Advertisement

Hückel Theory and Topology

  • N. Trinajstić
Part of the Modern Theoretical Chemistry book series (MTC, volume 7)

Abstract

The first and simplest form of the molecular orbital (MO) theory of conjugated molecules was proposed by Hückel(1–3) in 1931. Because of its simplicity and limited computational effort, this Hückel theory was especially useful in the period before the application of electronic computers to quantum chemical problems (1931-mid 1950s). During this period first Lennard-Jones and Coulson and later Coulson and Longuet-Higgins were able to shape the Hückel theory into a mathematically consistent π-electron theory of unsaturated and aromatic molecules.(4)

Keywords

Bipartite Graph Characteristic Polynomial Bond Order Reference Structure Molecular Orbital Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Hückel, Z. Physik 70, 204–286 (1931).CrossRefGoogle Scholar
  2. 2.
    E. Hückel, Z. Physik 72, 310–337 (1932).CrossRefGoogle Scholar
  3. 3.
    E. Hückel, Z Physik 76, 628–648 (1932).CrossRefGoogle Scholar
  4. 4.
    A. Streitwieser, Jr., Molecular Orbital Theory for Organic Chemists, Wiley, New York (1961).Google Scholar
  5. 5.
    M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, New York (1969).Google Scholar
  6. 6.
    B. A. Hess, Jr. and L. J. Schaad, J. Am. Chem. Soc. 93, 305–310 (1971).CrossRefGoogle Scholar
  7. 7.
    B. A. Hess, Jr. and L. J. Schaad, J. Am. Chem. Soc. 93, 2413–2416 (1971).CrossRefGoogle Scholar
  8. 8.
    B. A. Hess, Jr. and L. J. Schaad, J. Org. Chem. 36, 3418–3423 (1971).CrossRefGoogle Scholar
  9. 9.
    M. Milun, Z. Sobotka, and N. Trinajstic, J. Org. Chem. 37, 139–141 (1972).Google Scholar
  10. 10.
    O. L. J. Gijzeman and A. Sykes, Photochem. Photobiol. 18, 339–341 (1973).CrossRefGoogle Scholar
  11. 11.
    G. J. Gleicher, D. D. Newkirk, and J. C. Arnold, J. Am. Chem. Soc. 95, 2526–2531 (1973).CrossRefGoogle Scholar
  12. 12.
    L. J. Schaad and B. A. Hess, Jr., J. Am. Chem. Soc. 94, 3068–3074 (1972).CrossRefGoogle Scholar
  13. 13.
    M. J. S. Dewar and C. de Llano, J. Am. Chem. Soc. 91, 789–795 (1969).CrossRefGoogle Scholar
  14. 14.
    J. A. Pople, Trans. Faraday Soc. 49, 1375–1385 (1953).CrossRefGoogle Scholar
  15. 15.
    B. A. Hess, Jr., L. J. Schaad, and C. W. Holyoke, Jr., Tetrahedron 28, 3657–3667 (1972).CrossRefGoogle Scholar
  16. 16.
    B. A. Hess, Jr. and L. J. Schaad, J. Am. Chem. Soc. 95, 3907–3912 (1973).CrossRefGoogle Scholar
  17. 17.
    C. A. Coulson and A. Streitwieser, Jr., Dictionary of π-Electron Calculations, Pergamon Press, Oxford (1965).Google Scholar
  18. 18.
    A. Streitwieser, Jr. and J. I. Brauman, Supplemental Tables of Molecular Orbital Calculations, Vols. I and II, Pergamon Press, Oxford (1965).Google Scholar
  19. 19.
    E. Heilbronner and P. A. Straub, Hückel Molecular Orbitals, Springer-Verlag, New York (1966).Google Scholar
  20. 20.
    C. Berge, The Theory of Graphs and Its Applications, Methuen, London (1962).Google Scholar
  21. 21.
    F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts (1969).Google Scholar
  22. 22.
    R. J. Wilson, Introduction to Graph Theory, Oliver & Boyd, Edinburgh (1972).Google Scholar
  23. 23.
    C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam (1973).Google Scholar
  24. 24.
    I. Gutman and N. Trinajstic, Topics Curr. Chem. 42, 49–93 (1973).Google Scholar
  25. 25.
    A. Graovac and N. Trinajstic, J. Mol. Struct. 30, 416–420 (1975)CrossRefGoogle Scholar
  26. 25a.
    A. Graovac and N. Trinajstic, Croat. Chem. Acta 47, 95–104 (1975).Google Scholar
  27. 26.
    K. Ruedenberg, J. Chem. Phys. 22, 1878–1894 (1954).CrossRefGoogle Scholar
  28. 27.
    J. W. Essam and M. E. Fisher, Rev. Mod. Phys. 42, 272–288 (1970).CrossRefGoogle Scholar
  29. 28.
    L. Salem, The Molecular Orbital Theory of Conjugated Systems, Benjamin, New York (1966).Google Scholar
  30. 29.
    E. Heilbronner and H. Bock, Das HMO-Modell und seine Anwendung, Verlag-Chemie, Weinheim (1968).Google Scholar
  31. 30.
    H. H. Günthard and H. Primas, Helv. Chim. Acta 39, 1645–1653 (1956).CrossRefGoogle Scholar
  32. 31.
    H. H. Schmidtke, J. Chem. Phys. 45, 3920–3928 (1966).CrossRefGoogle Scholar
  33. 32.
    K. Ruedenberg, J. Chem. Phys. 34, 1861–1877 (1961).CrossRefGoogle Scholar
  34. 33.
    I. Gutman and N. Trinajstic, Naturwiss. 60, 475 (1973).CrossRefGoogle Scholar
  35. 34.
    C. A. Coulson, Proc. Camb.Phil. Soc. 46, 202–205 (1950).CrossRefGoogle Scholar
  36. 35.
    L. Collatz and U. Sinogowitz, Abh. Math. Sem. Univ. Hamburg 21, 64–77 (1957).CrossRefGoogle Scholar
  37. 36.
    D. Cvetkovic, I. Gutman, and N. Trinajstic, Chem. Phys. Lett. 29, 65–68 (1974).CrossRefGoogle Scholar
  38. 37.
    C. A. Coulson, Proc. Roy. Soc. (Lond.) A 169, 413–428 (1939).CrossRefGoogle Scholar
  39. 38.
    R. S. Mulliken, J. Chem. Phys. 23, 1841–1846 (1955).CrossRefGoogle Scholar
  40. 39.
    N. S. Ham and K. Ruedenberg, J. Chem. Phys. 29, 1215–1229 (1958).CrossRefGoogle Scholar
  41. 40.
    C. A. Coulson and A. Gofebiewski, Proc. Phys. Soc. (Lond.) 78, 1310–1320(1961).CrossRefGoogle Scholar
  42. 41.
    W. C. Herndon, J. Am. Chem. Soc. 96, 7605–7614 (1974).CrossRefGoogle Scholar
  43. 42.
    D. König, Theorie der endlichen und unendlichen Graphen, Leipzig (1936) [reprinted Chelsea, New York (1950)], p. 170.Google Scholar
  44. 43.
    C. A. Coulson and H. C. Longuet-Higgins, Proc. Roy. Soc. (Lond.) A 192, 16–32 (1947).CrossRefGoogle Scholar
  45. 44.
    N. S. Harn, J. Chem. Phys. 29, 1229–1231 (1958).CrossRefGoogle Scholar
  46. 45.
    C. A. Coulson and G. S. Rushbrooke, Proc. Camb. Phil. Soc. 36, 193–200 (1940).CrossRefGoogle Scholar
  47. 46.
    W. Moffitt, J. Chem. Phys. 26, 424–425 (1957).CrossRefGoogle Scholar
  48. 47.
    H. C. Longuet-Higgins, J. Chem. Phys. 18, 265–274 (1950).CrossRefGoogle Scholar
  49. 48.
    G. G. Hall, Proc. Roy. Soc. (Lond.) A 229, 251–259 (1955).CrossRefGoogle Scholar
  50. 49.
    J. Koutecky, J. Chem. Phys. 44, 3702–3706 (1966).CrossRefGoogle Scholar
  51. 50.
    A. D. McLachlan, Moi Phys. 2, 271–284 (1959).CrossRefGoogle Scholar
  52. 51.
    W. B. Person, G. C. Pimentel, and K. S. Pitzer, J. Am. Chem. Soc. 74, 3437–3438 (1952).CrossRefGoogle Scholar
  53. 52.
    T. Zivkovic, Croat. Chem. Acta 44, 351–364 (1972).Google Scholar
  54. 53.
    W. C. Herndon, Tetrahedron 28, 3675–3685 (1972).CrossRefGoogle Scholar
  55. 54.
    D. Cvetkovic, I. Gutman, and N. Trinajstic, Theoret. Chim. Acta 34, 129–136 (1974).CrossRefGoogle Scholar
  56. 55.
    D. Cvetkovic, I. Gutman, and N. Trinajstic, J. Mol. Struct. 28, 289–303 (1975).CrossRefGoogle Scholar
  57. 56.
    A. L. McClellan, Tables of Experimental Dipole Moments, Freeman, San Francisco (1963).Google Scholar
  58. 57.
    R. D. Brown, F. R. Burden, A. J. Jones, and J. E. Kent, Chem. Comm. 1967, 808–809.Google Scholar
  59. 58.
    W. D. Huntsman and H. J. Wristers, J. Am. Chem. Soc. 89, 342–347 (1967).CrossRefGoogle Scholar
  60. 59.
    B. P. Kirsanov and M. V. Bazilevskii, Zh. Strukt. Khim. 5, 99–107 (1964).Google Scholar
  61. 60.
    B. A. Bochvar, I. V. Stankevich, and A. L. Chistiyakov, Zh. Fiz. Khim. 39, 1365–1372 (1965).Google Scholar
  62. 61.
    D. Cvetkovic, L Gutman, and N. Trinajstic, Croat. Chem. Acta 44, 365–374(1972).Google Scholar
  63. 62.
    I. Samuel, Compt. Rend. 229, 1236–1237 (1949).Google Scholar
  64. 63.
    H. Sachs, Publications Mathematicae (Debrecen) 11, 119–134 (1963).Google Scholar
  65. 64.
    L. Spialter, J. Chem. Doc. 4, 261–269 (1964).CrossRefGoogle Scholar
  66. 65.
    H. Hosoya, Theoret. Chim. Acta 25, 215–222 (1972).CrossRefGoogle Scholar
  67. 66.
    A. Graovac, I. Gutman, N. Trinajstic, and T. Zivkovic, Theoret. Chim. Acia 26, 67–78 (1972).CrossRefGoogle Scholar
  68. 67.
    A. Mowshowitz, J. Combinatorial Theory 12(B), 177–193 (1972).CrossRefGoogle Scholar
  69. 68.
    I. Gutman, N. Trinajstic, and T. Zivkovic, Tetrahedron 29, 3449–3454 (1973).CrossRefGoogle Scholar
  70. 69.
    I. Gutman, Chem. Phys. Lett. 26, 85–88 (1974).CrossRefGoogle Scholar
  71. 70.
    A. G. Kurosh, Kurs vishei algebri, Nauka, Moscow (1965).Google Scholar
  72. 71.
    W. C. Herndon, Tetrahedron Un. 1974, 671–674.Google Scholar
  73. 72.
    W. C. Herndon and M. L. Ellzey, Jr., Tetrahedron 31, 99–107 (1975).CrossRefGoogle Scholar
  74. 73.
    T. Zivkovic, N. Trinajstic, and M. Randic, Mol. Phys. 30, 517–533 (1975).CrossRefGoogle Scholar
  75. 74.
    I. Gutman and N. Trinajstic, Croat. Chem. Acta 45, 423–429 (1973).Google Scholar
  76. 75.
    R. B. Mallion, A. J. Schwenk, and N. Trinajstic, Croat. Chem. Acta 46, 171–182 (1974)Google Scholar
  77. 75a.
    R. B. Mallion, N. Trinajstic, and A. J. Schwenk, Z Naturforsch. 29a, 1481–1484Google Scholar
  78. 75b.
    R. B. Mallion, A. J. Schwenk, and N. Trinajstic, in Recent Advances in Graph Theory (M. Fiedler, ed.) Academia, Prague (1975), pp. 345–350.Google Scholar
  79. 76.
    A. Graovac, O. E. Polansky, N. Trinajstic, and N. Tyutyulkov, Z Naturforsch. 30a, 1696–1699 (1975).Google Scholar
  80. 77.
    R. B. Mallion, Bull. Soc. Chim. France 1974, 2799–2800.Google Scholar
  81. 78.
    B. J. McClelland, J. Chem. Phys. 54, 640–643 (1971).CrossRefGoogle Scholar
  82. 79.
    I. Gutman, M. Milun, and N. Trinajstic, J. Chem. Phys. 59, 2772–2774 (1973).CrossRefGoogle Scholar
  83. 80.
    I. Gutman and N. Trinajstic, Chem. Phys. Lett. 17, 535–538 (1972).CrossRefGoogle Scholar
  84. 81.
    G. G. Hall, Int. J. Math. Ed. Sci. Technol. 4, 233–240 (1973).CrossRefGoogle Scholar
  85. 82.
    I. Gutman, B. Ruscic, N. Trinajstic, and C. F. Wilcox, Jr., J. Chem. Phys. 62, 3399–3405 (1975).CrossRefGoogle Scholar
  86. 83.
    I. Gutman, Theoret. Chim. Acta 35, 355–359 (1974).CrossRefGoogle Scholar
  87. 84.
    I. Gutman, N. Trinajstic, and C. F. Wilcox, Jr., Tetrahedron 31, 143–146 (1975).CrossRefGoogle Scholar
  88. 85.
    C. F. Wilcox, Jr., I. Gutman, and N. Trinajstic, Tetrahedron 31, 147–152 (1975).CrossRefGoogle Scholar
  89. 86.
    C. F. Wilcox, Jr., Tetrahedron Lett. 1968, 795–800.Google Scholar
  90. 87.
    M. J. S. Dewar and H. C. Longuet-Higgins, Proc. Roy. Soc. (Lond.) A 214, 482–493 (1952).CrossRefGoogle Scholar
  91. 88.
    D. Cvetkovic, I. Gutman, and N. Trinajstic, J. Chem. Phys. 61, 2700–2706 (1974).CrossRefGoogle Scholar
  92. 89.
    I. Gutman and N. Trinajstic, Croat. Chem. Acta 45, 539–545 (1973).Google Scholar
  93. 90.
    C. F. Wilcox, Jr., J. Am. Chem. Soc. 91, 2732–2736 (1969).CrossRefGoogle Scholar
  94. 91.
    I. Gutman and N. Trinajstic, Chem. Phys. Lett. 20, 257–260 (1973).CrossRefGoogle Scholar
  95. 92.
    C. F. Wilcox, Jr., private communication (April 1975).Google Scholar
  96. 93.
    W. H. Wheland, The Theory of Resonance and Its Application to Organic Chemistry, Wiley, New York (1953).Google Scholar
  97. 94.
    I. Gutman, N. Trinajstic, and C. F. Wilcox, Jr., to be published.Google Scholar
  98. 95.
    I. Gutman and N. Trinajstic, Croat. Chem. Acta 47, 35–39 (1975).Google Scholar
  99. 96.
    H. Hosoya, K. Hosoi, and I. Gutman, Theoret. Chim. Acta 38, 37–47(1975).CrossRefGoogle Scholar
  100. 97.
    H. Hosoya, Bull. Chem. Soc. Japan 44, 2332–2339 (1971).CrossRefGoogle Scholar
  101. 98.
    N. C. Baird, J. Chem. Ed. 48, 509–514 (1971).CrossRefGoogle Scholar
  102. 99.
    M. J. S. Dewar and N. Trinajstic, J. Chem. Soc. A 1969, 1754–1755.Google Scholar
  103. 100.
    M. J. S. Dewar, A. J. Harget, and N. Trinajstic. J. Am. Chem. Soc. 91, 6321–6325 (1969).CrossRefGoogle Scholar
  104. 101.
    M. J. S. Dewar and N. Trinajstic, J. Am. Chem. Soc. 92, 1453–1459 (1970).CrossRefGoogle Scholar
  105. 102.
    B. A. Hess, Jr. and L. J. Schaad, J. Org. Chem. 37, 4179–4180 (1972).CrossRefGoogle Scholar
  106. 103.
    I. Gutman, M. Milun ,and N. Trinajstic, Chem. Phys. Lett. 23, 284–286 (1973).CrossRefGoogle Scholar
  107. 104.
    H. P. Figeys, Tetrahedron 26, 5225–5234 (1970).CrossRefGoogle Scholar
  108. 105.
    M. J. S. Dewar and G. J. Gleicher, J. Am. Chem. Soc. 87, 685–692 (1965).CrossRefGoogle Scholar
  109. 106.
    M. Randic, Tetrahedron 30, 2067–2074 (1974).CrossRefGoogle Scholar
  110. 107.
    C. F. Wilcox, Jr., Croat. Chem. Acta 47, 87–94 (1975).Google Scholar
  111. 108.
    I. Gutman and N. Trinajstic, Acta Chim. Hung., in press.Google Scholar
  112. 109.
    I. Gutman, M. Milun, and N. Trinajstic, Croat. Chem. Acta 48, 87–95 (1976).Google Scholar
  113. 110.
    M. Gordon and J. W. Kennedy, J. Chem. Soc. Faraday II 69, 484–504 (1973).CrossRefGoogle Scholar
  114. 111.
    K. Kajiwara and M. Gordon, J. Chem. Phys. 59, 3623–3632 (1972).CrossRefGoogle Scholar
  115. 112.
    M. Randic, J. Am. Chem. Soc. 97, 6609–6615 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • N. Trinajstić
    • 1
  1. 1.The Rugjer Bošković InstituteZagreb, CroatiaYugoslavia

Personalised recommendations