The diatomics-in-molecules (DIM) method is a technique for computing approximate electronic energies of polyatomic molecules from known information about their constituent diatomic and atomic fragments. The method bears a resemblance to the early semiempirical schemes of London(1) and Eyring and Polanyi,(2) and it could be considered a natural outgrowth of Moffitt’s atoms-in-molecules procedure.(3) Although still in the development and testing stage, DIM has already proved far more powerful than its predecessors. Its combination of simplicity, rigor of formulation, generality, and wide applicability may be unmatched in quantum chemistry. Unfortunately, its reliability and accuracy are at present uncertain. The method has produced some dramatic quantitative triumphs, and some equally dramatic failures. But there are hopeful indications that with improved procedures for implementation and systematic documentation of results, DIM will develop into a practical, quantitatively accurate predictive technique for investigating the electronic structure of polyatomic molecules.


Potential Energy Surface Internuclear Separation Polyatomic System Fragment Information Semiempirical Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. London, Quantenmechanische Deutung des Vorgangs der Aktivierung, Z. Elektrochem. 35, 552–555 (1929).Google Scholar
  2. 2.
    H. Eyring and M. Polanyi, Über einfache Gasreactionen, Z. Physik. Chem. (Leipzig) B12, 279–311 (1931).Google Scholar
  3. 3.
    W. Moffitt, Atoms in molecules and crystals, Proc. Roy. Soc. (Lond.) A 210, 245–268 (1951).CrossRefGoogle Scholar
  4. 4.
    F. O. Ellison, A method of diatomics in molecules. I. General theory and application to H2O, J. Am. Chem. Soc. 85, 3540–3544 (1963).CrossRefGoogle Scholar
  5. 5.
    F. O. Ellison, N. T. Huff, and J. C. Patel, A method of diatomics in molecules. II. H3 and HJ, J. Am. Oiem. Soc. 85, 3544–3547 (1963).CrossRefGoogle Scholar
  6. 6.
    F. O. Ellison and J. C. Patel, A method of diatomics in molecules. III. H2X and X2H (X = H, F, CI, Brand I),J. Am. Chem. Soc. 86, 2115–2119 (1964).CrossRefGoogle Scholar
  7. 7.
    F. O. Ellison, Potential energy surface for the H+H2 reaction, J. Chem. Phys. 41, 2198–2199 (1964).CrossRefGoogle Scholar
  8. 8.
    G. V. Pfeiffer and F. O. Ellison, Theoretical prediction of stable Li., J. Chem. Phys. 43, 3405–3406 (1965).CrossRefGoogle Scholar
  9. 9.
    G. V. Pfeiffer, N. T. Huff, E. M. Greenawalt, and F. O. Ellison, Method of diatomics in molecules. IV. Ground and excited states of H3 +, H4 +, H5 + and H6 + , J. Chem. Phys. 46, 821–822 (1967).CrossRefGoogle Scholar
  10. 10.
    A.-J. A. Wu and F. O. Ellison, Method of diatomics in molecules. V. Theoretical prediction of stable Li2H+ and almost stable LiH1., J. Chem. Phys. 47, 1458–1464 (1967).CrossRefGoogle Scholar
  11. 11.
    A.-J. A. Wu and F. O. Ellison, Method of diatomics in molecules. VI. BeH2 , J. Chem. Phys. 48, 727–732 (1968).CrossRefGoogle Scholar
  12. 12.
    A.-J. A. Wu and F. O. Ellison, Method of diatomics in molecules. VII. Excited singlet states of H3 +, J. Chem. Phys. 48, 1491–1496 (1968).CrossRefGoogle Scholar
  13. 13.
    A.-J. A. Wu and F. O. Ellison, Method of diatomics in molecules. VIII. Excited triplet states of H3 +, J. Chem. Phys. 48, 5032–5037 (1968).CrossRefGoogle Scholar
  14. 14.
    R. B. Abrams, J. C. Patel, and F. O. Ellison, Method of diatomics in molecules. IX. Ground and excited states of H4 and the H2, H2 bimolecular exchange reaction, J. Chem. Phys. 49, 450–457 (1968).CrossRefGoogle Scholar
  15. 15.
    F. O. Ellison and M. J. DelleDonne, Method of diatomics in molecules. X.Li3 + , J. Chem. Phys.59, 6179–6180 (1973).Google Scholar
  16. 16.
    A. L. Companion, Applications of diatomics-in-molecules theory. I. Prediction of stable LiH2 and Li2H molecules, J. Chem. Phys. 48, 1186–1191 (1968).CrossRefGoogle Scholar
  17. 17.
    A. L. Companion, D. L. Steible Jr., and A. J. Starshak, Applications of diatomics-in-molecules theory. II. Prediction of a stable Li3 molecule, J. Chem. Phys. 49, 3637–3640 (1968).CrossRefGoogle Scholar
  18. 18.
    A. L. Companion, Applications of diatomics-in-molecules theory. III. The Li4 system, J. Chem. Phys. 50, 1165–1167 (1969).CrossRefGoogle Scholar
  19. 19.
    J. R. Tyndall and A. L. Companion, Applications of diatomics-in-molecules theory. IV. Dimers of LiH, J. Chem. Phys. 52, 2036–2039 (1970).CrossRefGoogle Scholar
  20. 20.
    R. K. Preston and J. C. Tully, Effects of surface crossing in chemical reactions: The H3 + system, J. Chem. Phys. 54, 4297–4304 (1971).CrossRefGoogle Scholar
  21. 21.
    P. J. Kuntz and A. C. Roach, Ion-molecule reactions of the rare gases with hydrogen. I. Diatomics-in-molecules potential energy surface for ArH2 + , J. Chem. Soc. Faraday Trans. II 68, 259–280 (1972).CrossRefGoogle Scholar
  22. 22.
    P. J. Kuntz, Use of the method of diatomics-in-molecules in fitting ab initio potential surfaces: The system HeH2 +, Chem. Phys. Lett. 16, 581–583 (1972).CrossRefGoogle Scholar
  23. 23.
    J. C. Tully, Diatomics-in-rnolecules potential energy surfaces. I. First-row triatomic hydrides, J. Chem. Phys. 58, 1396–1410 (1973).CrossRefGoogle Scholar
  24. 24.
    J. C. Tully, Diatomics-in-molecules potential energy surfaces. II. Nonadiabatic and spin-orbit interactions, J. Chem. Phys. 59, 5122–5134 (1973).CrossRefGoogle Scholar
  25. 25.
    T. T. Holloway and T. J. O’Brien, Diatomics-in-molecules surface for N2O+, 4Σ- state, Bull. Am. Phys. Soc. 19, 260 (1974).Google Scholar
  26. 26.
    C. W. Wilson, Jr., Semiempirical potentials operative in the reaction N(4 S) + O2(3Σ-) → NO(2π) + O(3P), J. Chem. Phys. 62, 4842–4847 (1975).CrossRefGoogle Scholar
  27. 27.
    C. W. Eaker and C. A. Pan, Optimization of diatomic state mixing in diatomics-in-molecules • theory, J. Chem. Phys. 64, 1322–1332 (1976).CrossRefGoogle Scholar
  28. 28.
    J. C. Tully and C. M. Truesdale, Diatomics-in-molecules potential energy surfaces. III. Non-Hermitian formulation, J. Chem. Phys. 65, 1002–1007 (1976).CrossRefGoogle Scholar
  29. 29.
    J. C. Tully and R. K. Preston, Trajectory surface hopping approach to nonadiabatic molecular collisions, J. Chem. Phys. 55, 562–572 (1971).CrossRefGoogle Scholar
  30. 30.
    J. R. Krenos, R. K. Preston, R. Wolfgang, and J. C. Tully, Molecular beam and trajectory studies of reactions of H+ with H2 ,J. Chem. Phys. 60, 1634–1659 (1974).CrossRefGoogle Scholar
  31. 31.
    S. Chapman and R. K. Preston, Nonadiabatic molecular collisions: Charge exchange and chemical reaction in the Ar+-H2 system, J. Chem. Phys. 60, 650–659 (1974).CrossRefGoogle Scholar
  32. 32.
    J. C. Tully, Collisions of F(2 P 1/2) with H2 ,J. Chem. Phys. 60, 3042–3050 (1974).CrossRefGoogle Scholar
  33. 33.
    B. T. Pickup, The symmetric group and the method of diatomics in molecules: An application to small lithium clusters, Proc. Roy. Soc. (Lond.) A 333, 69–87 (1973).CrossRefGoogle Scholar
  34. 34.
    E. Steiner, P. R. Certain, and P. J. Kuntz, Extended diatomics in molecules calculations, J. Chem. Phys. 59, 47–55 (1973).CrossRefGoogle Scholar
  35. 35.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Addison-Wesley, Reading, Mass. (1958), pp. 210–214.Google Scholar
  36. 36.
    W. Lichten, Resonant charge exchange in atomic collisions, Phys. Rev. 131, 229–238 (1963).CrossRefGoogle Scholar
  37. 37.
    J. D. Weeks, P. W. Anderson, and A. G. H. Davidson, Non-Hermitian representations in localized orbital theories, J. Chem. Phys. 58, 1388–1395 (1973).CrossRefGoogle Scholar
  38. 38.
    J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford (1965), pp. 35–36.Google Scholar
  39. 39.
    B. T. Pickup, Some quantum mechanical studies of small molecules, Thesis, Manchester University (1971).Google Scholar
  40. 40.
    R. S. Mulliken, Quelques aspects de la théorie des orbitales moléculaires Chim. Phys. 46, 497–513 (1949).Google Scholar
  41. 41.
    K. Ruedenberg, On the three- and four-center integrals in molecular quantum mechanics, J. Chem. Phys. 19, 1433–1434 (1951).CrossRefGoogle Scholar
  42. 42.
    J. A. Pople, D. P. Santry, and G. A. Segal, Approximate self-consistent molecular orbital theory. I. Invariant procedures,J. Chem. Phys. 43, S129-S135 (1965).CrossRefGoogle Scholar
  43. 43.
    M. D. Newton, Self-consistent molecular orbital methods. II. Projection of diatomic differential overlap (PDDO), J. Chem. Phys. 51, 3917–3926 (1969).CrossRefGoogle Scholar
  44. 44.
    F. P. Billingsley II and J. E. Bloor, Limited expansion of diatomic overlap (LEDO), J. Chem. Phys. 55, 5178–5190 (1971).CrossRefGoogle Scholar
  45. 45.
    I. Shavitt, R. M. Stevens, F.L. Minn, and M. Karplus, Potential energy surface for H3 , J. Chem. Phys. 48, 2700–2713 (1968).CrossRefGoogle Scholar
  46. 46.
    B. Liu, Ab initio potential energy surface for linear H3 , J. Chem. Phys. 58, 1925–1937 (1973).CrossRefGoogle Scholar
  47. 47.
    C. W. Bauschlicher Jr., S.V. O’Neil, R. K. Preston, H. F. Schaefer III, and C. F. Bender, Avoided intersection of potential energy surfaces: The (H+ + H2, H+H2 +) system, J. Chem. Phys. 59, 1286–1292 (1973).CrossRefGoogle Scholar
  48. 48.
    M. Rubinstein and I. Shavitt, Theoretical study of the potential surface for the H4 system by double-zeta configuration-interaction calculations, J. Chem. Phys. 51, 2014–2024 (1969).CrossRefGoogle Scholar
  49. 49.
    D. Lewis and S. H. Bauer, Isotope exchange rates. VI. The homogeneous self-exchange in hydrogen deutende, J. Arn. Chem. Soc. 90, 5390–5396 (1968).CrossRefGoogle Scholar
  50. 50.
    J. C. Tully, Calculation of molecular properties by the method of diatomics-in-molecules,J. Chem. Phys. 64, 3182–3184 (1976).CrossRefGoogle Scholar
  51. 51.
    G. C. Lie, J. Hinze, and B. Liu, Valence excited states of CH. II. Properties, J. Chem. Phys. 59, 1887–1898 (1973).CrossRefGoogle Scholar
  52. 52.
    S. R. Langhoff and E. R. Davidson, An ab initio calculation of the spin dipole-dipole parameters for methylene. Int. J. Quant. Chem. 7, 759–777 (1973).CrossRefGoogle Scholar
  53. 53.
    W. H. Moores and R. McWeeney, The calculation of spin-orbit splitting and g tensors for small molecules and radiais, Proc. Roy. Soc. (Lond.) A 332, 365–384 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • John C. Tully
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations