Skip to main content

Nucleation Theory

  • Chapter
Statistical Mechanics

Part of the book series: Modern Theoretical Chemistry ((MTC,volume 5))

Abstract

It is well known that water boils at 1 atm pressure at 100°C. Also the dew point of water vapor at 0.22 atm is 20°C; hence if water vapor at 0.22 atm is cooled to room temperature, condensation occurs. While both of these statements are well known, they are incorrect. If care is taken to use very clean water and avoid surfaces, liquid water can be superheated to 279.5°C before boiling occurs(1) and water vapor at 20°C can be supersaturated to 0.75 atm pressure before condensation occurs.(2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. E. Apfel, Water superheated to 279.5°C at atmospheric pressure, Nature Phys. Sci. 238, 63–64 (1972).

    CAS  Google Scholar 

  2. R. E. Heist and H. Reiss, Investigation of homogeneous nucleation of water vapor using a diffusion cloud chamber, J. Chem. Phys. 59, 665–671 (1973).

    Article  CAS  Google Scholar 

  3. M. Blander and J. Katz, Condensation of primordial dust, Geochim. Cosmochim. Acta 31, 1025–1034 (1967).

    Article  CAS  Google Scholar 

  4. S. D. Harkness, J. A. Tesk, and C. Y. Li, An analysis of fast neutron effects on void formation and creep in metals, Nucl. Appl. Technol. 9, 24–30 (1970).

    CAS  Google Scholar 

  5. D. E. Gushee (ed.), Nucleation PhenomenaAmerican Chemical Society, Washington (1966).

    Google Scholar 

  6. A. C. Zettlemoyer (ed.), NucleationMarcel Dekker, New York (1969).

    Google Scholar 

  7. A. C. Zettlemoyer (ed.), Nucleation IINorth Holland, Amsterdam (1977).

    Google Scholar 

  8. F. F. Abraham, Homogeneous Nucleation Theory, Academic Press, New York (1974).

    Google Scholar 

  9. J. J. Burton, On the validity of homogeneous nucleation theory, Acta Met. 21, 1225–1232 (1973).

    Article  CAS  Google Scholar 

  10. J. E. McDonald, Homogeneous nucleation of vapor condensation II. Kinetic aspects, Am. J. Phys. 31, 31–41 (1963).

    Article  CAS  Google Scholar 

  11. P. P. Wegener and A. A. Pouring, Experiments on condensation of water vapor by homogeneous nucleation in nozzles, Phys. Fluids 7, 352–361 (1964).

    Article  CAS  Google Scholar 

  12. F. F. Abraham, Multistate kinetics in non-steady state nucleation: A numerical solution, J. Chem. Phys. 51, 1632–1638 (1969).

    Article  CAS  Google Scholar 

  13. H. Wiedersich, J. J. Burton, and J. L. Katz, Effect of mobile helium on void nucleation in materials during irradiation, J. Nucl. Mater. 51, 287–301 (1974).

    Article  CAS  Google Scholar 

  14. K. L. Murty and J. E. Dorn, On the non-equilibrium factor for nucleation rates, J. Phys. Chem. Solids 33, 757–759 (1972).

    Article  CAS  Google Scholar 

  15. J. Feder, K. C. Russell, J. Lothe, and G. M. Pound, Homogeneous nucleation and growth of droplets in vapors, Advan. Phys. 15, 111–178 (1966).

    Article  CAS  Google Scholar 

  16. J. P. Hirth and G. M. Pound, Condensation and evaporation; nucleation and growth kinetics, Progr. Mater. Sci. 11, 1–169 (1963).

    Article  Google Scholar 

  17. J. K. Lee, J. A. Barker, and F. F. Abraham, Theory and Monte Carlo simulation of physical clusters in the imperfect vapor, J. Chem. Phys. 58, 3166–3180 (1973).

    Article  CAS  Google Scholar 

  18. J. L. Katz, C. J. Scoppa, N. G. Kumar, and P. Mirabel, Condensation of a supersaturated vapor. II. The homogeneous nucleation of the n-alkyl benzenes, J. Chem. Phys. 62, 448–465 (1975).

    Article  CAS  Google Scholar 

  19. H. L. Jaeger, E. J. Wilson, P. G. Hill, and K. C. Russell, Nucleation of supersaturated vapors in nozzles. I. H2O and NH3, J. Chem. Phys. 51, 5380–5388 (1969).

    Article  CAS  Google Scholar 

  20. D. B. Dawson, E. J. Wilson, P. G. Hill, and K. C. Russel, Nucleation of supersaturated vapors in nozzles. II. C6H6, CHC13, CC13F, and C2H5OH, J. Chem. Phys. 51, 5389–5397 (1969).

    Article  CAS  Google Scholar 

  21. J. L. Katz, Condensation of a supersaturated vapor. I. The homogeneous nucleation of the n-alkanes, J. Chem. Phys. 52, 4733–4748 (1970).

    Article  CAS  Google Scholar 

  22. R. C. Tolman, The effect of droplet size on surface tension, J. Chem. Phys. 17, 333–337 (1949).

    Article  CAS  Google Scholar 

  23. F. F. Abraham and J. V. Dave, Thermodynamics of microcrystallites and its relation to nucleation theory, J. Chem. Phys. 55, 1587–1597 (1971).

    Article  CAS  Google Scholar 

  24. J. Lothe and G. M. Pound, Reconsiderations of nucleation theory, J. Chem. Phys. 36, 2080–2085 (1962).

    Article  CAS  Google Scholar 

  25. F. F. Abraham and G. M. Pound, Re-examination of homogeneous nucleation theory: Statistical mechanical aspects, J. Chem. Phys. 48, 732–740 (1968).

    Article  CAS  Google Scholar 

  26. H. Reiss and J. L. Katz, Resolution of the translation-rotation paradox in the theory of irreversible condensation, J. Chem. Phys. 46, 2496–2499 (1967).

    Article  CAS  Google Scholar 

  27. H. Reiss, J. L. Katz, and E. R. Cohen, Translation-rotation paradox in the theory of nucleation, J. Chem. Phys. 48, 5553–5560 (1968).

    Article  CAS  Google Scholar 

  28. R. Kikuchi, The translation-rotation paradox in the nucleation theory, J. Statist. Phys. 1, 351–375 (1969).

    Article  Google Scholar 

  29. F. F. Abraham, Predicting the critical supersaturation for homogeneous nucleation of vapor condensation, J. Appl. Phys. 39, 3287–3293 (1968).

    Article  CAS  Google Scholar 

  30. W. Band, Dissociation treatment of condensing systems, J. Chem. Phys. 7, 324–326 (1939).

    Article  CAS  Google Scholar 

  31. T. Tseng, S. Feng, C. Cheng, and W. Band, Dissociation treatment of condensing system III. Properties of saturated vapors of H2O, NH3, CH3C1, and CO2, J. Chem. Phys. 8, 20–23 (1940).

    Article  CAS  Google Scholar 

  32. C. S. Kiang, D. Stauffer, G. H. Walker, O. P. Puri, J. D. Wise, and E. M. Patterson, A reexamination of homogeneous nucleation theory, J. Atm. Sci. 28, 1222–1232 (1971).

    Article  CAS  Google Scholar 

  33. A. EEgington, C. S. Kiang, D. Stauffer, and G. H. Walker, Droplet model and nucleation of supersaturated vapors near the critical point, Phys. Rev. Lett. 26, 820–822 (1971).

    Article  Google Scholar 

  34. P. Hamill, D. Stauffer, and C. S. Kiang, Nucleation theory: Fischer’s droplet picture and microscopic surface tension, Chem. Phys. Lett. 28, 209–212 (1974);

    Article  CAS  Google Scholar 

  35. M. E. Fisher, The theory of condensation and the critical point, Physics 3, 255–293 (1967).

    Google Scholar 

  36. J. J. Burton, Free energy of small face centered cubic clusters of argon, J. C. S. Faraday II 69, 540–550 (1973).

    Article  CAS  Google Scholar 

  37. J. J. Burton and C. L. Briant, in: Nucleation II ( A. C. Zettlemoyer, ed.), North Holland, Amsterdam (1977).

    Google Scholar 

  38. M. R. Hoare and P. Pal, Statistics and stability of small assemblies of atoms, J. Cryst. Growth 17, 77–96 (1972).

    Article  CAS  Google Scholar 

  39. J. J. Burton, Structure and properties of microcrystalline catalysts, Catal. Rev. Sci. Eng. 9, 209–222 (1974).

    Article  CAS  Google Scholar 

  40. J. J. Burton, in: Proc. 4th Intern. Symp. Sintering ( G. Kucsynski, ed.), pp. 17–28, Plenum Press, New York (1976).

    Google Scholar 

  41. J. G. Kirkwood and F. P. Buff, The statistical mechanical theory of surface tension, J. Chem. Phys. 17, 338–343 (1949).

    Article  CAS  Google Scholar 

  42. C. L. Briant and J. J. Burton, Molecular dynamics study of the structure and thermodynamic properties of argon microclusters, J. Chem. Phys. 63, 2045–2058 (1975).

    Article  CAS  Google Scholar 

  43. C. L. Briant and J. J. Burton, Molecular dynamics study of water microclusters, J. Chem. Phys. 63, 3327–3333 (1975).

    Article  CAS  Google Scholar 

  44. K. Binder and D. Stauffer, Monte Carlo study of the surface area of liquid droplets, J. Statist. Phys. 6, 49–59 (1972).

    Article  Google Scholar 

  45. C. T. R. Wilson, Condensation of water vapor in the presence of dust free air and other gases, Phil. Trans. Roy. Soc. A189, 265–307 (1897).

    Article  Google Scholar 

  46. K. C. Russell, Nucleation on gaseous ions, J. Chem. Phys. 50, 1809–1816 (1969).

    Article  CAS  Google Scholar 

  47. P. P. S. Saluja and H. A. Scherage, Ion water interactions in the gas phase, J. Phys. Chem. 77, 2736–2738 (1973).

    Article  CAS  Google Scholar 

  48. H. Kistenmacher, H. Popkie, and E. Clementi, Study of the structure of molecular complexes. VII. Small clusters of water molecules surrounding Li+, Na+, K+, F-, and Cl- Ions, J. Chem. Phys. 61, 799–815 (1974).

    Article  CAS  Google Scholar 

  49. C. L. Briant and J. J. Burton, Molecular dynamics study of the effects of ions on water microclusters, J. Chem. Phys. 64, 2888–2895 (1976).

    Article  CAS  Google Scholar 

  50. C. L. Briant and J. J. Burton, A molecular model for nucleation of water on ions, J. Atmos. Sci. 33, 1357–1361 (1976).

    Article  CAS  Google Scholar 

  51. A. Ben Naim and F. H. Stillinger, in: Structure and Transport Processes in Water and Aqueous Solutions (R. Home, ed.), pp. 295–330, Wiley, New York (1972).

    Google Scholar 

  52. A. Rahman and F. H. Stillinger, Molecular dynamics study of liquid water, J. Chem. Phys. 55, 3336–3359 (1971).

    Article  CAS  Google Scholar 

  53. F. H. Stillinger and A. Rahman, Molecular dynamics study of temperature effects on water structure and kinetics, J. Chem. Phys. 57, 1281–1292 (1972).

    Article  CAS  Google Scholar 

  54. A. Rahman and F. H. Stillinger, Hydrogen bond patterns in liquid water, J. Am. Chem. Soc. 95, 7943–7948 (1973).

    Article  CAS  Google Scholar 

  55. F. H. Stillinger and A. Rahman, Improved simulation of liquid water by molecular dynamics, J. Chem. Phys. 60, 1545–1557 (1974).

    Article  CAS  Google Scholar 

  56. C. L. Briant and J. J. Burton, Effective potential for water-ion interactions in prenucleation embryos, J. Chem. Phys. 60, 2849–2855 (1974).

    Article  CAS  Google Scholar 

  57. C. Cawthorne and E. S. Fulton, Voids in irradiated stainless steel, Nature 216, 575–576 (1967).

    Article  CAS  Google Scholar 

  58. D. I. R. Norris, Voids in irradiated metals (part I), Radiat. Eff. 14, 1–37 (1972).

    Article  CAS  Google Scholar 

  59. D. I. R. Norris, Voids in irradiated metals (part II), Radiat. Elf: 15, 1–22 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Burton, J.J. (1977). Nucleation Theory. In: Berne, B.J. (eds) Statistical Mechanics. Modern Theoretical Chemistry, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2553-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2553-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2555-0

  • Online ISBN: 978-1-4684-2553-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics