Advertisement

Nucleation Theory

  • J. J. Burton
Part of the Modern Theoretical Chemistry book series (MTC, volume 5)

Abstract

It is well known that water boils at 1 atm pressure at 100°C. Also the dew point of water vapor at 0.22 atm is 20°C; hence if water vapor at 0.22 atm is cooled to room temperature, condensation occurs. While both of these statements are well known, they are incorrect. If care is taken to use very clean water and avoid surfaces, liquid water can be superheated to 279.5°C before boiling occurs(1) and water vapor at 20°C can be supersaturated to 0.75 atm pressure before condensation occurs.(2)

Keywords

Nucleation Rate Surface Free Energy Capture Rate Homogeneous Nucleation Void Nucleation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Apfel, Water superheated to 279.5°C at atmospheric pressure, Nature Phys. Sci. 238, 63–64 (1972).Google Scholar
  2. 2.
    R. E. Heist and H. Reiss, Investigation of homogeneous nucleation of water vapor using a diffusion cloud chamber, J. Chem. Phys. 59, 665–671 (1973).CrossRefGoogle Scholar
  3. 3.
    M. Blander and J. Katz, Condensation of primordial dust, Geochim. Cosmochim. Acta 31, 1025–1034 (1967).CrossRefGoogle Scholar
  4. 4.
    S. D. Harkness, J. A. Tesk, and C. Y. Li, An analysis of fast neutron effects on void formation and creep in metals, Nucl. Appl. Technol. 9, 24–30 (1970).Google Scholar
  5. 5.
    D. E. Gushee (ed.), Nucleation PhenomenaAmerican Chemical Society, Washington (1966).Google Scholar
  6. 6.
    A. C. Zettlemoyer (ed.), NucleationMarcel Dekker, New York (1969).Google Scholar
  7. 7.
    A. C. Zettlemoyer (ed.), Nucleation IINorth Holland, Amsterdam (1977).Google Scholar
  8. 8.
    F. F. Abraham, Homogeneous Nucleation Theory, Academic Press, New York (1974).Google Scholar
  9. 9.
    J. J. Burton, On the validity of homogeneous nucleation theory, Acta Met. 21, 1225–1232 (1973).CrossRefGoogle Scholar
  10. 10.
    J. E. McDonald, Homogeneous nucleation of vapor condensation II. Kinetic aspects, Am. J. Phys. 31, 31–41 (1963).CrossRefGoogle Scholar
  11. 11.
    P. P. Wegener and A. A. Pouring, Experiments on condensation of water vapor by homogeneous nucleation in nozzles, Phys. Fluids 7, 352–361 (1964).CrossRefGoogle Scholar
  12. 12.
    F. F. Abraham, Multistate kinetics in non-steady state nucleation: A numerical solution, J. Chem. Phys. 51, 1632–1638 (1969).CrossRefGoogle Scholar
  13. 13.
    H. Wiedersich, J. J. Burton, and J. L. Katz, Effect of mobile helium on void nucleation in materials during irradiation, J. Nucl. Mater. 51, 287–301 (1974).CrossRefGoogle Scholar
  14. 14.
    K. L. Murty and J. E. Dorn, On the non-equilibrium factor for nucleation rates, J. Phys. Chem. Solids 33, 757–759 (1972).CrossRefGoogle Scholar
  15. 15.
    J. Feder, K. C. Russell, J. Lothe, and G. M. Pound, Homogeneous nucleation and growth of droplets in vapors, Advan. Phys. 15, 111–178 (1966).CrossRefGoogle Scholar
  16. 16.
    J. P. Hirth and G. M. Pound, Condensation and evaporation; nucleation and growth kinetics, Progr. Mater. Sci. 11, 1–169 (1963).CrossRefGoogle Scholar
  17. 17.
    J. K. Lee, J. A. Barker, and F. F. Abraham, Theory and Monte Carlo simulation of physical clusters in the imperfect vapor, J. Chem. Phys. 58, 3166–3180 (1973).CrossRefGoogle Scholar
  18. 18.
    J. L. Katz, C. J. Scoppa, N. G. Kumar, and P. Mirabel, Condensation of a supersaturated vapor. II. The homogeneous nucleation of the n-alkyl benzenes, J. Chem. Phys. 62, 448–465 (1975).CrossRefGoogle Scholar
  19. 19.
    H. L. Jaeger, E. J. Wilson, P. G. Hill, and K. C. Russell, Nucleation of supersaturated vapors in nozzles. I. H2O and NH3, J. Chem. Phys. 51, 5380–5388 (1969).CrossRefGoogle Scholar
  20. 20.
    D. B. Dawson, E. J. Wilson, P. G. Hill, and K. C. Russel, Nucleation of supersaturated vapors in nozzles. II. C6H6, CHC13, CC13F, and C2H5OH, J. Chem. Phys. 51, 5389–5397 (1969).CrossRefGoogle Scholar
  21. 21.
    J. L. Katz, Condensation of a supersaturated vapor. I. The homogeneous nucleation of the n-alkanes, J. Chem. Phys. 52, 4733–4748 (1970).CrossRefGoogle Scholar
  22. 22.
    R. C. Tolman, The effect of droplet size on surface tension, J. Chem. Phys. 17, 333–337 (1949).CrossRefGoogle Scholar
  23. 23.
    F. F. Abraham and J. V. Dave, Thermodynamics of microcrystallites and its relation to nucleation theory, J. Chem. Phys. 55, 1587–1597 (1971).CrossRefGoogle Scholar
  24. 24.
    J. Lothe and G. M. Pound, Reconsiderations of nucleation theory, J. Chem. Phys. 36, 2080–2085 (1962).CrossRefGoogle Scholar
  25. 25.
    F. F. Abraham and G. M. Pound, Re-examination of homogeneous nucleation theory: Statistical mechanical aspects, J. Chem. Phys. 48, 732–740 (1968).CrossRefGoogle Scholar
  26. 26.
    H. Reiss and J. L. Katz, Resolution of the translation-rotation paradox in the theory of irreversible condensation, J. Chem. Phys. 46, 2496–2499 (1967).CrossRefGoogle Scholar
  27. 27.
    H. Reiss, J. L. Katz, and E. R. Cohen, Translation-rotation paradox in the theory of nucleation, J. Chem. Phys. 48, 5553–5560 (1968).CrossRefGoogle Scholar
  28. 28.
    R. Kikuchi, The translation-rotation paradox in the nucleation theory, J. Statist. Phys. 1, 351–375 (1969).CrossRefGoogle Scholar
  29. 29.
    F. F. Abraham, Predicting the critical supersaturation for homogeneous nucleation of vapor condensation, J. Appl. Phys. 39, 3287–3293 (1968).CrossRefGoogle Scholar
  30. 30.
    W. Band, Dissociation treatment of condensing systems, J. Chem. Phys. 7, 324–326 (1939).CrossRefGoogle Scholar
  31. 31.
    T. Tseng, S. Feng, C. Cheng, and W. Band, Dissociation treatment of condensing system III. Properties of saturated vapors of H2O, NH3, CH3C1, and CO2, J. Chem. Phys. 8, 20–23 (1940).CrossRefGoogle Scholar
  32. 32.
    C. S. Kiang, D. Stauffer, G. H. Walker, O. P. Puri, J. D. Wise, and E. M. Patterson, A reexamination of homogeneous nucleation theory, J. Atm. Sci. 28, 1222–1232 (1971).CrossRefGoogle Scholar
  33. 33.
    A. EEgington, C. S. Kiang, D. Stauffer, and G. H. Walker, Droplet model and nucleation of supersaturated vapors near the critical point, Phys. Rev. Lett. 26, 820–822 (1971).CrossRefGoogle Scholar
  34. 34.
    P. Hamill, D. Stauffer, and C. S. Kiang, Nucleation theory: Fischer’s droplet picture and microscopic surface tension, Chem. Phys. Lett. 28, 209–212 (1974); CrossRefGoogle Scholar
  35. 35.
    M. E. Fisher, The theory of condensation and the critical point, Physics 3, 255–293 (1967).Google Scholar
  36. 36.
    J. J. Burton, Free energy of small face centered cubic clusters of argon, J. C. S. Faraday II 69, 540–550 (1973).CrossRefGoogle Scholar
  37. 37.
    J. J. Burton and C. L. Briant, in: Nucleation II ( A. C. Zettlemoyer, ed.), North Holland, Amsterdam (1977).Google Scholar
  38. 38.
    M. R. Hoare and P. Pal, Statistics and stability of small assemblies of atoms, J. Cryst. Growth 17, 77–96 (1972).CrossRefGoogle Scholar
  39. 39.
    J. J. Burton, Structure and properties of microcrystalline catalysts, Catal. Rev. Sci. Eng. 9, 209–222 (1974).CrossRefGoogle Scholar
  40. 40.
    J. J. Burton, in: Proc. 4th Intern. Symp. Sintering ( G. Kucsynski, ed.), pp. 17–28, Plenum Press, New York (1976).Google Scholar
  41. 41.
    J. G. Kirkwood and F. P. Buff, The statistical mechanical theory of surface tension, J. Chem. Phys. 17, 338–343 (1949).CrossRefGoogle Scholar
  42. 42.
    C. L. Briant and J. J. Burton, Molecular dynamics study of the structure and thermodynamic properties of argon microclusters, J. Chem. Phys. 63, 2045–2058 (1975).CrossRefGoogle Scholar
  43. 43.
    C. L. Briant and J. J. Burton, Molecular dynamics study of water microclusters, J. Chem. Phys. 63, 3327–3333 (1975).CrossRefGoogle Scholar
  44. 44.
    K. Binder and D. Stauffer, Monte Carlo study of the surface area of liquid droplets, J. Statist. Phys. 6, 49–59 (1972).CrossRefGoogle Scholar
  45. 45.
    C. T. R. Wilson, Condensation of water vapor in the presence of dust free air and other gases, Phil. Trans. Roy. Soc. A189, 265–307 (1897).CrossRefGoogle Scholar
  46. 46.
    K. C. Russell, Nucleation on gaseous ions, J. Chem. Phys. 50, 1809–1816 (1969).CrossRefGoogle Scholar
  47. 47.
    P. P. S. Saluja and H. A. Scherage, Ion water interactions in the gas phase, J. Phys. Chem. 77, 2736–2738 (1973).CrossRefGoogle Scholar
  48. 48.
    H. Kistenmacher, H. Popkie, and E. Clementi, Study of the structure of molecular complexes. VII. Small clusters of water molecules surrounding Li+, Na+, K+, F-, and Cl- Ions, J. Chem. Phys. 61, 799–815 (1974).CrossRefGoogle Scholar
  49. 49.
    C. L. Briant and J. J. Burton, Molecular dynamics study of the effects of ions on water microclusters, J. Chem. Phys. 64, 2888–2895 (1976).CrossRefGoogle Scholar
  50. 50.
    C. L. Briant and J. J. Burton, A molecular model for nucleation of water on ions, J. Atmos. Sci. 33, 1357–1361 (1976).CrossRefGoogle Scholar
  51. 51.
    A. Ben Naim and F. H. Stillinger, in: Structure and Transport Processes in Water and Aqueous Solutions (R. Home, ed.), pp. 295–330, Wiley, New York (1972).Google Scholar
  52. 52.
    A. Rahman and F. H. Stillinger, Molecular dynamics study of liquid water, J. Chem. Phys. 55, 3336–3359 (1971).CrossRefGoogle Scholar
  53. 53.
    F. H. Stillinger and A. Rahman, Molecular dynamics study of temperature effects on water structure and kinetics, J. Chem. Phys. 57, 1281–1292 (1972).CrossRefGoogle Scholar
  54. 54.
    A. Rahman and F. H. Stillinger, Hydrogen bond patterns in liquid water, J. Am. Chem. Soc. 95, 7943–7948 (1973).CrossRefGoogle Scholar
  55. 55.
    F. H. Stillinger and A. Rahman, Improved simulation of liquid water by molecular dynamics, J. Chem. Phys. 60, 1545–1557 (1974).CrossRefGoogle Scholar
  56. 56.
    C. L. Briant and J. J. Burton, Effective potential for water-ion interactions in prenucleation embryos, J. Chem. Phys. 60, 2849–2855 (1974).CrossRefGoogle Scholar
  57. 57.
    C. Cawthorne and E. S. Fulton, Voids in irradiated stainless steel, Nature 216, 575–576 (1967).CrossRefGoogle Scholar
  58. 58.
    D. I. R. Norris, Voids in irradiated metals (part I), Radiat. Eff. 14, 1–37 (1972).CrossRefGoogle Scholar
  59. 59.
    D. I. R. Norris, Voids in irradiated metals (part II), Radiat. Elf: 15, 1–22 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • J. J. Burton
    • 1
  1. 1.Exxon Research and Engineering CompanyLindenUSA

Personalised recommendations