (1967).CrossRefGoogle Scholar
- 12.K. Schulten and M. Karplus, On the origin of a low-lying forbidden transition in polyenes and related molecules, Chem. Phys. Lett. 14, 305–309 (1972).CrossRefGoogle Scholar
- 13.R. M. Gavin Jr. and S. A. Rice, Spectroscopic properties of polyenes II. The vacuum ultraviolet spectrum of eis- and frarts-l,3,5-hexatriene, J. Chem. Phys. 60, 3231–3237 (1974).CrossRefGoogle Scholar
- 14.J. N. Murrel and A. J. Harget, Semi-Empirical Self-Consistent-Field Molecular-Orbital Theory of Molecules, Wiley, New York (1972).Google Scholar
- 15.G. W. Whelandand D. E. Mann, The dipole moments of fulvene and azulene, J. Chem. Phys. 17, 264–268 (1949).CrossRefGoogle Scholar
- 16.R. Pariser and R. G. Parr, A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules: I, J. Chem. Phys. 21, 466–471 (1953);CrossRefGoogle Scholar
- 16a.R. Pariser and R. G. Parr, A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules: II, J. Chem. Phys. 21, 767–776 (1953).CrossRefGoogle Scholar
- 17.J. A. Pople, Electron interaction in unsaturated hydrocarbons, Trans. Faraday Soc. 49, 1375–1385 (1953).CrossRefGoogle Scholar
- 18.I. Fischer-Hjalinars, Zero differential overlap in π-electron theories, Adv. Quant. Chem. 2, 25–46 (1966).CrossRefGoogle Scholar
- 19.L. Salem and C. Rowland, The electronic properties of diradicals, Angew. Chem. Int. Ed. 11, 92–111 (1972).CrossRefGoogle Scholar
- 20.J. A. Pople, D. P. Santry, and G. A. Segal, Approximate self-consistent field molecular orbital theory I. Invariant properties, J. Chem. Phys. 43, S129-S135 (1965).CrossRefGoogle Scholar
- 21.P. E. Cade and W. M. Huo, Electronic structure of diatomic molecules VI: A. Hartree-Fock wave functions and energy quantities for the ground states of the first-row hydrides, AH, J. Chem. Phys. 47, 614–672 (1967).CrossRefGoogle Scholar
- 22.A. C. Wahl, Analytic self-consistent field wavef unctions and computed properties for homonuclear diatomic molecules, J. Chem. Phys. 41, 2600–2611 (1964);CrossRefGoogle Scholar
- 22a.G. Das and A. C. Wahl, Extended Hartree-Fock wavefunctions: Optimized valence configurations for H2 and Li2, optimized double configurations for F2 , J. Chem. Phys. 44, 87–96 (1966).CrossRefGoogle Scholar
- 23.J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York (1970).Google Scholar
- 24.W. Moffitt, The electronic structure of the oxygen molecules, Proc. Roy. Soc. (Lond.) A 210, 224–245 (1951).CrossRefGoogle Scholar
- 25.C. W. Eaker and J. Hinze, Semiempirical MC-SCF theory I. Closed shell ground state molecules, J. Am. Chem. Soc. 96, 4084–4089 (1974).CrossRefGoogle Scholar
- 26.J. Koutecky, K. Hlavaty, and P. Hochmann, Complete configuration interaction calculations of singlet energy levels of benzene in π-electron approximation, Theor. Chim. Acta 3, 341–346 (1965).CrossRefGoogle Scholar
- 27.P. B. Vischer and L. Faclicov, Exact solution of the one-band π-electron theory of benzene, J. Chem. Phys. 52, 4217–4223 (1970).CrossRefGoogle Scholar
- 28.K. F. Freed, A derivation of the exact Pielectron Hamiltonian, Chem. Phys. Lett. 13, 181–185 (1972).CrossRefGoogle Scholar
- 29.K. F. Freed, Towards an ab initio determination of all the parameters which appear in semiempirical quantum chemical theories, Chem. Phys. Lett. 15, 331–336 (1972).CrossRefGoogle Scholar
- 30.K. F. Freed, Completely ab initio justification of purely semiempirical theories, in Energy, Structure and Reactivity (D. W. Smith and W. B. McRae, eds.), Wiley, New York (1973), pp. 374–387.Google Scholar
- 31.K. F. Freed, Theoretical foundations of purely semiempirical quantum chemistry, J. Chem. Phys. 60, 1765–1788 (1974).CrossRefGoogle Scholar
- 32.K. F. Freed, Theoretical foundations of purely semiempirical quantum chemistry II. Molecular properties, Chem. Phys. 3, 463–472 (1974).CrossRefGoogle Scholar
- 33.K. F. Freed, Theoretical foundations of purely semiempirical quantum chemistry III. Repulsion integrals, Chem. Phys. Lett. 24, 275–279 (1974).CrossRefGoogle Scholar
- 34.P. G. Lykos and R. G. Parr, On the Pielectron approximation and its possible refinements, J. Chem. Phys. 24, 1166–1173 (1956).CrossRefGoogle Scholar
- 35.S. Huzinga and A. A. Cantu, Theory of separability of many-electron systems, J. Chem. Phys. 55, 5543–5549 (1971).CrossRefGoogle Scholar
- 36.T. H. Dunning, R. P. Hosteny, and I. Shavitt, Low-lying π-electron states of trans -butadiene, J. Am. Chem. Soc. 95, 5067–5068 (1973).CrossRefGoogle Scholar
- 37.P. J. Hay and I. Shavitt, Ab initio configuration interaction studies of the π-electron states of benzene, J. Chem. Phys. 60, 2865–2877 (1974).CrossRefGoogle Scholar
- 38.R. A. Harris, Pielectron hamiltonian, J. Chem. Phys. 47, 3967–3971 (1967).CrossRefGoogle Scholar
- 39.R. A. Harris, Generalized time-dependent Hartree theory and the coupling between sigma and pi electrons, J. Chem. Phys. 49, 3972–3976 (1967).CrossRefGoogle Scholar
- 40.R. A. Harris, Pielectron Hamiltonian II. Inclusion of a self-consistent screening, J. Chem. Phys. 48, 3600–3605 (1968).CrossRefGoogle Scholar
- 41.O. Sinanoglu, Many-electron theory of atoms and molecules II, J. Chem. Phys. 36, 3198–3208 (1962).CrossRefGoogle Scholar
- 42.O. Sinanoglu, Many-electron theory of atoms, molecules and their interactions, Adv. Chem. Phys. 6, 315–412 (1964).CrossRefGoogle Scholar
- 43.O. Sinanoglu, Electron correlation in atoms and molecules, Adv. Chem. Phys. 14, 237–282 (1969).CrossRefGoogle Scholar
- 44.L. Szasz, Atomic many-body problem I. General theory of correlated wave functions, Phys. Rev. 126, 169–181 (1962).CrossRefGoogle Scholar
- 45.L. Szasz, Formulation of the quantum-mechanical many-body problem in terms of one- and two-particle functions, Phys. Rev. 132, 936–947 (1963).CrossRefGoogle Scholar
- 46.H. Fukutome, Hartree-Fock equation in restricted Hubert space, Suppl. Progr. Theor. Phys. 1968, 293–302.Google Scholar
- 47.E. C. Kemble, The Fundamental Principles of Quantum Mechanics, McGraw-Hill, New York (1937), p. 391.Google Scholar
- 48.P. O. Löwdin, Studies in perturbation theory I. An elementary iteration-variation procedure for solving the Schrödinger equation by partitioning techniques,J. Mol. Spect. 10, 12–33 (1963);CrossRefGoogle Scholar
- 48a.P. O. Löwdin, Studies in perturbation theory II. Generalization of the Brillouin-Wigner formalism. J. Mol. Spect. 13, 326–337 (1964);CrossRefGoogle Scholar
- 48b.P. O. Löwdin, Studies in perturbation theory IV. Solution of eigenvalue problem by projection operator formalism, J. Math. Phys. 3, 969–982 (1962);CrossRefGoogle Scholar
- 48c.P. O. Löwdin, Studies in perturbation theory VI. Contraction of secular equations, J. Mol. Spect. 14, 112–130 (1964);CrossRefGoogle Scholar
- 48d.P. O. Löwdin, Studies in perturbation theory X. Lower bounds to energy eigenvalues in perturbation-theory ground state, Phys. Rev. 139, A357-A372 (1965).CrossRefGoogle Scholar
- 49.J. des Cloizeaux, Extension d’une formule de Lagrange à des problèmes de valeurs propres, Nucl. Phys. 20, 321–346 (1960).CrossRefGoogle Scholar
- 50.B. H. Brandow, Linked-cluster expansion for the nuclear many-body problem, Rev. Mod. Phys. 39, 771–828 (1967).CrossRefGoogle Scholar
- 51.S. Iwata and K. F. Freed, Ab initio evaluation of correlation contributions to the true π-electron Hamiltonian: ethylene, J. Chem. Phys. 61, 1500–1509 (1974).CrossRefGoogle Scholar
- 52.S. Iwata and K. F. Freed, Ab initio calculations of the pi electron Hamiltonian: singlet-triplet splittings, Chem. Phys. Lett. 28, 176–178 (1974).CrossRefGoogle Scholar
- 53.S. Iwata and K. F. Freed, Solution of large configuration mixing matrices arising in partitioning technique, to be published.Google Scholar
- 54.R. Pariser, An improvement in the π-electron approximation in LCAO MO theory, J. Chem. Phys. 21, 568–569 (1953).CrossRefGoogle Scholar
- 55.S. Iwata and K. F. Freed, to be published.Google Scholar
- 56.S. Iwata, private communication.Google Scholar
- 57.A. D. McLachlan, The pairing of electronic states in alternant hydrocarbons, Mol Phys. 2, 271–284 (1959).CrossRefGoogle Scholar
- 58.A. Streitwieser, private communication.Google Scholar
- 59.J. O. Hirschfelder, W. B. Brown, and S. T. Epstein, Recent developments in perturbation theory, Adv. Quant. Chem. 1, 256–374 (1964).Google Scholar
- 60.K. F. Freed, Open-shell generalized perturbation theory, Chem. Phys. 4, 80–95 (1974).CrossRefGoogle Scholar
- 61.K. F. Freed, unpublished work.Google Scholar
- 62.P. O. Löwdin, On the non-orthogonality problem connected with the use of atomic wavefunc-tions in the theory of molecules and crystals, J. Chem. Phys. 18, 365–375 (1950).CrossRefGoogle Scholar
- 63.A. Messiah, Quantum Mechanics, Wiley, New York (1961).Google Scholar
- 64.S. Shih, R. J. Buenker, and S. D. Peyerimhoff, Non-empirical calculations of the electronic spectrum of butadiene, Chem. Phys. Lett. 16, 244–251 (1972);CrossRefGoogle Scholar
- 64a.P. J. Hay and I. Shavitt, Large scale configuration interaction calculations on the π-electron states of benzene, Chem. Phys. Lett. 22, 33–36 (1973).CrossRefGoogle Scholar
- 65.R. S. Mulliken, Mixed V states, Chem. Phys. Lett. 25, 305–307 (1974).Google Scholar
- 66.J. A. Ryan and J. L. Whitten, A valence state description of the ethylene V state by configuration interaction theory, Chem. Phys. Lett. 15, 119–123 (1972).CrossRefGoogle Scholar
- 67.E. Miron, B. Raz, and J. Jortner, A comment on the V excited state of the ethylene molecule, Chem. Phys. Lett. 6, 563–565 (1970); M. B. Robin and N. Kuebler, Pressure effectson vacuum ultraviolet spectra, J. Mol. Spect. 33, 274–291 (1970).CrossRefGoogle Scholar
- 68.C. F. Bender, T. H. Dunning Jr., H. F. Schaefer III, W. A. Goddard III, and W. J. Hunt, Multiconfiguration wavefunctions for the lowest (ππ*) excited states of ethylene, Chem. Phys. Lett. 15, 171–178 (1972).CrossRefGoogle Scholar
- 69.M. C. Escher, The Graphic Works of M. C Escher, Pan/Ballantine, London (1974), p. 74.Google Scholar
- 70.G. Orlandi and W. Siebrand, Model for the direct photo-isomerization of stilbene, Chem. Phys. Lett. 30, 352–354 (1975).CrossRefGoogle Scholar
- 71.J. C. Phillips and L. Kleinman, A new method for calculating wave functions in crystals and molecules, Phys. Rev. 116, 287–294 (1959).CrossRefGoogle Scholar
- 72.J. D. Weeks, A. Hazi, and S. A. Rice, On the use of pseudopotentials in the quantum theory of atoms and molecules, Adv. Chem. Phys. 16, 283–342 (1969).CrossRefGoogle Scholar
- 73.M. E. Schwartz and J. D. Switalski, Valence electron studies with Gaussian-based model potentials and Gaussian based functions, J. Chem. Phys. 57, 4125–4142 (1972).CrossRefGoogle Scholar
- 74.J. D. Switalski, T. T. J. Huang, and M. E. Schwartz, Valence electron studies with Gaussian based model potentials and Gaussian basis functions. III. Applications to two-valence-electron systems composed of combinations of Li, Na, H or their unipositive ions, J. Chem. Phys. 60, 2252–2254 (1974).CrossRefGoogle Scholar
- 75.M. Kleiner and R. McWeeny, Valence-electron-only calculations of electronic structure, Chem. Phys. Lett. 19, 476–479 (1973).CrossRefGoogle Scholar
- 76.L. R. Kaln and W. A. Goddard III, Ab initio effective potentials for use in molecular calculations, J. Chem. Phys. 56, 2685–2701 (1972).CrossRefGoogle Scholar
- 77.T. Betts and V. McKoy, Rydberg states of polyatomic molecules using model potentials, J. Chem. Phys. 60, 2947–2952 (1974).CrossRefGoogle Scholar
- 78.I. V. Abarenkov and V. Heine, The model potential for positive ions, Phil. Mag. 12, 529–537 (1965).CrossRefGoogle Scholar
- 79.S. Iwata and K. F. Freed, Nonclassical terms in the true effective valence shell Hamiltonian: A second quantized formalism, J. Chem. Phys. 65, 1071–1088 (1976).CrossRefGoogle Scholar
- 80.S. Iwata and K. F. Freed, Analysis of exact valence shell Hamiltonian: Nonclassical terms and molecular based parameters, Chem. Phys. Lett. 38, 425–431 (1976).CrossRefGoogle Scholar