Advertisement

The Consistent Force Field and Its Quantum Mechanical Extension

  • A. Warshel
Part of the Modern Theoretical Chemistry book series (MTC, volume 7)

Abstract

The development of a reliable method for detailed study of conformational and dynamical properties of large molecules is one of the important goals of theoretical chemistry. Such a method can help in predicting a considerable number of observables as well as in finding correlation between different types of experimental information and the corresponding molecular properties. The method can help in the understanding of the forces which determine the molecular potential surfaces, and in providing a better insight into the relation between the conformations of large molecules and their biological and chemical functions.

Keywords

Vibrational Frequency Potential Surface Equilibrium Geometry Normal Mode Analysis Vibrational Normal Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. (a)
    R. Daudel and C. Sandorfy, Semiempirical Wave Mechanical Calculations on Polyatomic Molecules, Yale University Press, New Haven (1971).Google Scholar
  2. 1. (a)a
    J. N. Murrell and A. J. Harget, Semiempirical Self-Consistent-Field Molecular Orbital Theory of Molecules, Wiley-Interscience, London (1972).Google Scholar
  3. 1. (b)
    K. Machida, M. Nakatsuji, H. Kato, and T. Yonezawa, J. Chem. Phys. 53, 1305 (1970).CrossRefGoogle Scholar
  4. 1. (b)a
    J. W. Mclver, Jr., and A. Komorwicki, Chem. Phys. Lett. 10, 303 (1971).CrossRefGoogle Scholar
  5. 2.
    R. E. Cristoffersen, D. Spangler, G. G. Hall, and G. M. Maggiora, J. Am. Chem. Soc. 95, 8526 (1973).CrossRefGoogle Scholar
  6. 3.
    J. B. Hendrickson, J. Am. Chem. Soc. 83, 4537 (1961).CrossRefGoogle Scholar
  7. 3a.
    J. B. Hendrickson, J. Am. Chem. Soc. 86, 4854 (1964).CrossRefGoogle Scholar
  8. 4.
    N. L. Allinger, M. A. Miller, F. A. Van Catledge, and J. A. Hirsch, J. Am. Chem. Soc. 89, 4345 (1967).CrossRefGoogle Scholar
  9. 5.
    M. Bixon and S. Lifson, Tetrahedron, 23, 769 (1967).CrossRefGoogle Scholar
  10. 6.
    E. J. Jacob, H.B. Thompson, and L. S. Bartell, J. Chem. Phys. 47, 3736 (1967).CrossRefGoogle Scholar
  11. 7.
    R. H. Boyd, J. Chem. Phys. 49, 2574 (1968).CrossRefGoogle Scholar
  12. 8.
    J. E. Williams, P. J. Stand, and P. v. R. Schleyer, Ann. Rev. Phys. Chem. 19, 531 (1969).CrossRefGoogle Scholar
  13. 9.
    E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibration, McGraw-Hill, New York (1955).Google Scholar
  14. 10.
    J. Overend and J. R. Scherer, J. Chem. Phys. 32, 1289 (1960).CrossRefGoogle Scholar
  15. 11.
    S. Lifson and A. Warshel, J. Chem. Phys. 49, 5116 (1968).CrossRefGoogle Scholar
  16. 12.
    A. Warshel and S. Lifson, J. Chem. Phys. 53, 8582 (1970).CrossRefGoogle Scholar
  17. 13.
    A. Warshel, M. Levitt, and S. Lifson, J. Mol. Spectrosc. 33, 84 (1970).CrossRefGoogle Scholar
  18. 14. (a)
    A. Warshel, J. Chem. Phys. 55, 3327 (1971)CrossRefGoogle Scholar
  19. 14. (b)
    A. Warshel, J. Chem. Phys. 54, 5324 (1971).CrossRefGoogle Scholar
  20. 15.
    O. Ermer and S. Lifson, J. Am. Chem. Soc. 95, 4121 (1973).CrossRefGoogle Scholar
  21. 16.
    D. E. Williams, J. Chem. Phys. 47, 4680 (1967).CrossRefGoogle Scholar
  22. 17.
    A. T. Hagler, E. Huler, and S. Lifson, J. Am. Chem. Soc. 96, 5319 (1974).CrossRefGoogle Scholar
  23. 18.
    F. A. Momany, L. M. Carruthers, R. F. McGuire, and H. A. Scheraga, J. Phys. Chem. 78, 1595 (1974).CrossRefGoogle Scholar
  24. 19.
    I. Harada and T. Shimanouchi, J. Chem. Phys. 44, 2016 (1966).CrossRefGoogle Scholar
  25. 20.
    S. J. Cyvin, Molecular Vibrations and Mean Square Amplitudes, Universitsforlaget, Oslo and Elsevier, Amsterdam (1968).Google Scholar
  26. 21.
    B. Hudson, A. Warshel, and R. G. Gordon, J. Chem. Phys. 61, 2926 (1974).Google Scholar
  27. 22.
    A. Warshel and M. Karplus, Chem. Phys. Lett. 17, 7 (1972).CrossRefGoogle Scholar
  28. 23.
    T. E. Sharp and H. M. Rosenstock, J. Chem. Phys. 41, 3453 (1964).CrossRefGoogle Scholar
  29. 24.
    M. Karplus, R. N. Porter, and R. D. Sharma, J. Chem. Phys. 43, 3259 (1965).CrossRefGoogle Scholar
  30. 25.
    A. Warshel and M. Karplus, J. Am. Chem. Soc. 94, 5612 (1972).CrossRefGoogle Scholar
  31. 26.
    N. C. Baird, Mol. Phys. 18, 39 (1970).CrossRefGoogle Scholar
  32. 27.
    R. Moccia, Theor. Chim. Acta 8, 8 (1967).CrossRefGoogle Scholar
  33. 28.
    I. Fischer-Hjalmars, J. Chem. Phys. 42, 1962 (1965).CrossRefGoogle Scholar
  34. 29.
    L. Salem, The Molecular Orbital Theory of Conjugated Systems, Benjamin, New York (1966).Google Scholar
  35. 30.
    A. Warshel and S. Lifson, Chem. Phys. Lett. 4, 255 (1969).CrossRefGoogle Scholar
  36. 31.
    O. J. Sovers, C. W. Kern, R. M. Pitzer, and M. Karplus, J. Chem. Phys. 49, 2592 (1968).CrossRefGoogle Scholar
  37. 32.
    R. Rowan III, A. Warshel, B. D. Sykes, and M. Karplus, Biochemistry 13, 970 (1974).CrossRefGoogle Scholar
  38. 33.
    A. Warshel and M. Karplus, J. Am. Chem. Soc. 96, 5677 (1974).CrossRefGoogle Scholar
  39. 34.
    E. Huler and A. Warshel, Acta Cryst. B30, 1822 (1974).Google Scholar
  40. 35.
    A. Warshel, E. Huler, D. Rabinovich, and Z. Shakked, J. Mol. Struct. 23, 175 (1974).CrossRefGoogle Scholar
  41. 36.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, London (1954).Google Scholar
  42. 37.
    G. S. Pawley, Acta Cryst. B24, 485 (1968).Google Scholar
  43. 38.
    M. Gramoccioli, M. Simoretta, and S. Suffritti, Chem. Phys. Lett. 20, 23 (1973).CrossRefGoogle Scholar
  44. 39.
    M. Harel and F. L. Hirshfeld, Acta Cryst. B31, 162 (1975).Google Scholar
  45. 40.
    A. Warshel and H. Huler, Chem. Phys. 6, 463 (1974); A. Warshel and Z Shakked, J. Am. Chem. Soc, 97, 5679 (1975); P. Dauber, M. Brith, E. Huler and A. Warshel, Chem. Phys.1, 108 (1975).Google Scholar
  46. 41.
    J. Overend and K. Machida, Spectrochim. Acta 26A, 1225 (1970).Google Scholar
  47. 42.
    H. H. Nielsen, Rev. Mod. Phys. 23, 90 (1951).CrossRefGoogle Scholar
  48. 43. (a)
    A. Warshel and M. Levitt, QCPE 247, Quantum Chem. Program Exchange, Indiana University (1974).Google Scholar
  49. 43. (b)
    E. Huler, R. Sharon, and A. Warshel, Quantum Chem. Program Exchange, Indiana University, submitted.Google Scholar
  50. 44.
    A. Warshel, Israeli. Chem. 11, 709 (1973).Google Scholar
  51. 45.
    M. Levitt and S. Lifson, J. Mol. Biol. 46, 269 (1969).CrossRefGoogle Scholar
  52. 46.
    M. Levitt, J. Mol. Biol. 82, 393 (1974).CrossRefGoogle Scholar
  53. 47.
    J. Behringer, Raman Spectroscopy (H. A. Szymanski, ed.), Plenum, New York (1967), Vol. 1, pp. 168–220.CrossRefGoogle Scholar
  54. 48.
    A. C. Albrecht, J. Chem. Phys. 34, 1476 (1961).CrossRefGoogle Scholar
  55. 49.
    W. M. Gelbart, K. F. Freed, and S. A. Rice, J. Chem. Phys. 52, 2460 (1970).CrossRefGoogle Scholar
  56. 50.
    A. Warshel and M. Karplus, Chem. Phys. Lett. 32, 11 (1975).CrossRefGoogle Scholar
  57. 51. (a)
    M. E. Hyde, D. Gill, R. G. Kilponen, and L. Rimai, J. Am. Chem. Soc. 93, 6776 (1971).CrossRefGoogle Scholar
  58. 51. (b)
    R. Mendelson, Nature 243, 22 (1973).CrossRefGoogle Scholar
  59. (c).
    A. Lewis and J. Spoonhower, Neutron, X-ray and Laser Spectroscopy in Biophysics and Chemistry, Academic Press, New York (1974).Google Scholar
  60. (d).
    T. G. Spiro and T. C. Strekas,/Am. Chem. Soc. 96, 338 (1974).CrossRefGoogle Scholar
  61. (e).
    A. R. Oseroff and R. H. Callender, Biochemistry 13, 4243 (1974).CrossRefGoogle Scholar
  62. 52.
    C. Eckart, Phys. Rev. 47, 552 (1935).CrossRefGoogle Scholar
  63. 53. (a)
    A. Bromberg and K. A. Muszkat, Tetrahedron 28, 1265 (1972).CrossRefGoogle Scholar
  64. 53. (b)
    H. A. Nash, J. Theor. Biol. 22, 314 (1969).CrossRefGoogle Scholar
  65. (c).
    J. Langlet, B. Pullman, and H. Berthod, J. Mol Struct. 6, 139 (1970).CrossRefGoogle Scholar
  66. 54.
    A. Warshel, J. Chem. Phys. 62, 214 (1975).CrossRefGoogle Scholar
  67. 55.
    M. Bixon and J. Jortner, J. Chem. Phys. 48, 715 (1968).CrossRefGoogle Scholar
  68. 55a.
    A. D. Brailsford and T. Y. Chang, J. Chem. Phys. 53, 3108 (1970).CrossRefGoogle Scholar
  69. 55b.
    J. Jortner, S. A. Rice, and R. M. Hochstrasser, Adv. Photochem. 7, 149 (1969).CrossRefGoogle Scholar
  70. 56.
    R. Fletcher, Comput. J. 10, 392 (1968).CrossRefGoogle Scholar
  71. 57.
    N. J. White and O. Erraer, Chem. Phys. Lett. 31, 111 (1975).CrossRefGoogle Scholar
  72. 58.
    W. C. Davidon, AEC Research and Development Report, ANL-5990 (1959).Google Scholar
  73. 58a.
    R. Fletcher and M. J. D. Powell, Comput. J. 6, 163 (1963).Google Scholar
  74. 59.
    B. Maigret, B. Pullman, and D. Perahia, J. Theor. Biol. 31, 269 (1971).CrossRefGoogle Scholar
  75. 60.
    C. H. Stam and C. H. MacGillavry, Acta Cryst. 16, 62 (1963).CrossRefGoogle Scholar
  76. 61.
    R. H. Dyck and D. S. McClure, J. Chem. Phys. 36, 2326 (1962).CrossRefGoogle Scholar
  77. 62.
    C. Pecile and B. Lunelli, Can. J. Chem. 47, 244 (1969).Google Scholar
  78. 63.
    J. A. Schellman, J. Chem. Phys. 58, 2882 (1973).CrossRefGoogle Scholar
  79. 64.
    A. Warshel, unpublished calculations.Google Scholar
  80. 65.
    A. Zunger and E. Huler, J. Chem. Phys. 62, 3010 (1975).CrossRefGoogle Scholar
  81. 66.
    J. Schellssinger and A. Warshel, Chem. Phys. Lett. 28, 380 (1974).CrossRefGoogle Scholar
  82. 67.
    A. Warshel and M. Karplus, to be published.Google Scholar
  83. 68.
    A. Warshel and M. Levitt, J. Mol. Biol. 103, 227 (1976).CrossRefGoogle Scholar
  84. 69.
    A. Lappicirella and A. Warshel, to be published.Google Scholar
  85. 70.
    B. S. Hudson, H. Karp, and S.-H. Chen, J. Chem. Phys. 62, 4564 (1975).CrossRefGoogle Scholar
  86. 71.
    A. Warshel, Ann. Rev. Biophys. Bioeng. 6 (1977) (in press).Google Scholar
  87. 72.
    A. Warshel, Nature (London) 260, 679 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • A. Warshel
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Chemical PhysicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations